GLOBAL POSITIONING SYSTEMS

Course Code	19EC4702A	Year	IV	Semester	I	
Course	Program	Branch	ECE	Course Type	Theory	
Category	Elective V					
Credits	3	L-T-P	3-0-0	Prerequisites	Satellite	
					communication	
Continuous	30	Semester	70	Total Marks:	100	
Internal		End				
Evaluation:		Evaluation:				

	Course Outcomes						
Upon successful completion of the course, the student will be able to							
CO1	Understand GPS signals and their characteristics (L2).						
CO2	Classify and discuss about GPS receivers (L2)						
CO3	Demonstrate different types of GPS errors (L3)						
CO4	Analyse various standard formats of GPS(L3)						
CO5	Differentiate GPS applications (L4)						

Mapping of course outcomes with Program outcomes (CO/PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

* - Average value indicates course correlation strength with mapped PO

COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11

COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	1	1	1		1	1	1	1	1	2
CO2	3	2	1	1	1	1	1		1	1	1	1	1	2
CO3	3	3	2	1	2	1	1		1	1	1	1	1	2
CO4	3	3	3	2	2	1	1		1	1	1	1	1	2
CO5	3	3	3	2	2	1	1		1	1	1	1	1	2
Average* (Rounded to nearest integer)	3	3	2	2	2	1	1		1	1	1	1	1	2

	Syllabus						
Unit No.	Contents	Mapped CO					
I	Introduction to GPS: Overview of GPS, GPS segments, GPS	CO1, CO2					
	satellite generations, current GPS satellite constellation, control	& CO3					
	sites.						
II	GPS Details: GPS signal structure, GPS modernization, types of	CO1, CO2					
	GPS receivers, time systems, pseudo range measurements, Carrier-	&CO3					
	phase measurements and cycle slips.						
III	GPS errors and Biases: GPS ephemeris errors, Selective	CO1, CO2					
	availability, satellite receiver and clock error, multipath error,	&CO3					
	ionospheric error, tropospheric error						
IV	GPS standard formats: RINEX, NGS-SP3, RTCM SC-104 and	CO1,					
	NMEA 0183.	CO3& CO4					

PVP-19

V	GPS Applications: GPS for utilities industry, forestry and natural	CO1,CO4&
	resources, precision farming, civil engineering applications,	CO5
	monitoring structural deformations, open pit-mining, land seismic	
	surveying, marine seismic surveying, airborne mapping, sea floor	
	mapping and vehicle navigation.	

Learning Resources

Text Books

1. Introduction to GPS the global positioning system: by Ahmed EI-Rabbany, Artech House Boston. London.

Reference Books

1. Fundamentals of Global Positioning System Receivers: A Software Approach, James Bao-Yen Tsui Copyright @ 2000 John Wiley & Sons, Inc.
