Department of Mechanical Engineering

PVP 19

MECHANICAL VIBRATIONS

Course Code	19 ME4601B	Year	III	Semester	II
Course Category	Program Elective-II	Branch	ME	Course Type	Theory
Credits	3	L-T-P	3 - 0 - 0	Prerequisites	Nil
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Analyze single degree freedom system for its natural frequency and vibration response.	L3			
CO2	Analyze single degree freedom system for its natural frequency and damped vibration response	L3			
CO3	determine response of Single degree freedom systems under harmonic excitations	L3			
CO4	Determine the response of Two-degree freedom systems under free and forced vibrations	L3			
CO5	Derive the equation of motion and find the natural frequencies mode shapes of a multi degree of freedom system	L3			

	Contribution of Course Outcomes towards achievement of Program Outcomes Strength of correlations (3: High, 2: Moderate, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1									3	1
CO2	3	3	1	1									3	1
CO3	3	3	1	1									3	1
CO4	3	3	1	1									3	1
CO5	3	3	1	1									3	1

	Syllabus					
Unit No	Contents	Mapped CO s				
I	UNDAMPED FREE VIBRATIONS OF SDOF SYSTEMS Introduction, basic concepts of vibration, importance of vibration study, elements of a vibrating system, types of vibration, methods of vibration analysis, harmonic motion, Equation of motion, free vibration of undamped translational system, free vibration of undamped torsional system, Raleigh's energy method.	CO1				
П	DAMPED FREE VIBRATIONS OF SDOF SYSTEMS Introduction, types of damping, free vibration with viscous and coulomb damping, logarithmic decrement.	CO2				
Ш	HARMONICALLY EXITED VIBRATIONS Introduction, equations of motion, response of undamped and damped systems under harmonic excitation, response of a damped system under harmonic motion of the base, response of a damped	CO3				

Department of Mechanical Engineering

PVP 19

	system under rotating unbalance, vibration, measuring instruments- vibrometer and accelerometer, critical speed	
IV	TWO DEGREE OF FREEDOM SYSTEMS: Introduction, equations of motion for forced vibration, free vibration analysis of an undamped system, torsional system, coordinate coupling and principal coordinates, forced vibration analysis. Dynamic vibration absorber	CO4
V	MULTI-DEGREE OF FREEDOM SYSTEMS: Introduction, modeling of continuous systems as multi degree of freedom systems, using Newton's second law to derive equations of motion, influence coefficients, Determination of natural frequencies and mode shapes.	CO5

Learning Recourse(s)

Text Book(s)

- 1. S.S.Rao, Mechanical Vibrations, 5/e, Pearson Education Inc., 2011.
- 2. G. K. Grover, Mechanical Vibrations, 8/e, Nem Chand & Bros

Reference Book(s)

- 1. L.Meirovich, Elements of Vibration Analysis, 2/e. TataMcGrawHill, 2007.
- 2. J.S.Raoand,K.Gupta,IntroductoryCourseonTheoryandPracticeofMechanicalVibrations,2/e, NewAge International,1999.

e-Resources & other digital material

- 1. https://nptel.ac.in/courses/112/103/112103112/
- 2. https://nptel.ac.in/courses/112/103/112103111/