PVP SIDDHARTHA INSTITUTE OF TEHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY

SPEECH PROCESSING

Course Code	19IT4602C	Year	III	Semester	II
	Program				
Course Category	Elective	Branch	IT	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	AI Tools
Continuous Internal		Semester End			
Evaluation :	30	Evaluation:	70	Total Marks:	100

	Blooms Taxonomy Level	
Upon suc		
CO1	Understanding of Fundamentals Concepts of Speech Processing	L2
CO2	Compare and Contrast on speech analysis and synthesis technologies, and their strengths and limitations	L2
CO3	Design and evaluate simple studies that utilize speech processing methods	L3
CO4	Analyze Speech Recognition models and applications	L3
CO5	Analyze Speech Synthesis applications	L3

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO 1	2					2							1	
CO 2	2	3				2							1	
CO 3	2					2							1	
CO 4	2	2				2							1	
CO 5	2	2				2							1	

	Syllabus	
Unit No	Contents	Mappe d CO
I	Basic Concepts Speech Fundamentals : Articulatory Phonetics – Production and Classification of Speech Sounds; Acoustic Phonetics –	CO1

Acoustics of speech production; Review of Digital Signal Processing						
concepts; Short-Time Fourier Transform, Filter-Bank and LPC						
Methods.						
Speech Analysis: Features, Feature Extraction and Pattern						
Comparison Techniques: Speech distortion measures- mathematical						
and perceptual – Log–Spectral Distance, Cepstral Distances,						
II Weighted Cepstral Distances and Filtering, Likelihood Distortions,	CO2					
Spectral Distortion using a Warped Frequency Scale, LPC, PLP and						
MFCC Coefficients, Time Alignment and Normalization – Dynamic						
Time Warping, Multiple Time – Alignment Paths						
Speech Modeling: Hidden Markov Models: Markov Processes,						
HMMs – Evaluation, Optimal State Sequence – Viterbi Search,	CO3					
Baum-Welch Parameter Re-estimation, Implementation issues						
Speech Recognition: Large Vocabulary Continuous Speech						
Recognition: Architecture Of A Large Vocabulary Continuous Speech						
Recognition System Acoustics And Language Models N.Grams	CO4					
IV Recognition System – Acoustics And Language Models – N-Oranis,	04					
Context Dependent Sub-word Units; Applications And Present						
Status.						
Speech Synthesis : Text-To-Speech Synthesis: Concatenative And						
Waveform Synthesis Methods, Sub-Word Units For TTS,	CO5					
Intelligibility And Naturalness – Role Of Prosody, Applications And						
Present Status						
Learning Recourses						
Text Books	0					
1. Lawrence Rabiner and Biing-Hwang Juang, "Fundamentals of Speech Recognition" Register Education 2002						
2. Daniel Jurafsky and James H Martin, "Speech and Language Processing						
– An Introduction to Natural Language Processing, Computational						
Linguistics, and Speech Recognition", Pearson Education, 2002.						
References						
1. Steven W. Smith, "The Scientist and Engineer's Guide to Digital Signal						
Processing", California Technical Publishing, 1997.						
2. Inomas F Quatieri, "Discrete-Time Speech Signal Processing – Dringingles and Protion" Degree Education 2004						
Principles and Fractice, realson Education, 2004.						
NPTEL VIDEO LECTURES						