Department of Mechanical Engineering

PVP 19

INTERNET OF THINGS LABORATORY

Course Code	19ES1552	Year	III	Semester	I
Course Category	Engineering Science	Branch	ME	Course Type	Practical
Credits	1	L-T-P	0 - 0 - 2	Prerequisites	Nil
Continuous Internal Evaluation	25	Semester End Evaluation	50	Total Marks	75

Course Outcomes					
Upon successful completion of the course, the student will be able to:					
CO1	Develop various sensor interfacing using Visual Programming Language.	L6			
CO2	Analyze various Physical Computing Techniques.				
CO3	Evaluate Wireless Control of Remote Devices.	L5			
CO4	Design and develop Mobile Application which can interact with Sensors	L6			
CO4	and Actuators.				

Contribution of Course Outcomes towards achievement of Program Outcomes &														
Strength of correlations (H-High3, M-Medium-2, L-Low-1)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	3	3	2	3	3	3	3	3	3
CO2	3	3	3	3	2	3	3	2	3	3	3	3	3	3
CO3	3	3	3	3	2	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	2	3	3	2	3	3	3	3	3	3

Syllabus					
Expt. No	Content				
1.	Digital I/O Interface - Multicolour Led, IR Sensor, PIR, Slot Sensor.	CO1			
2.	Analog Read and Write - Potentiometer, Temperature Sensor, Led Brightness Control.	CO1			
3.	Dc Motor Control - Dc Motor Speed and Direction Control.	CO2			
4.	Read data from sensor and send it to a requesting client. (using socket communication) Note: The client and server should be connected to same local area network.	CO2			
5.	Fabrication and direction control of wheeled robot using Arduino.	CO2			
6.	Serial Communication - Device Control.	CO2			
7.	Wireless Module Interface - Bluetooth and Wifi.	CO3			
8.	Wireless Control of wheeled Robot using Bluetooth/Wifi.	CO3			
9.	Basic Android App Development using MIT App Inventor.	CO4			
10.	Smart Home Android App Development using App Inventor and Arduino.	CO4			
11.	Develop IOT based smart lock system for Motor cycle/Car	CO4			
12.	Develop IOT based smart water flow system	CO4			

Learning Recourse(s)	
Text Book:	
1. Sylvia Libow Martinez, Gary S Stager, "Invent To I	earn: Making, Tinkering, and
Engineering in the Classroom", Constructing Mode	rn Knowledge Press, 2016.
Reference Books:	-
1. Michael Margolis, "Arduino Cookbook", Oreilly, 2	011