Department of Mechanical Engineering

PVP 19

CAD/CAM

Course Code	19ME4501C	Year	III	Semester	I
Course Category	Program Elective-I	Branch	ME	Course Type	Theory
Credits	3	L-T-P	3 - 0 - 0	Prerequisites	Nil
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes					
After	successful completion of the course, the student will be able to				
CO1	Describe basic structure of CAD workstation and Graphic systems	L2			
CO2	Apply the knowledge of geometric modeling	L3			
CO3	Explain the features of CNC machines and part programming	L2			
CO4	Discuss the concepts of Group Technology, CAQC, FMS and CIM.	L2			

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1: Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3		3	2		1	1			2	3	
CO2	1	2	3		3	2		1	1			2	3	3
CO3	1		3		3	2		1	1			2	3	
CO4	2				3	2		1	1			2	3	

Syllabus					
Unit No.	Contents	Mapped COs			
	INTRODUCTION: Product cycle and CAD/CAM, applications and				
I	Benefits of CAD, Hardware in CAD: Design Workstation-Graphics				
	Terminal-Input devices- output devices-Display devices- Flat panel	CO1			
	Display-LCD, LED, Hard Copy Devices-Printers and Plotters, CPU,				
	Secondary Storage, Image Generation Techniques.				
	RASTER SCAN GRAPHICS -Line generation Algorithms-DDA,				
	Bresenham's algorithm, Coordinate systems, 2D transformation of				
	geometry, Homogeneous representation,3D transformations, Cohen				
	Sutherland Line clipping Algorithm, Hidden surface removal- Back face				
	detection algorithm, Depth buffer algorithms.				
	GEOMETRIC MODELING: Curve representation- Cubic, Bezier and				
II	B-spline curves parametric forms, Geometric Modeling of Surfaces: Basic				
	surfaces entities, sweep surfaces, surface of revolution, Surface blending,	CO2			
	Geometric Modeling of Solids: Solid entities, Boolean operations, B-rep,				
	CSG				
	DRAFTING AND MODELING SYSTEMS: Basic geometric				
	commands, layers, display control commands, editing, dimensioning				
	COMPUTER AIDED MANUFACTURING (CAM): Basic				
III	Components of NC System, NC Procedure, NC motion control systems,				
	problems with conventional NC, Direct Numerical control (DNC),	CO3			
	Computer Numerical Control (CNC), Functions of CNC and DNC				

Department of Mechanical Engineering

PVP 19

	systems. CNC PART PROGRAMMING: fundamentals, manual part programming and Computer Assisted Part Programming-APT				
IV	GROUP TECHNOLOGY (GT): Part family, coding and classification, production flow analysis, advantages and limitations, Computer Aided Processes Planning- Retrieval type and Generative type. COMPUTER AIDED QUALITY CONTROL (CAQC): Coordinate Measuring Machine, Non-Contact Inspection and Machine Vision				
V	FLEXIBLE MANUFACTURING SYSTEM (FMS): Components of FMS, FMS equipment and control COMPUTER INTEGRATED MANUFACTURING SYSTEM (CIMS): CIM Wheel, Elements of CIMS, CIMS benefits.	CO4			

Learning Recourse(s)

Text books:

- 1. CAD / CAM A Zimmers & M.P.Groover/PE/PHI
- 2. CAD / CAM Theory and Practice / Ibrahim Zeid / TMH

Reference books

- 1. CAD/CAM by P.N. Rao/TMH.
- 2. Automation, Production systems & Computer integrated Manufacturing/ Groover /P.E
- 3. CAD / CAM / CIM / Radhakrishnan and Subramanian / New Age
- 4. Principles of Computer Aided Design and Manufacturing / Farid Amirouche / Pearson
- 5. CAD/CAM: Concepts and Applications/Alavala/ PHI
- 6. Computer Numerical Control Concepts and programming / Warren S Seames / Thomson.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/112/102/112102101/
- 2. https://nptel.ac.in/courses/112/104/112104289/
- **3.** https://nptel.ac.in/courses/112/104/112104188/