Department of Mechanical Engineering

PVP 19

DATABASE MANAGEMENT SYSTEMS

Course Code	19CS2501A	Year	III	Semester	I	
Course Category	Inter Disciplinary Elective-I	Branch	Common to All	Course Type	Theory	
Credits	3	L – T – P	3 - 0 - 0	Prerequisites	Nil	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes				
After successful completion of the course, the student will be able to				
CO ₁	Understand the basic concepts of database management systems	L2		
CO2	CO2 Understand normalization techniques with simple examples.			
CO3	Apply SQL commands to create tables for a given database application	L3		
CO4	Apply ER Model concepts to draw ER Diagrams for a given database application and make an effective report.	L3		

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3													
CO3	3													
CO4	3								3	3				

	Syllabus						
Unit No.	Contents	Mapped COs					
	INTRODUCTION TO DATABASES: Characteristics of the Database						
I	Approach, Advantages of using the DBMS Approach, A Brief History of						
	Database Applications.						
	OVERVIEW OF DATABASE LANGUAGES AND						
	ARCHITECTURES: Data Models, Schemas and Instances, Three-						
	Schema Architecture and Data Independence, Database Languages and						
	Interfaces, Database System environment, Centralized and Client-Server						
	Architecture for DBMS.						
	RELATIONAL MODEL: The Relational Model Concepts, Relational						
II	Model Constraints and Relational Database Schemas.						
	SQL: Data Definition, Constraints, Basic Queries and Updates,	CO,3					
	Views(Virtual Tables) in SQL						
	CONCEPTUAL DATA MODELING: High-Level Conceptual Data						
III	Models for Database Design, A Sample Database Application, Entity						
	Types, Entity Sets, Attributes and Keys, Relationship Types, Relationship	CO4					
	Sets, Roles, and Structural Constraints, Weak Entity Types.						
	ER-Diagrams: Refining the ER Design, ER Diagrams, Naming						
	Conventions and Design Issues						

Department of Mechanical Engineering

PVP 19

	DATABASE DESIGN THEORY: Functional Dependencies, Normal					
IV	forms based on Primary Keys, Second and Third Normal Forms, Boyce-					
	Codd Normal Form.	CO2				
	TRANSACTION PROCESSING: Introduction, Transaction and System					
	Concepts, Desirable Properties of Transactions.					
\mathbf{V}	INTRODUCTION TO PROTOCOLS FOR CONCURRENCY	CO1				
	CONTROL IN DATABASES: Two-Phase Locking Techniques for					
	Concurrency Control - Types of Locks and System Lock Tables.					

Learning Recourse(s)

Text Books

1. Database Systems Models, Languages, Design and Application Programming, Ramez Elmasri, Shamkant B.Navathe, 6th Edition, Pearson.

References

- 1. Data base Management Systems, Raghurama Krishnan, Johannes Gehrke, 3rd Edition, TMH.
- 2. Data base System Concepts, Abraham Silberschatz, Henry F Korth, S.Sudarshan, 5th Edition, Mc Graw Hill.