Department of Mechanical Engineering

PVP 19

COMPUTATIONAL METHODS

Course Code	19ME2501A	Year	III	Semester	I	
Course Category	Inter disciplinary Elective-I	Branch	Common to All	Course Type	Theory	
Credits	3	L-T-P	3 - 0 - 0	Prerequisites	Nil	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes					
After	successful completion of the course, the student will be able to				
CO1	Solve System of equations using direct and iterative methods	L2			
CO2	Solve Boundary and characteristic Value Problems	L3			
CO3	Approximate linear and nonlinear curve using regression analysis	L3			
CO4	Find a numerical solution to partial differential equations	L3			
CO5	Apply finite difference scheme to solve parabolic and hyperbolic partial differential equations	L3			

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2										2	2	
CO2	3	2										2	2	
CO3	3	2										2	2	
CO4	3	2										2	2	
CO5	3	2										2	2	

Syllabus					
Unit No.	Contents	Mapped COs			
	INTRODUCTION TO NUMERICAL METHODS APPLIED TO				
I	ENGINEERING PROBLEMS: Examples, solving Sets of equations—				
	Matrix notation–Determinants and inversion– Iterative methods–	CO1			
	Relaxation methods–Systems of non-linear equations.				
	BOUNDARY VALUE PROBLEMS AND CHARACTERISTIC				
II	VALUE PROBLEMS: Shooting method— Solution through a set of				
	equations –Derivative boundary conditions–Characteristic value	CO2			
	problems.				
	CURVE FITTING AND APPROXIMATION OF FUNCTIONS:				
III	Least square approximation fitting of non- linear curves by least squares –				
	regression analysis- multiple linear regression, non-linear regression.	CO3			
	NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL				
IV	EQUATIONS: Laplace's equations – Representations as a difference				
1	equation – Iterative methods for Laplace's equations – Poisson equation –	CO4			
	Examples - Derivative boundary conditions - Irregular and non -				
	rectangular grid.				

Department of Mechanical Engineering

PVP 19

V	PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS: Explicit method— Crank-Nicolson method— Derivative boundary condition— Stability and convergence criteria. HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS: Solving wave equation by finite differences— stability of numerical method—method of characteristics—wave equation in two space dimensions.	CO5
---	--	-----

Learning Recourse(s)

Text Books

- 1. Steven C.Chapra, Raymond P.Canale"NumericalMethodsforEngineers"TataMc-Grawhill,,Fifth edition.
- 2. Curtis F.Gerald, partick.O.Wheatley, "Applied numerical analysis" Pearson Education –Sixth Edition.2002

Reference Book(s)

- 1. Ward cheney&David Kincaid "Numerical mathematics and computing" Brooks /colepublishingcompany1999,fourthedition.
- 2. RileyK.F. M.P. Hobson & BenceS.J, "mathematical methods for physics and engineering" Cambridgeuniversitypress,1999.

e- Resources & other digital material

- 1. https://www.nptel.ac.in/courses/111/107/111107105/
- 2. https://www.nptel.ac.in/courses/111/105/111105041/
- 3. https://www.nptel.ac.in/courses/111/106/111106112/
- 4. https://www.nptel.ac.in/courses/111/105/111105090/