Code: 20AM6421, 20DS6421

II B.Tech - II Semester - Regular Examinations - MAY 2024

ADVANCED DATA STRUCTURES (HONORS in AIML, DS)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks
		UNIT-I			1,10,110
1	a)	What is hashing? Discuss about the	L2	CO1	7 M
		Rehashing methods with examples.			
	b)	Construct the open hash table and closed	L3	CO1	7 M
		hash table for the input: 30, 20, 56, 75, 31,			
		19 using the hash function $h(k) = k \mod 9$.			
		OR			
2	a)	What do you mean by collision and how can	L1	CO1	7 M
		you handle it by using linear probing.			
	b)	When to use extendable hashing? Explain	L2	CO1	7 M
		extendable hashing with example.			
		UNIT-II			
3	a)	Explain about the procedure for inserting an	L2	CO2	7 M
		element into the Heap.			
	b)	Construct a binary heap with the following	L3	CO2	7 M
		data 15, 11, 9, 8, 7, 10, 18.			

		OR			
4	a)	Write an algorithm to insert an element in max heap? Trace the above algorithm for		CO2	7 M
	b)	the following elements? 1, 2, 3, 4, 5, 6, 7, 8. While creating the heap for above data will	13	CO2	7 M
	0)	fall in best case or worst case? Interpret			/ IVI
		your answer.			
	l	UNIT-III	<u> </u>	1	
5	a)	What are the different types of imbalances	1.2	CO3	7 M
		that occur while deleting a node from AVL			, 1,1
		trees? Explain with example.			
	b)	How they are rectified? Explain with an	L2	CO3	7 M
		example for each type of imbalance.			
		OR	l	1	
6	a)	Explain three possible cases for inserting a	L2	CO3	7 M
		node in the 2-3 Trees? Construct 2-3 Tree			
		with the following data 50, 20, 60, 90, 40,			
		100, 10.			
	b)	Write Algorithm for 2-3 Tree deletion and	L3	CO3	7 M
		discuss its analysis.			
		UNIT-IV			
7	a)	How to find shortest path between vertices	L4	CO4	7 M
		using all pairs shortest path Floyd's algorithm.			
	b)	Write a pseudocode for weighted shortest-	L3	CO4	7 M
		path algorithm for Bellman Ford. Explain			, 1,1
		with example.			

		OR						
8	a)	Develop an algorithm to find the shortest path from a Single Source to all other vertices in a graph using Dijkstra's algorithm.	L3	CO4	7 M			
	b)	Apply Dijkstra's algorithm on the below graph. 45 20 10 15 10 30 35 45	L3	CO4	7 M			
	UNIT-V							
9	a)	Analyze an algorithm that will efficiently search a given text for a pattern and record the number of times the keyword found. Given string "SHE SELLS SEA SHELLS ON THE SEA SHORE" and Pattern String "SHELL".	L4	CO5	7 M			
	b)	Which pattern matching algorithm avoids the repeated comparison of characters? Discuss with suitable example.	L2	CO5	7 M			
	OR							
10	a)	What are the drawbacks of simple union and find algorithms? How to overcome those drawbacks? Explain with example.	L2	CO5	7 M			
	b)	Describe the path compression with example.	L1	CO5	7 M			