PVP SIDDHARTHA INSTITUTE OF TEHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY

ADVANCED OPERATING SYSTEMS

Course Code	19IT4601B	Year	III	Semester	II
Course Category	PC	Branch	IT	Course Type	Theory
Credits	3	L-T-P	3-0-0		OPERATING SYSTEM
Continuous Internal Evaluation	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes				
Upon successful completion of the course, the student will be able to				
CO1	Outline the fundamentals of Operating Systems	L2		
CO2	Illustrate Distributed operating system concepts that includes architecture, Mutual exclusion algorithms, Deadlock detection algorithms and agreement protocols	L3		
CO3	Demonstrate the distributed resource management components viz. the algorithms for implementation of distributed shared memory, recovery and commit protocols	L3		
CO4	Outline the components and management aspects of Real time, Mobile operating systems	L1		

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)											lations		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2		2	2								1	2	1
CO2	2		2	2								1	2	1
CO3	2		2	2								1	2	1
CO4	2		2	2								1	2	1

	Syllabus					
Unit No	Contents	Mapped CO				
I	Fundamentals Of Operating Systems Overview – Synchronization Mechanisms – Processes and Threads - Process Scheduling –Deadlocks: Detection, Prevention and Recovery – Models of Resources – Memory Management Techniques.	CO1				
п	Distributed Operating Systems : Issues in Distributed Operating System – Architecture – Communication Primitives –Lamport's Logical clocks – Causal Ordering of Messages – Distributed Mutual Exclusion Algorithms – Centralized and Distributed Deadlock Detection Algorithms – Agreement Protocols.	CO2				
ш	Distributed Resource Management : Distributed File Systems – Design Issues - Distributed Shared Memory – Algorithms for Implementing Distributed Shared memory–Issues in Load Distributing – Scheduling Algorithms	CO3				
IV	Failure Recover and Fault Tolerance Synchronous and Asynchronous Check Pointing and Recovery – Fault Tolerance – Two-Phase Commit Protocol – Nonblocking Commit Protocol – Security and Protection.	CO3				
V	Real Time And Mobile Operating Systems Basic Model of Real Time Systems - Characteristics- Applications of Real Time Systems –Real Time Task Scheduling - Handling Resource Sharing - Mobile Operating Systems –Micro Kernel Design - Client Server Resource Access – Processes and Threads - Memory Management File system.	CO4				

Learning Resources

Text books 1. Mukesh Singhal and Niranjan G. Shivaratri, "Advanced Concepts in Operating Systems - Distributed, Database, and Multiprocessor Operating Systems", Tata McGraw-Hill, 2017. 2. Abraham Silberschatz; Peter Baer Galvin; Greg Gagne, "Operating System Concepts", Tenth Edition, John Wiley & Sons, 2018.

References

- 1. Daniel P Bovet and Marco Cesati, "Understanding the Linux kernel", 3rd edition, O'Reilly,2005.
- 2. Rajib Mall, "Real-Time Systems: Theory and Practice", Pearson Education India, 2006.

e-Resources and other Digital Material

- 1. https://www.youtube.com
 - watch?v=GTObrKKbRww&list=PLAwxTw4SYaPkKfusBLVfklgfdcB3BNpwX
- 2. https://omscs.gatech.edu/cs-6210-advanced-operating-systems-course-videos