	CONTENTS
1.	SHORT TITLE AND COMMENCEMENT
2.	DEFINITIONS
3.	ACADEMIC PROGRAMMES
	3.1 Nomenclature of Programmes
4	DURATION OF THE PROGRAMMES
	4.1 Normal Duration
	4.2 Maximum Duration
	4.3 Minimum Duration of Semester
5.	ADMISSION CRITERIA
	5.1 CATEGORY – A Seats
	5.2 CATEGORY – B Seats
	5.3 CATEGORY - Lateral Entry Seats
6.	CREDIT SYSTEM AND GRADE POINTS
	6.1 Credit Definition
	6.2 Semester Course Load
	6.3 Grade Points and Letter Grade for a Course
	6.4 Semester Grade Point Average (SGPA)
	6.5 Cumulative Grade Point Average (CGPA)
7.	CURRICULUM FRAMEWORK
	7.1 General Issues
	7.2 Curriculum Structure
	7.3 Course Numbering Scheme
	7.4 Medium of Instruction and Examination
	7.5 Registration
8.	CHOICE BASED CREDIT SYSTEM (CBCS)
	8.1 CBCS Course Registration Policy
	8.2 Continuous Evaluation for CBCS Opted Courses
	8.3 Eligibility to Appear CBCS Registered Courses For Semester End
	Examinations-
	8.4 CBCS Course Detention
9.	EXAMINATIONS AND SCHEME OF EVALUATION
	9.1 Description
	9.2 Continuous Internal Evaluation(CIE)
	9.2.1 Theory Courses
	9.2.2 Mandatory Learning Courses
	9.2.3 Drawing Based Courses
	9.2.4 Laboratory Courses
	9.2.5 Project Phase I
	9.2.6 Project Phase II
	MOUCS Courses
	9.3 Semester End Examinations (SEE)
	9.3.1 Theory Courses

- 9.3.2 Laboratory Courses
- 9.3.3 Project Phase I
- 9.3.4 Project Phase II
- 9.3.5 Internships/Industry Interaction
- 9.4 Conditions for Pass Marks
- 9.5 Revaluation
 - 9.5.1 Continuous Internal Evaluation
 - 9.5.2 Semester End Examinations
- 9.6 Withholding Results
- 10. CRITERIA TO ATTEND SEMESTER END EXAMINATION ANDPROMOTION TO HIGHER SEMESTER
 10.1 Eligibility for Semester End Examinations
 - 10.2 Conditions for Promotion
- 11. SUPPLEMENTARY EXAMINATIONS
 - 11.1 General
 - 11.2 Advanced Supplementary
- 12. READMISSION CRITERIA
- 13. BREAK IN STUDY
- 14. TRANSITORY REGULATIONS
- 15. ELIGIBILITY FOR AWARD OF B.TECH. DEGREE
- 16. CONDUCT AND DISCIPLINE
- 17. MALPRACTICES
- 18. OTHER MATTERS
- 19. GENERAL
- 20. INSTITUTE RULES AND REGULATIONS
- 21. AMENDMENTS TO REGULATIONS

1. SHORT TITLE AND COMMENCEMENT

- a. The regulations listed under this head are common for all degree level undergraduate programmes (B.Tech.), offered by the college with effect from the academic year 2019-20 and they are called as "PVP19" regulations.
- b. The regulations hereunder are subjected to amendments as may be made by the Academic Council of the college from time to time, keeping in view of the recommendations of the Board of Studies. Any or all such amendments will be effective from such date and to such batches of candidates including those already undergoing the programme, as may be decided by the Academic Council.

2. **DEFINITIONS**

- a. "Commission" means University Grants Commission (UGC);
- b. "Council" means All India Council for Technical Education (AICTE);
- c. "University" means Jawaharlal Nehru Technological University Kakinada (JNTUK);
- d. "College" means Prasad V. Potluri Siddhartha Institute of Technology, Vijayawada;
- e. An Academic Programme means any combination of courses and/or requirements leading to award of a degree.
- f. "Course" means a subject either theory or practical identified by its course title and code number and which is normally studied in a semester.
- g. "Degree" means an academic degree conferred by the university upon those who complete the undergraduate curriculum.
- h. "CBCS" means Choice Based Credit System
- i. "MOOC" means Massive Open Online Course
- j. "Regular Students" means students enrolled into the four year programme in the first year.
- k. "Lateral Entry Students" means students enrolled into the four year programme in the second year.

3. ACADEMIC PROGRAMMES

3.1 Nomenclature of Programmes

3.1.1 The nomenclature and its abbreviation given below, shall continue to be used for the Degree programmes under the University, as required by the Council and the Commission:

Bachelor of Technology (B. Tech)

Besides, the name of specialization shall be indicated in brackets after the abbreviation, for example, engineering degree in Mechanical Engineering programme is abbreviated as B.Tech (Mechanical Engineering).

- 3.1.2 Bachelor of Technology (B. Tech.) degree programme is offered in:
 - 1. Civil Engineering (CE)
 - 2. Computer Science and Engineering (CSE)
 - 3. Electronics and Communication Engineering (ECE)
 - 4. Electrical and Electronics Engineering (EEE)

PVP 19

5. Information Technology (IT)

6. Mechanical Engineering(ME)

4. DURATION OF THE PROGRAMMES

4.1 Normal Duration

- 4.1.1. The duration of an academic programme shall be four years consisting of eight semesters.
- 4.1.2. The duration of the programme for lateral entry students who are admitted in II year shall be three years that consists of six semesters.

4.2 Maximum Duration

4.2.1 The maximum period for which a student can take to complete a full time academic programme shall be double the normal duration of the programme, i.e., for regular students eight years, for lateral entry students six years.

4.3 Minimum Duration of a Semester

Each semester consists of a minimum of 90 instruction days with about minimum 20 and maximum 33 contact hours per week.

5. ADMISSION CRITERIA

The eligibility criteria for admission into UG Engineering programmes are as per the norms approved by Government of Andhra Pradesh from time to time.

The sanctioned seats in each programme in the college are classified into CATEGORY-A, and CATEGORY-B at I year level and only CATEGORY-A at Lateral Entry II year level.

The percentages of Category–A, Category-B and Lateral Entry Seats are decided from time to time by the Government of Andhra Pradesh.

5.1 CATEGORY – A Seats

Category - A seats are filled as per the norms approved by the Government of Andhra Pradesh.

5.2 CATEGORY – B Seats

Category - B seats are filled by the College as per the norms approved by the Government of Andhra Pradesh.

5.3 CATEGORY - Lateral Entry Seats

Lateral entry candidates shall be admitted into the III semester directly asper the norms approved by Government of Andhra Pradesh.

6. CREDIT SYSTEM AND GRADE POINTS

6.1 Credit Definition

'Credit' means quantified and recognized learning. Credit is measured in terms of contact hours per week in a semester. Typically one credit is given to:

- (a) Theory/Tutorial course conducted for one contact period.
- (b) Laboratory course conducted for two contact periods.

Each course is assigned a certain number of credits depending upon the number of contact hours (Lectures/Tutorials/Practical) per week.

The curriculum of the eight semesters B.Tech program is designed to have a total of 160 credits for the award of B.Tech degree.

For lateral entry students, the curriculum of six semesters B.Tech program is designed to have a total of 121.5 credits for the award of B.Tech degree.

6.2 **Semester Course Load**

The average course load shall be fixed at 20 credits per semester with its minimum and maximum limits being set at 13 and 24.5 credits.

6.3 Grade Points and Letter Grade for a Course

The grade points and letter grade will be awarded to each course based onstudent's performance as per the grading system shown in the Table1.

Theory/Drawing	Laboratory/Project	Grade	Letter
% of Marks	% of Marks	Points	Grade
\geq 90%	$\geq 90\%$	10	S
80 - 89%	80 - 89%	9	А
70 - 79%	70 - 79%	8	В
60 - 69%	60 - 69%	7	C
50 - 59%	55 - 59%	6	D
40 - 49%	50-54%	5	Е
< 40%	< 50%	0	F (FAIL)
ABSENT	ABSENT	0	AB

Table 1: Grading System for B. Tech Programme

6.4 Semester Grade Points Average (SGPA)

The performance of each student at the end of the each semester is indicated in terms of SGPA calculated as shown in equation (1).

 $\sum (CR \times GP)$

 $SGPA = \frac{\sum (CR \times GP)}{\sum (all \ courses \ offered \ in \ the \ semester)}$

Where CR= Credits of a course

GP= Grade Points awarded for a course

6.5 Cumulative Grade Point Average (CGPA)

The Cumulative Performance of each student at the end of each semester is indicated in terms of CGPA which is calculated as shown in equation (2).

 $CGPA = - \sum CR \ X \ GP$

 $\sum CR(for all courses of fered up to that semester/entire program)$

Where CR = Credits of a course

GP = Grade points awarded for a coursePercentage equivalent of CGPA = (CGPA - 0.5) * 10-- (2)

-(1)

7. CURRICULUM FRAMEWORK

7.1 General Issues

- **7.1.1** Curriculum framework is important in setting the right direction for a degree programme as it takes into account the type and quantum of knowledge necessary to be acquired by a student in order to qualify for the award of degree in his/her chosen branch or specialization.
- **7.1.2** Besides, this also helps in assigning the credits for each course, sequencing the courses semester-wise and finally arriving at the total number of courses to be studied and the total number of credits to be earned by a student in fulfilling the requirements for conferment of degree.
- 7.1.3 Each theory course shall consist of five units.

7.2 Curriculum Structure

The curriculum is designed to facilitate CBCS and incorporates courses required to attain the expected knowledge, skills and attitude by the time of graduation as per the needs of the stakeholders. The curriculum structure consists of various course categories (as described in 7.2.1 to7.2.6) to coverthe depth and breadth required for the programme and for the attainment of programme outcomes of the corresponding programme.

7.2.1 Institutional Core

Institutional Core consists of the courses required for all UG Engineering Programmes offered in this college. The courses offered under this category cover the required knowledge in the following areas:

(a) **Basic Sciences:**

Basic Science courses include Engineering Physics, Applied Physics, Engineering Physics Lab, Applied Physics Lab Engineering Chemistry, Chemistry of Materials, Engineering Chemistry Lab, Chemistry of Materials Lab, Mathematics I (calculus and Algebra), Engineering Mathematics II (ODE, PDE and Multivariable Calculus), Engineering Mathematics III, Engineering Mathematics IV, Life Sciences for Engineers and Life Sciences for Engineers Lab.

(b) Engineering Sciences:

Engineering Science courses include Problem Solving and Programming, AI Tools, Internet of Things, Design Thinking & Product Innovation, Basic Electrical and Electronics Engineering, Engineering Graphics, Problem Solving & Programming Lab, Basic Electrical & Electronics Engineering Lab, AI Tools Lab, Internet of Things Lab, Design Thinking and Product Innovation Lab and Basic Workshop.

(c) Humanities and Social Sciences:

Humanities and Social Science Courses consist of Communicative English I, Communicative English II, HS-I (Engineering Economics & Management), HS-II (Organizational Behavior), Communicative English I Lab and Communicative English II Lab.

7.2.2 Elective Courses

Elective courses are offered across the programmes to enhance the knowledge breadth and professional competency of the students.

Courses	Branch Specific	Compulsory			
	Program Electives	Supportive to the discipline courses with expanded scope in a chosen track of specialization or cross track courses			
Elective courses	Interdisciplinary Electives	Interdisciplinary exposure & nurture the student interests in other department courses			
	Open Electives	Common to all disciplines that helps general interest of a student			

Greater flexibility to choose variety of courses is provided through Massive Open Online Courses (MOOCs) during the period of study. Students without any backlog courses upto III semester are permitted to register for MOOCs from IV semester onwards upto a maximum of 15 credits from Program Elective/Interdisciplinary Elective/Open Elective Courses. However, the Departmental Committee (DC) has to approve the courses under MOOCs. The Departmental committee consists of Head of the Department, Program coordinator and Module Coordinator.

Students can register and complete the opted course in approved MOOCs platform on or before the last instruction day of IV/V/VI/VII semester. They have to submit the pass certificate before the last instruction day of that concerned semester.

7.2.3 Programme Core

The Programme core consists of set of courses considered which are necessary for the students of the specific programme. The courses under this category satisfy the Programme Specific Criteria prescribed by the appropriate professional societies.

7.2.4 Project

Project Phase I & Project Phase II will be initiated in VII semester and completed before the end of VIII semester.

Project Phase I can be done by a group of students, working under the guidance of a faculty member and carrying out a detailed feasibility study, literature survey and submit a report regarding work plan for the project phase II.

Project Phase II involves continuation of Project Phase I. The objective is to complete the work as per the prepared work plan and submit a detailed project report.

7.2.5 Industry Interaction

The students may register for either Internship or Industry offered course during the summer break after VI semester to secure 2 credits.

Internship/Industry offered courses are purely meant for internal Assessment which will be evaluated for 75 marks during the VII semester.

a) Internships

The students may undergo Internship for 3 to 6 weeks duration in the industry approved by respective head of the department at the end of VI semester.

b) Industry offered courses

The students can opt for the courses under this category that are offered by the Industry experts whose minimum academic qualification is Bachelor of Engineering or equivalent.

7.2.6 Mandatory Learning Courses

According to the guidelines given by statutory bodies, Courses on Environmental Science, Constitution of India and Engineering Ethics shall be offered.

Induction program shall be offered in I semester for all the branches.

NCC/NSS/NSO/YOGA shall be offered in I & II semesters.

Environmental Science and Constitution of India shall be offered in III & IV semesters.

Engineering Ethics shall be offered in V/VI semesters.

	Academic Rules and Regulations PVP19					
7.3 Course Nu	ambering Scheme					
The Cours	e code consists of eight/nine characters. The tol	lowing is the structu	ire of the cour	se Code (Figure 1)).	ا ٦
19	CS	1	2	0	3	A
egulation	Course Category	Kind of course	Semester	Туре	Course	[Elective
		ļ	ļ'		Number	code]
Last two	HS - Humanities and Social Sciences	1. Institutional	1. First	1. Theory	i.e. Course	Incase if
digits of	including Management courses	Core (i.e. HS,	2. Second	2. Theory	sequence	the course
Regulation	BS - Basic Science courses ES - Engineering	BS,ES, MC)	3. Third	studied in	Number in	is Elective
offered (i.e.	Science	2. Inter	4. Fourth	MOOCS	that	then this
19	MC - Mandatory Courses. In case of	Disciplinary	5. Fifth	Mode	semester	field will
for PVP19	Professional Core/ Professional Elective	Elective	6. Sixth	3. Practical		specifythe
regulations)	courses department code is placed:	3. Program	7. Seventh	4. Project		elective
	CE - Civil Engineering	Core	8. Eight	Work		code (i.e.
	CS - Computer Science & Engineering	4. Program	1	5. Industrial		A, B, C.)
	EC - Electronics & Communication	Elective	1	Training/		
	Engineering	5. Open	1	Internship		
	EE - Electrical & Electronics Engineering	Elective	1			
	IT - Information Technology		1			
	ME - Mechanical Engineering		1			
	Figure 1: C	ourse numbering	, scheme			

7.4 Medium of Instruction and Examination

The medium of instruction and examinations shall be English.

7.5 Registration

Every student has to register himself/herself for the courses in each semester individually at the time as specified in academic calendar.

8. Choice Based Credit System (CBCS)

Choice Based Credit System (CBCS) shall be introduced with effect from 2019-20 academic year, based on guidelines of the statutory bodies in order to promote:

- Activity based learning
- Student centered learning
- o Students to choose courses of their choice
- Learning at their own pace
- Interdisciplinary learning

Flexibility is extended to the fast learning students to take the courses of higher semesters in advance as per their convenience to concentrate on their placement activity/ project work, etc., during the VII/VIII semesters.

8.1 CBCS Course Registration Policy

Fast learning students can register for additional courses from higher semesters by satisfying the pre-requisite course(s) to a maximum of 8 credits in each of the semesters from III semester onwards along with the regular semester courses as prescribed. There is no minimum limit to the credits for taking additional courses.

Eligibility for choosing CBCS flexibility:

- **Regular Students (4 Year duration),** entering the nth semester with no backlog courses up to (n-1)th semester, are only eligible to opt for this flexibility.
- Lateral entry students (3 year duration) with 70% Marks in their Diploma are eligible to opt for this flexibility during III and IV Semesters. Those students

entering into V/ VI /VII semester with no backlog courses up to $(n-1)^{\text{th}}$ semester, are only eligible to opt for this flexibility.

The list of additional courses offered in the even & odd semesters, registration dates will be notified by the respective departments well in advance.

A student can withdraw from the respective course within 15 days after the commencement of the course.

The choice of utilizing this flexibility is purely optional to the students.

A minimum number of students required to register for an additional course shall be twenty (20). In case, the registered strength for the additional course is less than twenty (20), the course may be offered on the recommendation of the Head of the Department and subsequent approval of the Principal.

8.2 Continuous Internal Evaluation (CIE) for CBCS opted Courses

The contact hours, continuous assessment pattern, eligibility criteria to write end semester examinations and revaluation scheme for these additional courses will be as per the current academic regulations [PVP19].

8.3 Eligibility to appear CBCS registered courses for Semester End Examinations

The registered additional courses will be dealt separately as individual courses for the calculation of attendance and continuous assessment of marks for assessing the eligibility to write the end semester examinations for these courses.

The performance of the student in the registered additional courses will be separately mentioned in the semester end grade card and it will not be taken into account for the calculation of the SGPA for that semester.

The performance of the student in the registered additional courses will be taken into account in the corresponding semesters.

8.4 CBCS Course Detention

- **8.4.1** In case, the student is detained for want of minimum specified attendance and continuous assessment marks criterion either in the regular semester or in the additional courses, he/she will forfeit the eligibility for registering additional courses from that semester onwards. However, the additional courses completed by the students in the earlier semesters will be valid and taken into consideration.
- **8.4.2** In case, the student is detained for want of minimum specified attendance and continuous assessment marks criterion in the regular semester but meets minimum specified attendance and continuous assessment marks criterion in the registered additional courses, he/she shall write the end semesterexaminations for these additional courses along with the regular students in the corresponding semester only.
- **8.4.3** In case, the student fails/is absent in the end semester examinations of the registered additional courses or in the regular semester courses in a particular semester, he will forfeit the eligibility for registering additional courses from that semester onwards. However, the additional courses completed by the students in the earlier semesters will be valid and taken into consideration. They can write the end semester examinations for additional courses in which they failed/were absent, along with regular students in the corresponding semesters only.
- **8.4.4** The criterion for the promotion to higher semesters will be as per PVP19 regulations, taking only the regular semester courses into consideration for the fast learners.
- **8.4.5** Additional courses, in which the fast learning student fails, will not be considered as backlogs for them.
- **8.4.6** The fast learning students shall register for all the courses of a regular semester excluding the courses completed in the previous semesters.
- **8.4.7** The credits scored by students through CBCS subjects shall not be considered for credit promotion from II year to III year or from III year to IV year B.Tech.
- **8.4.9** The students who have earlier history of indulging in malpractices in semester endexaminations are not eligible for opting CBCS.
- **8.4.10** If the student fails to register for opted CBCS courses for semester end examination, he/she will forfeit the eligibility for registering additional courses

from that semester onwards and marks secured through continuous assessment will not be considered.

- **8.4.11** The choice of utilizing this flexibility is purely optional to the students.
- **8.4.12** If a student fails/absent in a CBCS course, he/she is bound to appear in the same course when studied in regular semester.

9. EXAMINATIONS & SCHEME OF EVALUATION

9.1 Description of Evaluation

- **9.1.1 Continuous Internal Evaluation (CIE):** The performance of the student in each course is evaluated by the faculty/course coordinator all through the semester; with mid-term tests (sessional-1and sessional-2), assignments, project reviews, viva-voce, laboratory assessment and other means covering the entire syllabus of the course.
- **9.1.2 Semester End Examination (SEE):** It shall be conducted by chief controller of examinations at the end of each semester, as per the academic calendar and with a written examination for theory courses and practical/project examination with built-in oral part for laboratory/project.

9.2 Continuous Internal Evaluation (CIE)

9.2.1 Theory Courses

Each course is evaluated for 30 marks (a+b+c)

a) Two assignment tests (Assignment Test-1 & Assignment Test-2) for 10 marks each will be conducted with1 hour duration. Assignment-1 shall be conducted from Unit-1 and Assignment-2 shall be conducted from Unit-4. The assignment test marks shall be awarded taking the average of two assignment tests.

The Assignment test shall be held in the zero hour and the class work will be conducted as usual in those days.

The Question bank with minimum number of 6 comprehensive questions from the concerned UNIT of the syllabus will be given to students at least a week in advance before the commencement of Assignment Test.

The question paper shall contain 2 comprehensive questions, each one is meant for 5 Marks. The student is required to answer all the questions.

- **b**) Home assignment shall be conducted for 5 marks from Unit-3. The question bank with 10 to 15 comprehensive questions from unit-3 shall be given to students. Each student has to answer 3 questions from the question bank which will be assigned by the concerned faculty.
- c) Two Mid-term (Sessional 1 and Sessional 2) examinations with 15 Marks each shall be conducted with **90 minutes** duration.

The Mid-term marks shall be awarded taking the average of two Mid-term examinations.

The question paper shall be given in the following pattern:

Part A: Contains two questions, one from each unit. The student shallanswer all questions. Each question is for 2.5 marks.

Part B: Contains four questions. Two questions shall be given from each unit with internal choice. The student shall answer 1 question from each unit. Each question carries 5 marks.

Syl	labu	s for	CIE
~			

Name of the Test	Syllabus
Assignment Test – 1	UNIT – I
Sessional – 1	UNIT - I & UNIT – II
Home Assignment	UNIT – III
Assignment Test – 2	UNIT – IV
Sessional – 2	UNIT – IV& UNIT – V

The questions shall be framed in Assignment tests and Sessional examinations in line with the Course Outcomes defined and cognitive levels.

9.2.2 Mandatory Learning Courses

Each course is evaluated for 100 marks (a+b)

a) Two Mid-term (Sessional - 1 and Sessional - 2) examinations each for 40Marks shall be conducted with 90 minutes duration.

The Mid-term examinations shall be held in the zero hour and the class work shall be conducted as usual in those days.

The question paper shall be given in the following pattern:

The question paper contains four questions. Two questions shall be given from each unit with internal choice. The student shall answer one question from each unit. Each question carries 20 marks.

b) Home assignment for 20 marks shall be conducted from Unit-3. The questionbank with 10 to 15 comprehensive questions from unit-3 shall be given to students. Each student has to answer 4 questions from the question bank which will be assigned by the concerned faculty.

The Mid-term marks shall be awarded as sum of two Mid-term examinations and home assignment.

Syllabus for CIE

Name of the Test	Syllabus
Sessional – 1	UNIT – I & II
Home Assignment	UNIT – III
Sessional – 2	UNIT – IV & V

9.2.3 Drawing Based Courses:

Each course is evaluated for 30 marks (a+b)

a) Two Mid-term (Sessional - 1 and Sessional - 2) examinations with 15 Markseach shall be conducted with **90 minutes** duration.

The Mid-term examinations shall be held in the zero hour and class workshall be conducted as usual in those days.

The Mid-term marks shall be awarded taking the average of two Mid-termexaminations.

The question paper shall be given in the following pattern:

Part A: Contains two questions, one from each unit. The student shallanswer all questions. Each question is for 2.5 marks.

- **Part B:** Contains four questions. Two questions shall be given from each unit with internal choice. The student shall answer 1 question from each unit. Each question carries 5 marks.
- **b**) Home assignment shall be conducted for 5 marks from Unit-3. The question bank with 10 to 15 comprehensive questions from unit-3 shall be given to students. Each student has to answer 3 questions from the question bank which will be assigned by the concerned faculty.

Syllabus for CIE

Name of the Test	Syllabus
Sessional – 1	UNIT – I & II
Home Assignment	UNIT – III
Sessional – 2	UNIT – IV & V

The distribution of marks for continuous internal evaluation is given in the Table 2: Table 2: Distribution of Marks (CIE)

S. No.	Criterion	Marks
1	Day to Day Evaluation	10
2	Internal Examination	15
3	Home Assignment	5

9.2.4 Laboratory Courses

For Laboratory courses, there shall be continuous evaluation during the semester for 25 marks and semester end evaluation for 50 marks. The distribution of marks for continuous internal evaluation is given in the Table 3:

 Table 3: Distribution of Marks (CIE)

S. No.	Criterion	Marks
1	Day to Day Evaluation	10
2	Record	05
3	Internal Examination	10

9.2.5 Project Phase I

For Project Phase I, there shall be continuous internal evaluation during the semester for 100 marks. The continuous internal evaluation for the Project Phase I shall be on the basis of day to day assessment by the project guide and two reviews conducted by the Project Review Committee (PRC). The PRC consists of Head of the Department, Programme Coordinator, Senior Faculty member of the department and Project guide. The distribution of continuous internal evaluation marks is given in the Table 4:

|--|

S. No.	Criterion	Marks
1	Day to Day Evaluation	40
2	Two Reviews	30+30

9.2.6 Project Phase II

For Project Phase II, there shall be continuous internal evaluation during the semester for 100 marks and semester end evaluation for 100 marks. The continuous internal evaluation for the Project Phase II shall be on the basis of day to day assessment by the project guide and two reviews conducted by the Project Review Committee (PRC). The PRC consists of Head of the Department, Programme Coordinator, Senior Faculty member of the departmentand Project guide. The distribution of marks is given in the Table 5:

	Table 5:	Distribution	of Marks ((CIE)
--	----------	--------------	------------	-------

S. No.	Criterion	Marks
1	Day to Day Evaluation	40
2	Two Reviews	30+30

9.2.7 MOOCs Courses

Students who have qualified in the examination conducted by the MOOCs providers as specified in 7.2.2 are exempted from appearing in the continuous and semester end evaluations conducted by the institution.

In case, a student fails to complete the MOOCs course offered by MOOC's providers, he/she may be allowed to register again for the same with any of the providers from the list provided by the department or the student may be allowed to register for the course as and when offered by the college as supplementary candidate.

Students Registered and cleared the opted courses in MOOC's are exempted from appearing Semester end examinations conducted by the Institute.

The Scheme of Evaluation for MOOCs courses shall be scaled to continuous internal evaluation as 30 marks and semester end examination as 70 marks.

9.3 Semester End Examination

9.3.1 Theory Courses : 70 Marks

The Semester end examination shall be conducted with 3 hours duration at theend of the semester. The question paper shall be given in the following pattern:

- a) **Part A:** Contains 5 questions of 2 marks each to test the knowledge level of the student. One question shall be given from each unit of the prescribed syllabus included in five units. The student shall answer all questions.
- b) **Part B:** Contains 10 questions. Two questions from each unit shall be given with internal choice. Each question carries 12 marks. Each course shall consist of five units of syllabus. The student shall answer one question from each unit.

The questions shall be framed in line with the Course Outcomes defined and cognitive levels.

9.3.2 Laboratory Courses: 50 marks

i. The Semester end examination for laboratory courses shall be conducted with three hour duration at the end of semester for 50 marks as given in the table 6:

Table 6: Distribution of Marks (SEE)					
S. No.	Criterion	Marks			
1	Procedure	10			
2	Experiment/Programme Execution	20			
3	Result	10			
4	Viva-Voce	10			

ii. Each Semester end Laboratory Examination shall be conducted by an External Examiner along with the Internal Examiner.

9.3.3 Project Phase II: 100 marks

The semester end examination for project phase II shall be held for 100 marks by a committee consisting of an external examiner, Head of the Department, Programme coordinator and Project guide. The evaluation of the project work shall be conducted at the end of the VIII Semester.

The average of the marks awarded by the committee members shall be taken into consideration in case of variation among the members.

The evaluation of 100 marks is distributed as given in Table 7:

Table 7: Distribution of Marks in Project Phase II

S. No.	Criterion	Marks
1	Report	40
2	Presentation	30
3	Viva-Voce	30

9.3.4 Internship/Industry Interaction: 75 Marks

a) Internships:

The candidate shall submit the comprehensive report to the department. The report will be evaluated for 75 marks by the Review Committee consisting of Head of the department, Programme Coordinator and Concerned Industry Representative/ Industry Institute Interaction Coordinator.

b) Industry Offered Courses:

The semester end examination for the courses under this category is evaluated for 75 marks and it shall be conducted and evaluated by the industry expert who has delivered the lecture or by the faculty nominated by the head of the department in consultation with the industry expert. The question paper pattern shall be decided by the industry expert at the beginning of the course and the same is to be approved by the Principal.

There will not be continuous internal evaluation for the courses under this category.

9.4 Conditions for Pass Marks

- **9.4.1** A candidate shall be declared to have passed in individual theory/drawing course if he/she secures a minimum of 40% aggregate marks (Continuous Internal Evaluation & Semester End Examination marks put together), subject to a minimum of 35% marks in semester end examination.
- **9.4.2** A candidate shall be declared to have passed in individual laboratory course/project if he/she secures a minimum of 50% aggregate marks (Continuous Internal Evaluation &Semester End Examination marks put

together), subject to a minimum of 40% marks in semester endexamination.

- **9.4.3** Mandatory Courses are assessed for PASS or FAIL only. No grade will be assigned to these courses. If a candidate secures more than 40 out of 100 marks,he / she will be declared PASS or else FAIL.
- **9.4.4** Mandatory courses NCC/NSS/NSO/YOGA are assessed for satisfactory or not satisfactory only. No grade will be assigned. A candidate has to undergo two hours training per week in any one of the above in both I and II semesters.
- **9.4.5** The student has to get pass marks in the failed course by appearing the supplementary examination as per the requirement for the award of degree.
- **9.4.6** The student shall earn assigned credits for the course on passing a course of a programme.

9.5 Revaluation

9.5.1 Continuous Internal Evaluation

The continuous Evaluation scripts shall be shown to the students before finalizing the marks. However, if the student has any concern, not addressed before the finalization of marks, he/she may submit the application for revaluation to the concerned head of the department.

The Head of the Department may constitute a two member committee for reevaluating the script. The evaluation of the committee is final and binding.

9.5.2 Semester End Examination

- 1. As per the notification issued by the Controller of Examinations, the students can submit the applications for revaluation, along with the requisite fee receipt for revaluation of his/her answer script(s) of theory course(s), if he/she is not satisfied with the marks obtained.
- 2. The Controller of Examinations shall arrange for re-evaluation of those answer script(s).
- 3. A new external examiner, other than the first examiner, shall re-evaluate the answer script(s).
- 4. Revaluation marks will be taken into consideration only if the difference between the two valuations is more than or equal to 15%. Better marks between the two shall be taken into consideration. However, if the revaluation marks facilitates passing of the candidate, then the revaluation marks will be considered even if the difference of marks is less than 15%.
- 5. If the difference of marks between the two valuations is more than 20%, the answer script will be referred to third valuation. The average of nearest two marks will be awarded.

9.6 Withholding of Results

If the student has not paid the dues to the college, or if any case of malpractice or indiscipline is pending against him, the result of the student will be kept as withheld and he/she will not be allowed to enter the next semester. His/her degree shall be considered as withheld in such cases.

10 CRITERIA TO ATTEND SEMESTER END EXAMINATION AND PROMOTION TO HIGHER SEMESTER

10.1 Eligibility for Semester End Examinations

10.1.1 Students shall put in a minimum average attendance of 75% in the courses from category 7.2.1 to 7.2.6 put together, computed by totalling the number of periods of lectures, tutorials, drawing, practical and project work as the case may be, held in every courseas the denominator and the total number of periods

attended by the student in all the courses put together as the numerator, to be eligible to write semester end examinations.

- **10.1.2** Condonation of shortage in attendance may be recommended by respective Heads of Departments on genuine medical grounds, provided the student puts in at least 65% attendance as calculated above and provided the Principal is satisfied with the genuineness of the reasons and the conduct of the student.
- **10.1.3** Students, having more than 65% and less than 75% of attendance, shall have to pay requisite fee towards condonation.

10.2 Conditions for Promotion

- **10.2.1** A student shall be eligible for promotion to next Semester of B.Tech. Programme, if he/she satisfies the conditions as stipulated inRegulations **10.1**.
- **10.2.2** Further, a student shall be eligible for promotion to V / VII Semesterof B.Tech. Programme, if he/she completes the academic requirements of 50% of the credits upto IV/ VI semesters.

10.2.3 Promotion to V Semester

For Four Year B.Tech. Course candidates

A four year programme student shall be promoted from IV semester to V semester only if he/she earns 50% credits of the designed programme credits from I semester to IV semester.

10.2.4 Promotion to VII Semester

i) For Four Year B.Tech Course candidates

A four year programme student shall be promoted from VI semester to VII semester only if he/she earns 50% credits of the designed programme credits from I semester to VI semester.

ii) For Lateral Entry candidates

A lateral entry student shall be promoted from VI semester to VII semester only if he/she earns 50% credits of the designed programme credits from III semester to VI semester.

10.2.5 For Detained Students

- a) Students who are already detained for want of credits shall be promoted to **V** Semester if he/she fulfills the 50 % of the credit requirements from all the regular and supplementary examinations held upto IV Semester till the commencement of next academic year.
- b) Students who are already detained for want of credits shall be promoted to **VII Semester** if he/she fulfills the 50 % of the credit requirements from all the regular and supplementary examinations held upto VI Semester till the commencement of next academic year.

11. SUPPLEMENTARY EXAMINATIONS

11.1 General

Semester end Supplementary examinations shall be conducted alongwith regular semester end examinations.

11.2Advanced Supplementary Exams

Candidate(s), who fails in Theory or Laboratory courses of VIII semester, can appear for advanced supplementary examination conducted within one month after declaration of the revaluation results. However, those candidates who fail in the advanced supplementary examinations of VIII semester shall appear for subsequent examinations along with regular candidates conducted at the end of the respective academic year.

12. READMISSION CRITERIA

A candidate, who is detained in a semester due to lack of attendance/credits, has to obtain written permission from the Principal for readmission into the same semester after duly fulfilling all the required norms stipulated by the college in addition to paying an administrative fee of **Rs. 1,000/-**

Rules for calculation of attendance for readmitted students

- a) Number of classes conducted shall be counted from the commencement day of the semester concerned, irrespective of the date of payment of tuition fee.
- b) They shall submit a written request to the principal of the college, along with a challan paid towards tuition and other fee, for readmission before the commencement of the class work.
- c) They can get the information regarding date of commencement of class work for each semester that will be made available in the college notice boards/website from time to time.

13. BREAK IN STUDY

Student, who discontinues the studies for valid reason permitted by the principal, shall get readmission into appropriate semester of B.Tech. programme after break-in study, with the prior permission of the Principal and following the transitory regulations applicable to such batch in which he/she joins. An administrative fee of **Rs**. 1000/-per each year of break in study, in addition to the prescribed tuition and special fee has to be paid by the candidate to condone his/her break in study.

14. TRANSITORY REGULATIONS

A candidate, who is detained or discontinued in a semester, on re-admission, the academic regulations under which he/she has originally admitted will continue to be applicable to him/her on re-admission.

15. ELIGIBILITY FOR AWARD OF B.TECH. DEGREE

- **15.1** The B.Tech. Degree shall be conferred on a candidate who satisfies the following requirements.
 - **15.1.1** A Regular student (four year programme) shall register and secure himself/herself for **160** Credits from the categories 7.2.1 to 7.2.6
 - **15.1.2** A Lateral Entry student (three year programme) shall register and secure himself/herself for **121.5** credits from the categories 7.2.1 to 7.2.6

15.2 Award of Division

The criteria for award of division, after successful completion of programme isas shown in Table 8:

CGPA	DIVISION
≥ 7.5	First Class with distinction*
\geq 6.5 - < 7.5	First Class
\geq 5.5 - < 6.5	Second Class
\geq 5.0 - < 5.5	Pass Class
< 5.0	Fail

Table 8: Criteria for Award of Division

- * Awarded only if all the courses prescribed are cleared in single attempt within four years for regular candidates and three years for lateral entry candidates
- * Detained and break-in study candidates are not eligible for the award of First Class with Distinction
- * The cases of students who are absent for semester end examination only once in his/her duration of B.Tech. programme on valid medical grounds/humanitarian grounds shall also be considered for the award of First class with Distinction subject to the recommendations of the committee constituted by the Principal.
- * For the purpose of awarding First, Second and Pass Class CGPA obtained in the examinations appeared within the maximum period allowed for the completion of the programme shall be considered.

15.3 Consolidated Grade Card

A consolidated grade card containing credits & grades obtained by the students will be issued after successful completion of the four year B.Tech Programme.

16. CONDUCT AND DISCIPLINE

- **16.1** Students shall conduct themselves within and outside the premises of the Institute in a manner befitting the students of our Institution.
- **16.2** As per the order of Honourable Supreme Court of India and AICTE guidelines, ragging in any form is considered a criminal offence and is banned. Ragging within or outside any educational institution is prohibited. Ragging means doing an act, that causes or is likely to cause insult or annoyance or fear of apprehension or threat or intimidation or outrage of modesty or injury to a student. Any form of ragging will be severely dealt with as per AP Prohibition of Ragging Act-1997 section-4.

Nature of ragging	Punishment
Tagging ambarragging and humiliating	Imprisonment upto 6 months or
reasing, embarrassing and nummating	fine upto Rs.1,000/- or both
Assaulting or using criminal	Imprisonment upto 1 year or fine
force or criminal intimidation	upto Rs.2,000/- or both
Wrongfully restraining or	Imprisonment upto 2 years or
confining or causing hurt	fine upto Rs.5,000/- or both
Causing grievous hurt kidnapping or	Imprisonment upto 5 years and
raping or committing unnatural offence	fine upto Rs.10,000/-
Causing death or abetting	Imprisonment upto 10 years and
suicide	fine upto Rs.50,000/-

Table – 9: Punishments for Ragging

- **16.3** A student who is convicted of an offence and punished with imprisonment for a term of more than six months shall not be admitted into the institution.
- **16.4** Whenever any student complains of ragging to the head or manager of an educational institution, such head or manager should inquire into the complaint and if the complaint is prima-facie found true, should suspend the student or students complained against.
- **16.5** If the head or manager of an educational institution fails or neglects to take action in the manner specified in the Act, the person shall be deemed to have abetted the offence and shall be punished with the punishment provided for

the offence.

16.6 If a student commits suicide due to or in consequence of ragging, the person who commits such ragging shall be deemed to have abetted such suicide.

The following acts of omission and/or commission shall constitute gross violation of the code of conduct and are liable to invoke disciplinary measures.

- i. Lack of courtesy and decorum; indecent behaviour anywhere within or outside the campus.
- ii. Possession, consumption or distribution of alcoholic drinks or any kind of narcotics or hallucinogenic drugs.

The following activities are not allowed within the campus:

- > Mutilation or unauthorized possession of library books.
- > Noisy and unseemly behaviour, disturbing studies of fellow students.
- Hacking computer systems (such as entering into other person's areas without prior permission, manipulation and/or damage of computer hardware and software or any other cybercrime etc.)
- ➤ Use of mobile phones.
- Plagiarism of any nature.
- > Any other act of gross indiscipline as decided by the Institute from time to time.
- Commensurate with the gravity of offense, the punishment may be reprimand, fine, expulsion from the institute/ hostel, debarment from a examination, disallowing the use of certain facilities of the Institute, rustication for a specified period or even outright expulsion from the Institute, or even handing over the case to appropriate law enforcement authorities or the judiciary, as required by the circumstances.
- For an offence committed in (i) a hostel, (ii) a department or in a class room and (iii) elsewhere, the Chief Warden, the Head of the Department and the Principal, respectively, shall have the authority to reprimand or impose fine.
- Cases of adoption of unfair means and/or any malpractice in an examination shall be reported to the Principal for taking appropriate action.
- > Unauthorized collection of money in any form is strictly prohibited.
- Detained and break-in-study candidates are allowed into the campus for academic purposes only with the permission from authorities.
- Misconduct committed by a student outside the Institute campus but having the effect of damaging, undermining & tarnishing the image & reputation of the institution will make the student concerned liable for disciplinary action commensurate with the nature and gravity of such misconduct.
- The disciplinary action committee constituted by the Principal, shall be the authority to investigate the details of the offence, and recommend disciplinary action based on the nature and extent of the offence committed.
- Grievance redressal committee, constituted by the Principal, shall deal with all grievances pertaining to the academic/ administrative and disciplinary matters.
- > All the students must abide by the code and conduct rules of the Institute.

17 MALPRACTICES

The Principal shall refer the cases of malpractices by students in internal assessment tests and end semester examinations, to a malpractice enquiry committee constituted for the purpose. The committee shall follow the approved scales of punishment.

The committee consists of:

- 1. Heads of Department (Three)
- 2. Controller of Examinations
- 3. Deputy Controller of Examinations

Table – 10: Disciplinary action for malpractices/improper conduct in examinations

S.No.	Nature of Malpractices/Improper conduct	Punishment
1 (a)	If the candidate possesses or keeps accessible, any paper, note book, programmable calculators, mobile phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in the examination hall but has not made use of (material shall include any marks on the student's body that can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
(b)	If the candidate gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through mobile phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2	If the candidate has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work. He shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The hall ticket of the candidate is to be cancelled.
3	If the candidate impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate, who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall

		1 11 1 A
		not be allowed to appear for examinations of the remaining subjects of that Semester /year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with for feiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.
4	If the candidate smuggles in an answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all other examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with for feiture of seat.
5	If the candidate uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancellation of the performance in that subject.
6	If the candidate refuses to obey the orders of the Chief Superintendent/ Assistant-Superintendent/any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in- charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which results in damage to or destruction of	In case of students of the Institute, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate (s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/ year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.

		
	property in the examination hall or any part of the Institute campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	
7	If the candidate leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all other examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
8	If the candidate possesses any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.
9	If student of the Institute, who is not a candidate for the particular examination or any person not connected with the Institute indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the Institute: Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work. He shall not be permitted for the remaining examinations of the subjects of that semester/ year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the Institute: Will be handed over to police and a police case will be registered against them.
10	If the candidate comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work. He shall not be permitted for the

		remaining examinations of the subjects of that semester/year.			
11	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/ year examinations.			
12	If any malpractice is detected which is not covered in the above clauses 1 to 11, shall be awarded suitable punishment.				

However, they shall appear for Semester End Examinations as per theAcademic Calendar

18.5 The Principal shall deal with any academic problem, which is not covered under these rules and regulations, in consultation with the Heads of the Departments in an appropriate manner, and subsequently such actions shall be placed before the academic council for ratification. Any emergency modification of regulation, approved in the Heads of the Departments Meetings, shall be reported to the academic council for ratification.

19 GENERAL

- 1 Wherever the words "he", "him", "his", occur in the regulations, they may include"she", "her", "hers".
- 2 The academic regulations should be read as a whole for the purpose of any interpretation.
- 3 In case of any doubt or ambiguity in the interpretation of above rules, the decision of the principal is final.

20 INSTITUTE RULES AND REGULATIONS

- 1 Use of **Mobile phones** is strictly prohibited inside the Institute academic area.
- 2 Students should come to Institute in **proper dress**.
- 3 All students should wear **identity cards** in the Institute premises.
- 4 Students should be present in their respective classrooms before the commencement of class sharply.
- 5 Students should not leave the Institute premises without prior permission of their respective Heads of the departments during Institute working hours.
- 6 Students should maintain silence in the class rooms during working periods.
- 7 Sitting / wandering of the students at the stair cases, corridors, cycle stands or theareas within the Institute premises is strictly prohibited.
- 8 Usage of Vehicle horn inside the Institute premises is prohibited.

21 AMENDMENTS TO REGULATIONS

The Academic Council may, from time to time, revise, amend or change the regulations, schemes of examination and/or syllabi.

Oratory PRINCIPAL

B.Tech. COURSE STRUCTURE

Prasad V. Potluri Siddhartha Institute of Technology

Course Structure for B. Tech. under PVP19 regulations

(Effective from Academic Year 2019-20)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Course Code	Title	L	Т	Р	Credits	Internals	Externals	Total
19HS1101	Communicative English I	2	0	0	2	30	70	100
19BS1101	Engineering Mathematics I (Calculus and Algebra)	3	0	0	3	30	70	100
19BS1104	Engineering Physics	3	0	0	3	30	70	100
19ES1101	Basic Electrical and Electronics Engineering	3	1	0	4	30	70	100
19ES1103	Engineering Graphics	1	0	3	2.5	30	70	100
19HS1151	Communicative English I Lab	0	0	3	1.5	25	50	75
19BS1153	Engineering Physics Lab	0	0	3	1.5	25	50	75
19ES1151	Basic Electrical and Electronics Engineering Lab	0	0	3	1.5	25	50	75
19MC1151	NCC/NSS/YOGA/Activity Clubs	0	0	2	0	100		100
	Total	12	1	14	19	325	500	825

I B. TECH – I SEMESTER

I B.TECH - II SEMESTER

Course Code	Title	L	Т	Р	Credits	Internals	Externals	Total
19HS1201	Communicative English II	2	0	0	2	30	70	100
	Engineering Mathematics II							
19BS1201	(ODE, PDE and Multivariable Calculus)	3	0	0	3	30	70	100
19BS1203	Engineering Chemistry	3	0	0	3	30	70	100
19ES1202	Problem Solving and Programming	3	1	0	4	30	70	100
19HS1251	Communicative English II Lab	0	0	3	1.5	25	50	75
19BS1251	Engineering Chemistry Lab	0	0	3	1.5	25	50	75
19ES1252	Problem Solving and Programming Lab	0	0	3	1.5	25	50	75
19ES1253	Basic Workshop	0	0	3	1.5	25	50	75
19EC3251	Electronics Workshop	0	0	3	1.5	25	50	75
19MC1251	NCC/NSS/YOGA/Activity Clubs	0	0	2	0	100		100
	Total	11	1	17	19.5	345	530	875

Prasad V. Potluri Siddhartha Institute of Technology Course Structure for B. Tech. under PVP19 regulations

(Effective from Academic Year 2019-20)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING II B. TECH – I SEMESTER

Course Code	Title	L	Т	Р	Credits	Internals	Externals	Total
19BS1301	Engineering Mathematics III (PDE, Complex Variables and Transform Techniques)	3	0	0	3	30	70	100
19ES1301	AI Tools	2	0	0	2	30	70	100
19ES1302	Design Thinking & Product Innovation	2	0	0	2	30	70	100
19EC3301	Network Theory&Analysis	3	0	0	3	30	70	100
19EC3302	Electronic Devices and Amplifier Circuits	3	0	0	3	30	70	100
19EC3303	Signals and Systems	3	0	0	3	30	70	100
19MC1302	Constitution of India	3	0	0	0	100		100
19ES1351	AI Tools Lab	0	0	2	1	25	50	75
19ES1352	Design Thinking & Product Innovation Lab	0	0	2	1	25	50	75
19EC3351	Network Theory and Analysis Lab	0	0	2	1	25	50	75
19EC3352	Electronic Devices and Amplifier Circuits Lab	0	0	3	1.5	25	50	75
	Total	19	0	9	20.5	380	620	1000

II B.TECH - II SEMESTER

Course Code	Title	L	Т	Р	Credits	Internals	Externals	Total
19BS1402	Engineering Mathematics IV (Probability Theory and Random Processes)	3	0	0	3	30	70	100
19BS1404	Life Sciences for Engineers	2	0	0	2	30	70	100
19EC3401	Digital Logic Design	3	0	0	3	30	70	100
19EC3402	Electromagnetic Waves	3	0	0	3	30	70	100
19EC3403	Analog Circuits	3	0	0	3	30	70	100
19EC3404	Analog Communications	3	0	0	3	30	70	100
19MC1401	Environmental Sciences	3	0	0	0	100		100
19BS1451	Life Sciences for Engineers Lab	0	0	2	1	25	50	75
19EC3451	Digital Logic Design Lab	0	0	3	1.5	25	50	75
19EC3452	Analog Circuits Lab	0	0	3	1.5	25	50	75
19EC3453	Analog Communications Lab	0	0	3	1.5	25	50	75
	Total	20	0	11	22.5	380	620	1000

	Prasad V. Potluri Siddhartha Institute of Technology									
Course Structure for B. Tech under PVP19 regulations										
(Effective from Academic Year 2019-20)										
DEPA	DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING									
	III B. TECH – I SEMESTER									
Course Code	Title	L	Т	Р	Credits	Internals	Externals	Total		
19ES1501	Internet of Things	2	0	0	2	30	70	100		
19EC3501	Antenna Analysis and Synthesis	3	0	0	3	30	70	100		
19EC4501	Program Elective-I	3	0	0	3	30	70	100		
19EC3502	Digital Signal Processing	3	0	0	3	30	70	100		
19EC3503	Control Systems Engineering	3	0	0	3	30	70	100		
	Interdisciplinary Elective I	3	0	0	3	30	70	100		
	Open Elective I	3	0	0	3	30	70	100		
19ES1552	Internet of Things Lab	0	0	2	1	25	50	75		
19EC3551	Antenna Analysis and Synthesis Lab	0	0	2	1	25	50	75		
19EC3552	Digital Signal Processing Lab	0	0	3	1.5	25	50	75		
Total		20	0	7	23.5	285	640	925		

Programme Elective-I

S.No	Stream	Course code	Name of the subject		Т	Р	Credits
1	Communication Engineering	19EC4501A	Digital Communications	3	0	0	3
2	Signal Processing	19EC4501B	DSP Processors and Architectures	3	0	0	3
3	VLSI Design	19EC4501C	Digital System Design	3	0	0	3
4	Microwaves	19EC4501D	Transmission lines and Waveguides	3	0	0	3
5	Embedded Systems	19EC4501E	Computer Organization and Design	3	0	0	3
6	Sensors & IoT	19EC4501F	Wireless Sensor Networks and IoT	3	0	0	3

Inter Disciplinary Elective-I

S.No.	Course code	Name of the subject	L	Т	Р	Credits
1	19CS2501A	Database Management Systems	3	0	0	3
2	19HS2501A	Quantitative Techniques for Management	3	0	0	3
3	19IT2501A	OOP with C++	3	0	0	3
4	19ME2501A	Computational Methods	3	0	0	3

OPEN	ELECTI	VE-I					
S.No	Course Type	Course code	Name of the subject	L	Т	Р	Credits
1	OE-I	19ES5501A	Biotechnology and Society	3	0	0	3
2	OE-I	19ES5501B	Electrical Safety	3	0	0	3
3	OE-I	19ES5501C	Fundamentals of Cyber Law	3	0	0	3
4	OE-I	19ES5501D	Environment and Ecology	3	0	0	3
5	OE-I	19HS5501A	Contemporary Relevance of Indian Epics	3	0	0	3
6	OE-I	19HS5501B	Indian National Movement	3	0	0	3
7	OE-I	19HS5501C	Engineering for Community Service	3	0	0	3
8	OE-I	19HS5501D	Personality Development	3	0	0	3
9	OE-I	19HS5501E	Introduction to International Business	3	0	0	3
10	OE-I	19HS5501F	Gandhian Philosophy	3	0	0	3
11	OE-I	19HS5501G	Indian History	3	0	0	3

III B. TECH – II SEMESTER

Course Code	Title	L	Т	Р	Credits	Internals	Externals	Total
19HS1601	Engineering Economics and Management	3	0	0	3	30	70	100
19EC3601	Microprocessors and Microcontrollers	3	0	0	3	30	70	100
19EC4601	Program Elective-II	3	0	0	3	30	70	100
19EC3602	Introduction to VLSI Design	3	0	0	3	30	70	100
19EC4602	Program Elective-III	3	0	0	3	30	70	100
19MC1601	Engineering Ethics	3	0	0	0	100		100
	Open Elective II	3	0	0	3	30	70	100
19EC3651	Microprocessors and Microcontrollers Lab	0	0	3	1.5	25	50	75
19EC3652	VLSI Design Lab	0	0	3	1.5	25	50	75
19EC3653	Design Practice	0	0	2	1	25	50	75
	Total	21	0	8	22	355	570	925

Programme Elective-II

S.No.	Stream	Course	Name of the subject		Т	Р	Credit
		code					S
1	Communication	19EC4601A	Wireless Communications	3	0	0	3
	Engineering		Networks				
2	Signal Processing	19EC4601B	Real Time Signal Processing	3	0	0	3
3	VLSI Design	19EC4601C	DSP Design with FPGAs	3	0	0	3
4	Microwaves	19EC4601D	Microwave Engineering	3	0	0	3
5	Embedded	19EC4601E	ARM System Development	3	0	0	3
	Systems						
6	Sensors &IoT	19EC4601F	RFID Enabled Sensors and	3	0	0	3
			Applications				

Program	nme Elective-III						
S.No.	Stream	Course code	Name of the subject	L	Т	Р	Credits
1	Communication Engineering	19EC4602A	Fiber Optic Communications	3	0	0	3
2	Signal Processing	19EC4602B	Digital Image Processing	3	0	0	3
3	VLSI Design	19EC4602C	ASIC Design	3	0	0	3
4	Microwaves	19EC4602D	RF Circuit Design	3	0	0	3
5	Embedded Systems	19EC4602E	Software Defined Radio	3	0	0	3
6	Sensors & IoT	19EC4602F	Fiber Optic Sensors and Applications	3	0	0	3

OPEN ELECTIVE-II

S.No	Course Type	Course code	Name of the subject	L	Т	Р	Credits
1	OE-II	19ES5601A	Environmental Management	3	0	0	3
2	OE-II	19ES5601B	Telecommunication for Society	3	0	0	3
3	OE-II	19HS5601A	German for Beginners	3	0	0	3
4	OE-II	19HS5601C	Analytical Essay Writing	3	0	0	3
5	OE-II	19HS5601D	Indian Economy	3	0	0	3
6	OE-II	19HS5601E	Public Administration	3	0	0	3
7	OE-II	19HS5601F	National Service Scheme	3	0	0	3
8	OE-II	19HS5601G	Professional Communication	3	0	0	3
9	OE-II	19HS5601H	Basics of Finance	3	0	0	3
10	OE-II	19HS5601I	Basics of Marketing	3	0	0	3

	Prasad V. Potluri Siddhartha Institute of Technology												
	(Effective from Academic Year 2019-20)												
DE	PAR	FMENT OF		CTRON	NICS &		OM	MUNICA	ATION E	NG	IN	EER	RING
			Ι	V B. T	ECH -	- I S	EM	ESTER					
Cou	rse de	Title			L	Т	Р	Credits	Internals	E	Exte	rnals	5 Total
19HS	1701	Organization Behaviour			3	0	0	3	30		7	0	100
19EC	3701	Communica	ation N	letwork	s 3	0	0	3	30		7	0	100
19EC-	4701	Program El	ective-	IV	3	0	0	3	30		7	0	100
19EC	4702	Program El	ective-	V	3	0	0	3	30		7	0	100
		Interdiscipl II	inary	Elective	e 3	0	0	3	30		7	0	100
19EC	3751	Communica Lab	ation N	letwork	^s 0	0	2	1	25		5	0	75
19EC	3761	Project Pha	se-I		0	0	4	2	100				100
19EC:	3771	Industrial T Internship/ Projects in 1 Laboratorie Institutions	raining Resear Nation s/ Aca	ining/ esearch ational 2 75 Academic								75	
		Total			15	0	6	20	350		40)0	750
Progra	mme	me Elective-IV											
S.No	Strea	ım	Cours code	Course Name of the subject				L	Т	Р	Credits		
1	Com Engi	munication neering	19EC4	4701A	Satell	ite C	Com	municatio	ons	3	0	0	3
2	Sign Proc	al essing	19EC4	4701B	Digita	al Signal Compression			ssion	3	0	0	3
3	VLS	I Design	19EC4	4701C	Digita Desig	al jn	Inte	egrated	Circuits	3	0	0	3
4	Micr	owaves	19EC4	4701D	Micro	owav	ve A	ntennas		3	0	0	3
5	Emb Syste	edded ems	19EC	4701E	IoT A	rchi	tect	ure		3	0	0	3
6	Sens	ors & IoT	19EC	4701F	Senso Remo	ors a ote A	and ppli	Transdu ications	cers for	3	0	0	3
Progra	mme	Elective-V											
S.No	Strea	am		Course Name of the subject				L	Τ	Р	Credits		
1	Com Engi	munication neering		19EC4	702A	Glo Sys	bal stem	Po	sitioning	3	0	0	3
2	Sign	al Processing	ng 19EC470			Bic Pro	ome	dical sing	Signal	3	0	0	3
3	VLS	I Design	Design 19EC47			An	alog	g IC Desig	gn	3	0	0	3
4	Micr	crowaves 19EC47			702D	Rad	dar S	Systems		3	0	0	3
5	Emb	edded Syster	ns	19EC4	702E	TV	Tee	chnology		3	0	0	3
6	Sens	ors &IoT		19EC4	702F	IoI	'in	Health Ca	are	3	0	0	3

Inter Disciplinary	Elective-II
--------------------	-------------

S.No.	Course code	Name of the subject	L	Т	Р	Credits
1	19EE2701A	Renewable Energy Resources	3	0	0	3
2	19IT2701A	Web Technologies	3	0	0	3
3	19ME2701A	Optimization Techniques	3	0	0	3
4	19ME2701B	Project Management & Optimization	3	0	0	3

IV B. TECH – II SEMESTER

Course Code	Title	L	Т	Р	Credits	Internals	Externals	Total
19EC4801	Program Elective-VI	3	0	0	3	30	70	100
	Inter Disciplinary Elective III	3	0	0	3	30	70	100
19EC3861	Project Phase-II	0	0	14	7	100	100	200
	Total	6	0	14	13	160	240	400

Programme Elective-VI

S.No.	Stream	Course code	Name of the subject	L	Т	Р	Credits
1	Communication	10EC/801A	Cellular and Mobile	3	0	0	3
	Engineering	172040017	Communications				
2	Signal	10EC4901D	Speech Processing	3	0	0	3
	Processing	19EC4001D					
3	VLSI Design	10EC4801C	Fundamentals of	3	0	0	3
		19EC4601C	Semiconductor Devices				
4	Microwaves	19EC4801D	EMI and EMC Techniques	3	0	0	3
5	Embedded	10EC4901E	Embedded Systems	3	0	0	3
	Systems	19EC4001E					
6	Sensors &IoT	19EC4801F	MEMS and Nano sensors	3	0	0	3

Inter Disciplinary Elective-III

S.No.	Course code	Name of the subject	L	Т	Р	Credits
1	19CS2801A	Introduction to Python Programming	3	0	0	3
2	10EC2901A	Instrumentation and Sensor Technologies of	3	0	0	3
	19EC2601A	Civil Engineering Applications				
3	19HS2801A	Logistics and Supply Chain Management	3	0	0	3
4	19ME2801A	Total Quality Management	3	0	0	3

I YEAR

			C	COMN	MUNI	CATI	VE I	ENGLI	SH -	1			
Cou Co	irse de	19H	S1101		Y	ear		Ι		Semester			Ι
Course Category		Hum	anities		Branch			ECE		Course Type		T	neory
Credits			2		L	T-P		2-0-0		Prereq	uisites		Nil
Conti	nuous			5	Semester End				-				
Inte	rnal	,	30		Eval	uation	ı:	70		Total			100
Evalu	ation:									Mar	KS:		
Course Outcomes													
Unon	success	ful con	nletio	n of th		rse th	e stuć	lent wi	ll he :	able to			
	Comr	rehend	how to	annl	v parte	$\frac{150}{150}$, $\frac{11}{100}$	eech	in a set	ntenc	$\frac{1010}{2}$ and $\frac{100}{2}$	netruct	a nar	agraph
$\frac{cor}{cor}$	Apply	aramn	$\frac{1000 \text{ to } 1000 \text{ to } 1000 \text{ to } 1000 \text{ to } 10000 \text{ to } 100000000000000000000000000000000000$	ormu	y parti lata ta	s or sp vt neir		ni a sei	non		iistiuet	a par	agraph.
	Evolu	granni ate roog	ling tor	zte on		AT USIL	t tene	a form	for <i>i</i>	offective	comm	unico	tion
CO_4			ling to-	to on	$\frac{1}{1}$ to $\frac{1}{1}$						honaia		ho torita
CO4	Analy	ze read	ing tex	$\frac{1}{1}$	1 10 W1	ine su	inmat	ies das	eu or	E compre		n of t	ne texts.
C05	Create	e aware	eness of	n how	to wi	rite co	rrect	sentend	ces in	English	n and c	ompre	chend
	the te	κι .											
	PO	1 PO2	PO3	PO4	P05	PO6	PO'	7 PO8	PO	9 PO10	PO11	PO12	PSO1
C01	10	1 102	105	104	100	100	10	100	10	3	1011	3	1501
CO2										3		3	
CO3										3		3	
CO4										3		3	
CO5										3		3	
Averag	e*									3		3	
to near	eu est												
integer	r)												
						Sylla	abus						
Unit No.						Conte	ents					N	Iapped CO
Ι	Rea	ading:	Skimm	ing to	o get tl	he mai	in ide	a of a t	ext; S	Scanning	g to loc	ok	
	for	specifi	c piece	s of ir	nforma	ation.							
	Rea	ading f	for W	riting	g: Beg	ginning	gs an	d endi	ings	of para	graphs	-	
	Intr	oducin	g the to	opic, s	summa	arizing	g the 1	nain id	lea ar	d/or pro	oviding	a	
	trar	sition t	to the n	ext pa	aragra	ph.							CO1
	Gra	ammar	and	Vocal	bulary	y: Coi	ntent	words	and	function	n word	s;	
	Wo	rd for	ms: V	erbs,	Nour	ns, A	djecti	ves ar	nd A	dverbs;	Noun	s:	
	cou	ntables	and u	incou	ntable	s; sin	gular	and p	lural;	Basic	senten	ce	
	stru	structures; Simple question form – wh - questions; Word order in									in		
	sen	tences.											
II	Rea	ading:	Identi	ifying	sequ	uence	of	ideas;	reco	ognizing	g verb	al	
	tecl	nniques	thathe	lp to I	link th	e idea	s in a	paragr	aph t	ogether.			
	Wr	Writing: Paragraph writing (specific topics) using suitable cohesive									ve	CO2	
	dev	devices; Mechanics of writing - punctuation, capital letters.											
	Gra	Grammar and Vocabulary: Cohesive devices - linkers, sign								gn			
	pos	posts and transition signals; Use of articles and zero article;											
	pre	position	18										
III	Rea	ding:	Readin	g a	text i	n deta	ail b	y mak	ing ł	pasic in	ference	es	CO3
	- re	cognizi	ing and	1 inte	rpretii	ng spe	cific	contex	t clu	es; strat	tegies 1	to	205

	use text clues for comprehension. Writing: Summarizing -							
	identifying main idea/s and rephrasing what is read; avoiding							
	redundancies and repetitions.							
	Grammar and Vocabulary: Verbs - Tenses; Subject-verb							
	agreement; Direct and indirect speech, Reporting verbs for academic							
	purposes.							
IV	Reading: Studying the use of graphic elements in texts to convey							
	information, reveal trends/patterns/relationships, communicate							
	processesor display complicated data. Writing: Information transfer;							
	describe, compare, contrast, identify significance/trends based on	CO4						
	information provided in figures/charts/graphs/tables.	0.04						
	Grammar and Vocabulary: Quantifying expressions - adjectives							
	and adverbs; comparing and contrasting; Degrees of comparison;							
	Use of antonyms							
V	Reading: Reading for comprehension.							
	Writing: Writing structured essays on specific topics using suitable							
	claims and evidences	CO5						
	Grammar and Vocabulary: Editing short texts – Identifying and	COS						
	correcting common errors in grammar and usage (Articles,							
	prepositions, Tenses, Subject-verb agreement)							
	Learning Resources							
Text Bo	oks							
Prabhava	athy Y. M Lalitha Sridevi Ruth Z. Hauzel, "English all round comm	unication						
skills for	undergraduate students" Orient Black Swan. 2019	i ani cation						
Referen	re Books							
1 Bailey	Stephen Academic writing: A handbook for international students	Routledge						
2014		to alloage,						
2 Skillf	ul Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Ed	lucational						
3. Hewir	ngs. Martin. Cambridge Academic English (B2). CUP. 2012	acational						
e- Resou	urces & other digital material							
Gramma	r/Listening/Writing							
1-langua	ge.com:							
http://ww	ww.5minuteenglish.com/							
https://w	ww.englishpractice.com/							
Gramma	r/Vocabulary							
English	Language Learning Online:							
http://ww	vw.bbc.co.uk/learningenglish/							
http://wv	ww.better-english.com/;							
http://www.nonstopenglish.com/ https://www.vocabulary.com/								
BBC Vo	BBC Vocabulary Games							
Free Rice Vocabulary GameReading								
https://www.usingenglish.com/comprehension/:								
https://www.englishclub.com/reading/short-stories.htm:								
https://www.english-online.at/All Skills								
https://www.englishclub.com/: http://www.world-english.org/								
http://learnenglish britishcouncil org/								
Online Dictionaries								
Cambridge dictionary online: MacMillan dictionary: Oxford learner's dictionaries								
ENGINEERING MATHEMATICS – 1 (CALCULUS AND ALGEBRA)

Course Code	19BS1101	Year	Ι	Semester	Ι
Course Category	Basic Sciences	Branch	ECE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes

Upon	Upon successful completion of the course, the student will be able to								
CO1	utilize the techniques of matrix algebra that is needed by engineers for practical								
	applications								
CO2	apply mean value theorems to engineering problems								
CO3	utilize functions of several variables in optimization								
CO4	employ the tools of calculus for calculating the areas								
CO5	calculate volumes using multiple integrals								

CO5 | calculate volumes using multiple integrals

Contrib	Contribution of Course Outcomes towards achievement of Program Outcomes												
	&Strength of correlations (3:High, 2: Medium, 1:Low)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02									PSO2			
CO1	3	2										1	
CO2	3	2										1	
CO3	3	2										1	
CO4	3	2										1	
CO5	3	2										1	
Average* (Rounded to nearest integer)	3	2										1	

	Syllabus	
Unit No.	Contents	Mapped CO
Ι	Matrices: Rank of a matrix by echelon form, solving system of homogeneous and non-homogeneous linear equations. Eigen values, Eigen vectors and their properties, Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton theorem, diagonalisation of a matrix, quadratic forms and nature of the quadratic forms, reduction of quadratic form to canonical forms by orthogonal transformation.	CO1
II	Mean Value Theorems: Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Taylor's and Maclaurin's theorems with remainders (without proof).	CO2
III	Multivariable Calculus: Partial derivatives, total derivatives, chain rule, change of variables, Jacobian, maxima and minima of functions of two variables, method of Lagrange multipliers.	CO3
ĪV	Multiple Integrals-I: Double integrals, change of order of integration, double integration in polar coordinates, areas enclosed by plane curves.	CO4

V	Multiple Integrals-II: Evaluation of triple integrals, change of variables between Cartesian, cylindrical and spherical polar co-ordinates, volume as triple integral.
	Learning Resources
Text	Books
1. B.	S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017
2. Er	win Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2018
Refe	rence Books
1.	R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e,
	AlphaScience International Ltd., 2002.
2.	George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e,
	PearsonPublishers, 2013.
3.	Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson
	publishers,2011.
e- Re	esources & other digital material
1.	www.nptelvideos.com/mathematics/
2.	https://nptel.ac.in/courses/111104025/
3.	https://nptel.ac.in/courses/122101003/

ENGINEERING PHYSICS												
Cours	e Code		19	BS1104	Year			Ι	Semester	r		Ι
Cours	e Catego	ry	S	Basic ciences	Branch			ECE	Course 7	Гуре	Th	eory
Credit	S			3	L-T-P			3-0-0	Prerequi	isites	1	Nil
Contir	nuous Int	ernal		30	Semeste	er End		70	Total Ma	arks:	1	00
Evalua	ation:				Evaluat	tion:						
Course Outcomes												
Upon successful completion of the course, the student will be able to												
CO1	To fami	liarize	e the	basic D	C and A	$\frac{1}{100}$ State	orks	used i	n electric	al and e	lectr	onic
001	circuits.			00010 2	0 1110 1		01110					01110
CO2	To expla	ain the	e con	cepts of e	electrical	machine	es and	d their	characteri	stics.		
CO3	To iden	tify t	he in	nportance	e of trar	nsformer	's in	transm	ission an	d distrib	oution	n of
	electric	power	•									
CO4	To imp	art th	ne ki	nowledge	e about	the ch	aracte	eristics	, working	g princij	ples	and
	applicati	ions (of se	micondu	ctor dio	des, me	tal C	Dxide s	semicondu	ictor fie	ld ef	ffect
COS	transisto	$\frac{\text{ors}(M)}{2}$	USFI	EIS).	ta and	applicat	iona	of O	manational	Amali	fion	and
COS	10 exp	ose i	Dasic	concep	is and	applicat	ions	01 0	perational	Апри	ner	and
	configur	ations	5.									
C	ontributi	ion of Str	Cou	rse Outc	omes tov	wards a & (3·High	chiev	vement Mediuu	of Progra	am Outo	come	s
		PO1	PO2	PO3 PC	04 PO5	(3.111g) PO6 PO7	PO8	B PO9	PO10 PO1	/ 1 PO12 P	SO1	PSO2
	CO1	3	3								2	
	CO2	3	3								3	
	$\frac{CO3}{CO4}$	3	3								2	
	C05	3	3								3	
Av	verage*	3	3								3	
(Roi neare	unded to st integer)											
ncure	st meger)			1 1								
					Sv	llabus						
Unit No	Content	ts									Mar co	oped
Ι	Basics of	' Elect	trom	agnetics							CO	l
	Electrosta	atic fi	eld: C	Coulomb	s law and	d Gauss	law,	derivat	ion of Co	ulombs		
	law from	Gaus	s law	, applica	tions of (Gauss la	w (li	ine cha	rge, thin s	sheet of		
	charge ar	nd soli	id cha	arged spł	nere), Ga	uss law	of el	ectrost	atics in di	electric		
	medium,	diver	gence	e and cur	l of elec	tric field	ls, el	ectric p	otential,	relation		
	between potential and force, Poisson's and Laplace equations.											
	Magneto	static	field	1: Biot–S	avart la	w, diver	gence	e and c	curl of m	agnetic		
	tields, Fa	araday	ís ar	nd Ampe	ere´s law	s in int	egral	and \dot{a}	Interentia	I torm,		
тт	displacen	nent c	urren	t, continu	iity equa	ation, M	axwe	ell's equ	lations			
11	Fiber Op	otics	a d	atocas	f	1 61-	a :-	inci-1	and -	n otre-		
	introduct	10n,	advai	mages c	or optica	u noder	s, pi	inciple	and sti	fication		
	acceptant	tibor	ne, nu		aperture,	importer	or pro	opagati f V m	un, classi	ar optic	CO	D2
	sensors (nuer Temp	opuc	re displa	cement o	inportation induced for the second se	1000	1 v - IIU nlicatio	moer, mo	er optic		
	sensors (Temperature, displacement and force), applications.											

III		
]	Dielectric and Magnetic materials	
	Dielectric materials: Introduction, electric polarization, dielectric	
1	polarizability, susceptibility and dielectric constant, types of polarizations	
	(qualitative treatment only), frequency dependence of polarization.	
	Lorentz (internal) field (quantitative) Clausius - Mossotti equation	001
	Magnetic materials: Introduction magnetic dipole moment	CO3
ľ	magnetization magnetic suscentibility and permeability origin of	
ľ	permanent magnetic moment classification of magnetic materials. Weiss	
1	theory of ferromagnetism (qualitative) domain theory hysteresis soft	
	and hard magnetic materials	
W	Semiconductor physics	
1 1	Introduction origin of energy hand intrinsic and extrinsic	
	antiouduction, origin of energy band, intrinsic and extrinsic	004
	semiconductors, mechanism of conduction in ministic semiconductors,	CO4
	generation and recombination, carrier concentration in intrinsic	
	semiconductors, variation of intrinsic carrier concentration with	
	temperature, n-type and p-type semiconductors, carrier concentration in n	
X 7	type and p type semiconductors.	
V	Semiconductor devices	
	Drift and diffusion currents in semiconductors, Hall effect and its	005
i	applications, magneto resistance, p-n junction layer formation and V-I	005
	characteristics, direct and indirect band gap semiconductors,	
(construction and working of photodiode, LED, solar cell	
	Learning Resources	
Text	Books	
$\frac{1}{1}$ D	P Kothari II Nagrath Basic Electrical and Electronics Engineering 1s	tedition
1. D M	Graw Hill Education (India) Private Limited 2017	tournon,
2 R	I Theraja Fundamentals of Electrical Engineering and Electronics 1 st	edition
2. D. S	Chand Publishing New Delhi 2006	cuntion,
ວ.	Chand I ubisining, New Denn, 2000.	
2 1	dol S. Sodra and Kannoth C. Smith Migroalastronia Circuits 6 th addition	Outord
3. A	del S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6 th edition,	Oxford
$\frac{3. A}{U_1}$	del S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6 th edition, niversity Press, 2014.	Oxford
3. A U Refer	del S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6 th edition, niversity Press, 2014. rence Books	Oxford
3. A <u>U</u> Refer 1. S.	del S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6 th edition, niversity Press, 2014. rence Books K.Bhattacharya, Basic Electrical and Electronics Engineering, PearsonEd	Oxford
3. A <u>U</u> Refer 1. S. 20	del S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6 th edition, niversity Press, 2014. rence Books K.Bhattacharya, Basic Electrical and Electronics Engineering, PearsonEd 011.	Oxford
3. A <u>U</u> Refer 1. S. 2(2. D	del S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6 th edition, niversity Press, 2014. rence Books K.Bhattacharya, Basic Electrical and Electronics Engineering, PearsonEd 011. harma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2 nd	Oxford
3. A U: Refer 1. S. 20 2. D Pe	del S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6 th edition, niversity Press, 2014. ence Books K.Bhattacharya, Basic Electrical and Electronics Engineering, PearsonEd 011. harma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2 nd earsonEducation, 2008.	Oxford lucation, edition,
3. A U Refer 1. S. 2(2. D Pe 3. R.	del S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6 th edition, niversity Press, 2014. Tence Books K.Bhattacharya, Basic Electrical and Electronics Engineering, PearsonEd 011. harma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2 nd earsonEducation, 2008. .K.Rajput, Basic Electrical and Electronics Engineering, University Science	Oxford lucation, edition, ce Press,
3. A U Refer 1. S. 20 2. D Pe 3. R. N	del S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6 th edition, niversity Press, 2014. Pence Books K.Bhattacharya, Basic Electrical and Electronics Engineering, PearsonEd 011. harma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2 nd earsonEducation, 2008. K.Rajput, Basic Electrical and Electronics Engineering, University Science ew Delhi, 2012.	Oxford lucation, edition, ce Press,
3. A U: Refer 1. S. 2(2. D: Pe 3. R. No e- Res	del S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6 th edition, niversity Press, 2014. ence Books K.Bhattacharya, Basic Electrical and Electronics Engineering, PearsonEd 011. harma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2 nd earsonEducation, 2008. K.Rajput, Basic Electrical and Electronics Engineering, University Science ew Delhi, 2012. sources & other digital material	Oxford lucation, edition, ce Press,
3. A <u>Refer</u> 1. S. 2(2. D Pe 3. R. <u>N</u> e- Res <u>http://</u>	del S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6 th edition, niversity Press, 2014. Tence Books K.Bhattacharya, Basic Electrical and Electronics Engineering, PearsonEd 011. harma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2 nd earsonEducation, 2008. .K.Rajput, Basic Electrical and Electronics Engineering, University Science ew Delhi, 2012. Sources & other digital material (202.53.81.118/course/view.php?id=122)	Oxford lucation, edition, ce Press,

]	BASIC ELECTRICAL & ELECTRONICS ENGINEERING									
Course Code	19ES1101	Year	Ι	Semester	Ι					
Course Category	Engineering Sciences	Branch	ECE	Course Type	Theory					
Credits	4	L-T-P	3-1-0	Prerequisites	Nil					
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100					

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1 To familiarize the basic DC and AC networks used in electrical and electronic circuits.

CO2 To explain the concepts of electrical machines and their characteristics.

- **CO3** To identify the importance of transformers in transmission and distribution of electric power.
- **CO4** To impart the knowledge about the characteristics, working principles and applications of semiconductor diodes, metal Oxide semiconductor field effect transistors (MOSFETs).
- **CO5** To expose basic concepts and applications of Operational Amplifier and configurations.

Con	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2					1		1		2	1	2	
CO2	3	2				1	1		1		2	1		
CO3	3	2				1	1		1		2	1		
CO4	3	2					1		1		2	1	2	2
CO5	3	2					1		1		2	1	2	2
Average* (Rounded to nearest integer)	3	2				1	1		1		2	1	2	2

	Syllabus						
Unit	Contents	Mapped					
No.		CO					
I	Basic laws and Theorems: Ohms law, Kirchoff's Laws, series andparallel circuits, source transformations, delta-wye conversion. Mesh analysis, nodal analysis. Linearity and superposition theorem, Thevenin's and Norton's theorem with simple examples, maximumpower transfer theorem with simple examples.	CO1					
II	DC Machines: Constructional features, induced EMF and torque expressions, different types of excitation, performance characteristics of different types of dc machines, Starters: 2-point, 3-point starters, losses and efficiency, efficiency by direct loading.	CO2					
III	Transformers: Constructional details, EMF equation, voltage regulation, losses and efficiency, open/short- circuit tests and determination	CO3					

	of efficiency. Three Phase Induction Motors: Construction, working	
	principle of three phase induction motor, Torque and Torque-Slip	
	characteristics.	
IV	Semiconductor Devices: p-n Junction diode - Basic operating principle,	
	current-voltage characteristics, rectifier circuits (half-wave, full-wave,	
	rectifier with filter capacitor), Zener diode as Voltage Regulator; Metal	CO4
	oxide semiconductor field effect transistor (MOSFET): Operation of	04
	NMOS and PMOS FETs, MOSFET as an amplifier and switch.	
V	Operational Amplifiers: The Ideal Op Amp, The Inverting	
	Configuration, The closed loop gain, Effect of Finite open-loop gain, The	
	Non-inverting Configuration, The closed loop gain, Characteristics of	CO5
	Non Inverting Configuration, Effect of finite open loop gain, the voltage	005
	follower, Difference amplifiers, A Single Op-amp difference amplifier.	
	Learning Resources	

Text Books

Learning Resources

- 1. D. P. Kothari, I. J. Nagrath, Basic Electrical and Electronics Engineering, 1stedition, McGraw Hill Education (India) Private Limited, 2017.
- 2. B. L. Theraja, Fundamentals of Electrical Engineering and Electronics, 1st edition, S. Chand Publishing, New Delhi, 2006.
- 3. Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6th edition, Oxford University Press, 2014.

Reference Books

- 1. S.K.Bhattacharya, BasicElectrical and Electronics Engineering, Pearson Education, 2011.
- 2. Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2/e, PearsonEducation, 2008.
- 3. R.K.Rajput, Basic Electrical and Electronics Engineering, University Science Press, New Delhi, 2012.

e- Resources & other digital material

http://202.53.81.118/course/view.php?id=122 https://nptel.ac.in/courses/108105112/

	ENGINEERING GRAPHICS									
Course Code	19ES1103	Year	Ι	Semester	Ι					
Course Category	Engineering Sciences	Branch	ECE	Course Type	Theory					
Credits	2.5	L-T-P	1-0-3	Prerequisites	Nil					
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100					

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1 Conic sections and curves used in engineering practice.

CO2 Orthographic projections of points, lines, planes and solids.

CO3 Isometric and orthographic views.

CO4 Development of lateral surfaces of solids.

CO5 Features of CAD packages.

Contribu	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3									3	1		1	
CO2	3									3	1		1	
CO3	3									3	1		1	
CO4	3									3	1		1	
CO5	3				3					3	1		3	
Average*	3				3					3	1		2	
(Rounded to														
nearest integer)														

	Syllabus	
Unit No.	Contents	Mapped CO
Ι	 Introduction to Engineering Graphics: Principles of Engineering Graphics and their significance- Conventions in drawing, lettering, dimensioning, BIS conventions. Conic sections: Construction of ellipse, parabola and hyperbola (general method only) Cycloidal curves: Cycloid, Epicycloid and Hypocycloid Involutes: Involute of regular polygons and Circle. 	CO1
II	Projection of points, lines and planes: Projection of points in different quadrants, lines inclined to one and both the reference planes, finding true length and inclination made by the line. Projections of regular plane surfaces.	CO2
III	Projections of solids: Projections of regular solids such as cube, cylinder and cone (Treatment limited to solids inclined to one of the Sections of solids: Section planes and sectional view of right regular solids- cube, prism, cylinder, pyramid and cone. True shape of the section. (Treatment limited to the solids perpendicular to one of the principal planes)	CO3

	Orthographic Views: Systems of projections, conversion of				
	isometric view to orthographic view.				
IV	Isometric Projections: Principles of isometric projection- isometric	CO4			
	scale; isometric views: lines, planes and solids. (Treatment is limited				
	to simple objects only)				
	Development of surfaces: Development of lateral surfaces of right				
	regular solids-prism, cylinder, pyramid, cone and their sectional				
	parts. (Treatment limited to solids perpendicular to one of the				
V	principal planes)				
·	Introduction to CAD: Basic drawing, editing and dimensioning	005			
	commands: line, circle, rectangle, erase, view, undo, redo, snap, edit,				
	move, copy, rotate, scale, mirror, layer, template, polyline, trim,				
	extend, stretch, fillet, array, dimension.				
	Learning Resources				

Text Books

- 1. N.D. Bhatt, Engineering Drawing, 53/e, Charotar Publishers, 2016.
- 2. K.L. Narayana & P. Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, 2012. **Reference Books**
- 1. Dhanajay A Jolhe, Engineering Drawing, Tata McGraw-Hill, 2009.
- 2. Shah and Rana, Engineering Drawing, 2/e, Pearson Education, 2009.
- 3. K. Venugopal, Engineering Drawing and Graphics, 6/e, New Age Publishers, 2011.
- 4. K.C. John, Engineering Graphics, 2/e, PHI, 2013.
- 5. Basant Agarwal and C.M. Agarwal, Engineering Drawing, Tata McGraw Hill, 2008.

e- Resources & other digital material

1. <u>http://www.youtube.com/watch?v=XCWJ</u>XrkWco, Accessed On 01-06-2017.

- 2. <u>http://www.me.umn.edu/courses/me2011/handouts/drawing/blanco-tutorial.html#</u> iso drawing, Accessed On 01-06-2017.
- 3. http://www.slideshare.net, Accessed On 01-06-2017.
- 4. http://edpstuff.blogspot.in, Accessed On 01-06-2017.

COMMUNICATIVE ENGLISH – 1 LAB

Course Code	19HS1151	Year	Ι	Semester	Ι
Course Category	Humanities	Branch	ECE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal		Semester End		Total Marka	
Evaluation:	25	Evaluation	50	I OTAL MARKS	75

Upon	successful completion of the course, the student will be able to
CO1	Remember and understand the different aspects of the English language
	proficiency with emphasis on LSRW skills
CO2	Apply communication skills through various language learning activities
CO3	Analyze the comprehensive ability and logical thinking for better listening
	and speaking.
CO4	Evaluate and exhibit acceptable etiquette essential in social and professional
	situations.
CO5	Create awareness on how to improve presentation skills in English.

Contribu	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1									2	3		3	1	
CO2									2	3		3	1	
CO3									2	3		3	1	
CO4									2	3		3	1	
CO5									2	3		3	1	
Average* (Rounded to nearest integer)									2	3		3	1	

	Syllabus					
Expt. No.	Contents	Mapped CO				
Ι	Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions.					
Π	Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others.	CO1				
III	Answering a series of questions about main idea and supporting ideas after listening to audio texts.	CO3				
IV	Discussion in pairs/ small groups on specific topics followed by short structured talks.					
V	Listening for global comprehension and summarizing what is listened to.	CO3				
VI	Discussing specific topics in pairs or small groups and reporting what is discussed	005				
VII	Making predictions while listening to conversations/ transactional dialogues without video; listening with video.	CO4				

IX X	Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension. Formal oral presentations on topics from academic contexts - without the use of PPT slides.	COF						
Х	Formal oral presentations on topics from academic contexts - without the use of PPT slides.	Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension.						
		05						
	Learning Resources							
Referen	ce Books							
1. Chase	e. Becky Tarver. Pathways: Listening. Speaking and Critical Thinking	Heinlev						
ELT; 2n	d Edition, 2018.	· J						
2. Skill	ful Level 2 Reading & Writing Student's Book Pack (B1) Macmil	lan						
Educatio	onal.							
3. Hewir	ngs, Martin. Cambridge Academic English (B2). CUP, 2012							
e- Resou	rces & other digital material							
Gramma	ur/Listening/Writing							
1-langua	age.com							
http://ww	ww.5minuteenglish.com/							
https://w	/ww.englishpractice.com/							
Listening	g							
https://le	earningenglish.voanews.com/z/3613;							
http://ww	ww.englishmedialab.com/listening.html							
Speaking	g							
https://w	ww.talkenglish.com/BBC; Learning English – Pronunciation tips							
Merriam	-Webster – Perfect pronunciation Exercises							
All Skill	S							
https://w	/ww.englishclub.com/;							
http://ww	ww.world-english.org/							
http://lea	arnenglish.britishcouncil.org/							
Online D	Dictionaries							
Cambrid	lge dictionary online;							
MacMill	lan dictionary;							
Oxford 1	earner's dictionaries							

Course Code	19BS1153	Year	Ι	Semester	Ι
Course Category	Basic Sciences	Branch	ECE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation	25	Semester End Evaluation	50	Total Marks	75

	Course Outcomes					
Upon	successful completion of the course, the student will be able to					
CO1	Assess the intensity of the magnetic field of circular coil carrying current with					
	varying distance and utilize four probe set up to measure resistance.					
CO2	Evaluate the acceptance angle of an optical fiber and numerical aperture and loss.					
CO3	Demonstrate the importance of dielectric material and measure magnetic					
	parameters.					
CO4	Identify the type of semiconductor using hall effect and determine the band gap					
	of a semiconductor.					
CO5	Understand the characteristics of photodiode, p-n junction diode and solar					
	cell. Type equation here.					

Contribu	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	S	Stren	gth of	f corı	relatio	ons (3	:Hig	h, 2:]	Medi	um, 1:	:Low)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		3										1	
CO2	3		3										3	
CO3	3		3										3	
CO4	3		3										3	
CO5	3		3										3	
Average*	3		3										3	
(Rounded to nearest integer)														

	Syllabus	
Expt.	Contents	Mapped
No.		CO
Ι	To Determine The Magnetic Field Along The Axis Of A Circular	
	Coil Carrying Current	CO1
II	To Determine The Magnetic Susceptibility By Gouy's Method	
III	To Determine The Numerical Aperture Of A Given Optical Fibre	CO^{2}
	And Hence To Find Its Acceptance Angle	02
IV	To Determine The Dielectric Constant Of A Substance By Resonance	CO3
	Method	0.05
V	To Determine The Resistivity Of Semiconductor By Four Probe	
	Method	CO4
VI	To Determine The Hall Coefficient Using Hall Effect Experiment.	04
VII	To Determine The Energy Gap Of A Semiconductor	
VIII	To Study The Characteristics Of Photo Diode	CO5
IX	To Study The Characteristics Of PN Diode	05
X	To Study The Characteristics Of Solar Cell	

Learning Resources

Text Books

Ramarao Sri, Choudary Nityanand and Prasad Daruka, "Lab Manual of Engineering Physics"., Vth ed., Excell Books, 2010

Reference Books

Semiconductor Devices & Physics, S.M.Sze, Wiley, 2008.

e- Resources & other digital material

https://www.niser.ac.in/sps/teaching-laboratories

BA	BASIC ELECTRICAL & ELECTRONICS ENGINEERING LAB													
Course	19ES1151	Year	Ι	Semester	Ι									
Code														
Course	Engineering	Branch	ECE	Course Type	Lab									
Category	Sciences													
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil									
Continuous		Semester		Total										
Internal	25	End	50	Marks:	75									
Evaluation:		Evaluation:												

	Course	Outcomes
--	--------	----------

U	non successful	completion	of the course	the student will be able to
U	pon successful	completion	of the course.	, the student will be able to

CO1	To familiarize	the	basic	DC	and	AC	networks	used	in	electrical	and	electronic
	circuits.											

CO2 To explain the concepts of electrical machines and their characteristics.

CO3 To identify the importance of transformers in transmission and distribution of electric power.

- **CO4** To impart the knowledge about the characteristics, working principles and applications of semiconductor diodes, metal Oxide semiconductor field effect transistors (MOSFETs).
- **CO5** To expose basic concepts and applications of Operational Amplifier and configurations

Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations (3:High, 2: Medium, 1:Low)

	1.LUW)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2	2	1					1		1	1	1	1
CO2	3	2	2	1			1		1		1	1		
CO3	3	2	2	1			1		1		1	1		
CO4	3	2	2	1			1		1		1	1	1	2
CO5	3	2	2	1			1		1		1	1	1	2
Average* (Rounded to nearest integer)	3	2	2	1			1		1		1	1	1	2

	Syllabus										
Expt.	Contents	Mapped									
No.		СО									
Ι	Verification of Kirchhoff's Laws KVL and KCL.										
II	Verification of DC Superposition Theorem.	CO1									
III	Verification of Thevenin's Theorem and Norton's Theorem										
IV	Swinburne's tests on a DC shunt motor.	CO2									

V	OC and SC Tests on single phase transformer.	CO3
VI	Brake Test on DC shunt motor.	CO2
VII	Current Voltage Characteristics of a p-n Junction Diode/LED	
VIII	Diode Rectifier Circuits.	CO4
IX	Voltage Regulation with Zener Diodes.	
X	Inverting and Non-inverting Amplifier Design with Op-amps	CO5

Learning Resources

Text Books

1. D.P.Kothari, I.J.Nagrath, Basic Electrical and Electronics Engineering, 1stedition, McGraw Hill Education (India) Private Limited, 2017.

2 B.L.Theraja, Fundamentals of Electrical Engineering and Electronics, 1stedition, S.Chand Publishing, New Delhi, 2006.

3. Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6th edition, Oxford University Press, 2014.

Reference Books

1. S.K. Bhattacharya, Basic Electrical and Electronics Engineering, Pearson Education, 2011.

2. Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2/e, Pearson Education, 2008.

3. R.K.Rajput, Basic Electrical and Electronics Engineering, University Science Press, New Delhi, 2012.

	COMMUNICATIVE ENGLISH – II												
CourseCode	19HS1201	Year	I Semester		II								
Course Category	Humanities	Branch	ECE	Course Type	Theory								
Credits	2	L-T-P	2-0-0	Prerequisites	Basic knowledge of grammar and fundamental concepts of Reading and Writing								
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100								

	Course Outcomes											
Upon s	uccessful completion of the course, the student will be able to:											
CO1	Demonstrate good writing skills for effective paraphrasing and synthesizing											
	information											
CO2	Analyze facts from opinions while reading and writing formal letters and e mails											
02	using a range of vocabulary in formal writing											
	Evaluate reading texts and learn good writing skills for effective argumentative											
CO3	essaysand formal correspondence.											
604	Understand the structure of project reports applying grammatically correct structures											
004	and knowledge of grammar											
CO 5	Develop advanced reading skills for deeper understanding of texts and											
005	employability skills.											

Contribution of Course Outcomes towards achievement of Program Outcomes&														
	Strength of correlations (H-High, M-Medium, L- Low)													
	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1										3		3		
CO2										3		3		
CO3										3		3		
CO4										3		3		
CO5										3		3		
Average* (Rounded to nearest integer)										3		3		

	SYLLABUS	
UNIT	CONTENT	Mapped
NO.		CO
I	Reading: Reading for presenting - strategies to select, compile and synthesize information for presentation-Comprehending a wide range of texts -Reading to recognize academic style Reading for Writing: Paraphrasing - using quotations and in-text references; using academic style - avoiding colloquial words and phrases - Writing an essay after researching a topic - Citing the sources used Grammar and Vocabulary: Academic verbs in context; formal words and phrases-Awareness about Root words	CO1
п	Reading: Recognizing formal and informal styles -Recognizing the difference between facts and opinions - Identifying and understanding different perspectives	CO2

	Writing: Letter writing and e mail writing - Structure, Conventions and	
	Etiquette – Informal, semi-formal and formal (enquiry, complaints, seeking	
	permission seeking internship - Re-draft a piece of text from a different	
	nerspective - Writing brief critical reviews of short texts	
	Grammar and Vocabulary: Agreement: Subject-verb Noun-propoun:	
	Editing short taxts Dhrasal verbs Dhrasal prepositions Avoiding clichés	
	Deading: Identifying claims evidences views/opinions purpose and	
	Reading: Identifying claims, evidences, views/opinions, purpose, and	
	stance/position - Understand the correlation between a talk and a reading text	
	based on inferences made.	
	Writing: Writing structured analytical and argumentative essays on general	
ш	topics using suitable claims and evidences with the sources cited-Peer	CO3
	review of the essays written	
	Grammar and Vocabulary: Language for different functions such as	
	stating a point, expressing opinion, Agreeing/disagreeing, Adding	
	information to what someone has stated, and asking for clarification -	
	Modifiers and misplaced modifiers	
	Reading: Reading varied text types - Structure and contents of a formal	
	report -Sections in a report and understanding the purpose of each section-	
117	Significance of references	CO4
11	Writing: Writing reports	C04
	Grammar and Vocabulary: Active and passive voice - Use of passive	
	verbsin academic writing	
	Reading: Reading for inferential comprehension	
	Writing: Writing one's CV and cover letter - Applying for a job/internship	
V	Grammar and Vocabulary: Reinforcing learning - Edit one's writing	CO5
	to correct common errors in grammar and usage - Use appropriate	
	vocabularyfor speaking and writing – Various purposes	
	Learning Resources	
Referei	nce Books	
Bailey	y, Stephen. Academic writing: A handbook for international students. Routledg	e, 2014.
Skillfu	I Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educationa	al.
Hewin	ngs, Martin. Cambridge Academic English (B2). CUP, 2012(Student Book, Tea	cher
Resou	rce Book, CD & DVD)	
e- Reso	urces & other digital material:	
Gram	mar/Listening/Writing	
1-lang	uage.com; http://www.5minuteenglish.com/	
	https://www.englishpractice.com/Grammar/Vocabulary:	
Englis	h Language Learning Online; http://www.bbc.co.uk/learningenglish/	
http://v	www.better-english.com/; http://www.nonstopenglish.com/	
https://	/www.vocabulary.com/; BBC Vocabulary Games	
Free F	Rice Vocabulary GameReading	
https://	/www.usingenglish.com/comprehension/; https://www.englishclub.com/readin	g/short-
stories	s.htm; https://www.english-online.at/	-
All Sk	ills	
https://	/www.englishclub.com/; http://www.world-english.org/	
http://	learnenglish.britishcouncil.org/Online Dictionaries:	
Cambr	ridge dictionary online; MacMillan dictionary; Oxford learner's dictionary	aries

ENGINEERING MATHEMATICS – II

(ODE, PDE AND MULTIVARIABLE CALCULUS)

Course Code	19BS1201	Year	Ι	Semester	II
Course Category	Basic Sciences	Branch	ECE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Calculus & Algebra
Continuous		Semester			
Internal	30	End	70	Total Marks:	100
Evaluation:		Evaluation:			

	Course Outcomes						
Upon	successful completion of the course, the student will be able to						
CO1	Solve the differential equations related to various engineering fields.						
CO2	Solve the linear differential equation with constant coefficients.						
CO3	Identify solution methods for partial differential equations that model physical						
	processes.						
CO4	Interpret the physical meaning of gradient, curl and divergence.						
CO5	Determine the work done against a force field, circulation and flux using vector						
	calculus.						

Contr	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO PO<													
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	2											1	
CO2	3	2											1	
CO3	3	2											1	
CO4	3	2											1	
CO5	3	2											1	
Average *	3	2											1	
(Rounded														
to nearest														
integer)														

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	Linear Differential Equations of Higher Order: Definitions, complete solution, operator D, rules for finding complimentary function, inverse operator, rules for finding particular integral, method of variation of parameters.	CO1
II	Equations Reducible to Linear Differential Equations and Applications: Cauchy's and Legendre's linear equations, simultaneous linear equations with constant coefficients, Applications: Mass spring system and L-C-R Circuit problems.	CO2
III	Partial Differential Equations: First order partial differential equations, solutions of first order linear PDEs, Charpit's method, solutions to homogenous and non-homogenous linear partial differential equations.	CO3

IV	Multivariable Calculus (Vector Differentiation): Scalar and vector					
point functions, vector operator del, del applies to scalar point functions						
Gradient, del applied to vector point functions-Divergence						
and Curl, vector identities						
V	Multivariable Calculus (Vector Integration): Line integral- circulation-work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof).	CO5				
Learning Resources						
Tex	xt Books					
1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons,						
	2018					
2.	B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna publishers, 2	017.				

Reference Books

- 1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.
- George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.
- 3. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011.

e- Resources & other digital material

www.nptelvideos.com/mathematics/ https://nptel.ac.in/courses/111104025/

https://nptel.ac.in/courses/122101003/

	ENGINEERING CHEMISTRY								
Course Code	19BS1203	Year	Ι	Semester	II				
Course Category	Basic Sciences	Branch	ECE	Course Type	Theory				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil				
Continuous Internal Evaluation:	30	Semester End Evaluation:	30	Total Marks:	100				

Course Outcomes

Г

	course outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	List various sources of renewable energy.					
CO2	Compare different types of cells.					
CO3	Explain the merits of fuel cells.					
CO4	Identify suitable methods for metal finishing.					
CO5	Distinguish between nano clusters and nano wires, polymers, molecular					
	machines & switches					

Contrib	Contribution of Course Outcomes towards achievement of Program													
	Outcomes & Strength of correlations (3:High, 2: Medium,													
	1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													1
CO2	3													1
CO3	3		2											1
CO4	3		2											1
CO5	3													1
Average* (Rounded to nearest integer)	3		2											1

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	ELECTROCHEMICAL ENERGY SYSTEMS Introduction-Origin of electrode potential, Electrode Potentials, Measurement of Electrode Potentials, Nernst Equation for a single electrode, EMF of a cell, Types of Electrodes or Half Cells- Hydrogen and Calomel electrode, Electrochemical Cell, Galvanic Cell vs Electrolytic Cell, Electrochemical conventions, Types of Ion Selective Electrodes- glass membrane electrode, polymer membrane electrodes, solid state electrodes, gas sensing electrodes (Classification only) Concentration Cells	CO1
II	BATTERY TECHNOLOGY Basic concepts, battery characteristics, classification of batteries, Important applications of batteries, Classical batteries-dry/Leclanche cell, Modern batteries-zinc air, lithium cells-Li MnO2 cell- challenges of battery technology. Fuel cells- Introduction -	CO2

classification of fuel cells – hydrogen and oxygen fuel cell, propane and oxygen fuel cell-Merits of fuel cell. RENEWABLE SOURCES OF ENERGY Introduction - Physical and Chemical properties of Silicon- Production of Solar Grade Silicon from Quartz - Doping of Silicon- production of solar energy III Production of Solar energy and n type semi-conductors- PV cell / solar cell-Manufacturing of Photovoltaic Cells using Chemical Vapor Deposition Technique- applications of solar energy METAL FINISHING Technological importance of metal finishing, methods of metal finishing, manufacturing of electronic components, electrolytic cell, principle of electroplating of chromium, gold etc. Electroless plating of copper, nickel CO4 POLYMERS, NANOMATERIALS AND MOLECULAR MACHINES & SWITCHES: Polymers: Introduction thermoplastic and thermo setting resins, Preparation, properties and uses of polystyrene and Polyphosphazines, differences between Nano materials: Introduction to nanomaterial: nanoparticles, nano cluster, carbon nanotube (CNT) and nanowires. Chemicalsynthesis of nano materials: sol-gel method. Characterization: Principle and applications of scanning electron microscope (SEM) and transmission electron microscope (TEM). Molecular machines & Molecular switches: Rotaxanes and Catenanes as artificial molecular machines; Molecular switches – cyclodextrin- based switches Learning Resources Text Books Learning Resources Text Books I. P.C. Jain and M. Jain, Engineering Chemistry, 15/e, Dhanapat Rai & Sons, Delh (2014) 2. B.K. Sharma, Engineering Chemistry, Krishna Prakashan, Meerut. O G Palanana, Engineering Chemistry, Krishna Prakashan, Meerut.			
and oxygen fuel cell. Ments of fuel cell. RENEWABLE SOURCES OF ENERGY Introduction - Physical and Chemical properties of Silicon- Production of Solar Grade Silicon from Quartz - Doping of Silicon- and n type semi-conductors. PV cell / solar cell- Manufacturing of Photovoltaic Cells using Chemical Vapor Deposition Technique- applications of solar energy METAL FINISHING Technological importance of metal finishing, methods of metal finishing, manufacturing of electronic components, electrolytic cell, principle of electroplating of chromium, gold etc. Electroless plating of coper, nickel POLYMERS, NANOMATERIALS AND MOLECULAR MACHINES & SWITCHES: Polymers: Introduction thermoplastic and thermo setting resins, Preparation, properties and uses of polystyrene and Polyphosphazines, differences between Nano materials: Introduction to nanomaterial: nanoparticles, nano cluster, carbon nanotube (CNT) and nanowires. Characterization: Principle and applications of scanning electron microscope (SEM) and transmission electron microscope (TEM). Molecular machines; Molecular switches: A cyclodextrin- based switches Learning Resources Text Books 1. P.C. Jain and M. Jain, Engineering Chemistry, Tisha		classification of fuel cells – hydrogen and oxygen fuel cell, propane	
RENEWABLE SOURCES OF ENERGY Introduction - sources of renewable energy Solar energy – Introduction of Solar Grade Silicon from Quartz - Doping of Silicon-p and n type semi-conductors- PV cell / solar cell - Manufacturing of Photovoltaic Cells using Chemical Vapor Deposition Technique- applications of solar energy CO3 METAL FINISHING Technological importance of metal finishing, methods of metal finishing, manufacturing of electronic components, electrochemical techniques of forming, machining and etching, electrolytic cell, principle of electroplating, nature of electrodeposits, electroplating of copper, nickel CO4 POLYMERS, NANOMATERIALS AND MOLECULAR MACHINES & SWITCHES: Polymers: Introduction thermoplastic and thermo setting resins, Preparation, properties and uses of polystyrene and Polyphosphazines, differences between Nano materials: Introduction to nanomaterial: nanoparticles, nano cluster, carbon nanotube (CNT) and nanowires. Chemicalsynthesis of nano materials: sol-gel method. Characterization: Principle and applications of scanning electron microscope (SEM) and transmission electron microscope (TEM). Molecular machines & Molecular switches: Rotaxanes and Catenanes as artificial molecular machines; Molecular switches – cyclodextrin- based switches CO5 Etat Books 1. P.C. Jain and M. Jain, Engineering Chemistry, 15/e, Dhanapat Rai & Sons, Delh (2014) Sons, Delh (2014) 1. S. Sharma, Engineering Chemistry, Krishna Prakashan, Meerut. O G Palanna, Engineering Chemistry, Tata McGraw Hill (2009). Reference Books 1. S.S. Sharma, A Textbook of Engineering Chemistry, Dhanapath Rai and sons, (2003) 2. B.S. Murth		and oxygen tuel cell- Merits of tuel cell.	
METAL FINISHING C Technological importance of metal finishing, methods of metal finishing, manufacturing of electronic components, electrolytic cell, principle of electroplating and etching, electrolytic cell, principle of electroplating of chromium, gold etc. Electroless plating of copper, nickel CO4 POLYMERS, NANOMATERIALS AND MOLECULAR MACHINES & SWITCHES: Polymers: Introduction thermoplastic and thermo setting resins, Preparation, properties and uses of polystyrene and Polyphosphazines, differences between Nano materials: Introduction to nanomaterial: nanoparticles, nano cluster, carbon nanotube (CNT) and nanowires. Chemicalsynthesis of nano materials: sol-gel method. CO5 V nanoparticles, nano cluster, carbon nanotube fCNT) and nanowires. Characterization: Principle and applications of scanning electron microscope (SEM) and transmission electron microscope (TEM). Molecular machines & Molecular switches: Rotaxanes and Catenanes as artificial molecular machines; Molecular switches – cyclodextrinbased switches CO5 Etext Books 1. P.C. Jain and M. Jain, Engineering Chemistry, Ts/e, Dhanapat Rai & Sons, Delh (2014) Sh. Sharma, Engineering Chemistry, Tata McGraw Hill (2009). Reference Books 1. Sashichawla, A Textbook of Engineering Chemistry, S.Chand& Co, (2010) 2. B.S. Murthy and P. Shankar, A Text Book of Nano Science and Nano Technology,University Press (2013). S.S. Dara, A Textbook of Engineering Chemistry, S.Chand& Co, (2010) 4. N.Krishna Mathshwaramma and Mridula Chugh, Engineering Chemistry, Pearson India Edn services, (2016). Cuanta Midula Chugh, En	III	RENEWABLE SOURCES OF ENERGY Introduction- sources of renewable energy Solar energy – Introduction - Physical and Chemical properties of Silicon- Production of Solar Grade Silicon from Quartz - Doping of Silicon- p and n type semi-conductors- PV cell / solar cell- Manufacturing of Photovoltaic Cells using Chemical Vapor Deposition Technique- applications of solar energy	CO3
 POLYMERS, NANOMATERIALS AND MOLECULAR MACHINES & SWITCHES: Polymers: Introduction thermoplastic and thermo setting resins, Preparation, properties and uses of polystyrene and Polyphosphazines, differences between Nano materials: Introduction to nanomaterial: nanoparticles, nano cluster, carbon nanotube (CNT) and nanowires. Chemicalsynthesis of nano materials: sol-gel method. Characterization: Principle and applications of scanning electron microscope (SEM) and transmission electron microscope (TEM). Molecular machines & Molecular switches: Rotaxanes and Catenanes as artificial molecular machines; Molecular switches – cyclodextrin- based switches Learning Resources Text Books P.C. Jain and M. Jain, Engineering Chemistry, 15/e, Dhanapat Rai & Sons, Delh (2014) B.K. Sharma, Engineering Chemistry, Krishna Prakashan, Meerut. O G Palanna, Engineering Chemistry, Tata McGraw Hill (2009). Reference Books Sashichawla, A Textbook of Engineering Chemistry, Dhanapath Rai and sons, (2003) B.S. Murthy and P. Shankar, A Text Book of Nano Science and Nano Technology,University Press (2013). S.S. Dara, A Textbook of Engineering Chemistry, S.Chand& Co, (2010) N.Krishna Murthy and Anuradha, A text book of Engineering Chemistry, Murthy Publications (2014). K. Sesha Maheshwaramma and Mridula Chugh, Engineering Chemistry, Pearson India Edn services, (2016). e. Resources & other digital material https://nptel.ac.in/courses/105105178/ http://202.53.81.118/course/view.php?id=82 	IV	METAL FINISHING Technological importance of metal finishing, methods of metal finishing, manufacturing of electronic components, electrochemical techniques of forming, machining and etching, electrolytic cell, principle of electroplating, nature of electrodeposits, electroplating process, Electroplating of chromium, gold etc. Electroless plating of copper, nickel	CO4
Learning Resources Text Books 1. P.C. Jain and M. Jain, Engineering Chemistry, 15/e, Dhanapat Rai & Sons, Dell' (2014) 2. B.K. Sharma, Engineering Chemistry, Krishna Prakashan, Meerut. 3. O G Palanna, Engineering Chemistry, Tata McGraw Hill (2009). Reference Books 1. Sashichawla, A Textbook of Engineering Chemistry, Dhanapath Rai and sons, (2003) 2. B.S Murthy and P. Shankar, A Text Book of Nano Science and Nano Technology, University Press (2013). 3. S.S. Dara, A Textbook of Engineering Chemistry, S.Chand& Co, (2010) 4. N.Krishna Murthy and Anuradha, A text book of Engineering Chemistry, Murthy Publications (2014). 5. K. Sesha Maheshwaramma and Mridula Chugh, Engineering Chemistry, Pearson India Edn services, (2016). e- Resources & other digital material https://nptel.ac.in/courses/105105178/ https://202.53.81.118/course/view.php?id=82	V	POLYMERS, NANOMATERIALS AND MOLECULAR MACHINES & SWITCHES: Polymers: Introduction thermoplastic and thermo setting resins, Preparation, properties and uses of polystyrene and Polyphosphazines, differences between Nano materials: Introduction to nanomaterial: nanoparticles, nano cluster, carbon nanotube (CNT) and nanowires. Chemicalsynthesis of nano materials: sol-gel method. Characterization: Principle and applications of scanning electron microscope (SEM) and transmission electron microscope (TEM). Molecular machines & Molecular switches: Rotaxanes and Catenanes as artificial molecular machines; Molecular switches – cyclodextrin- based switches	CO5
Learning Resources Text Books 1. P.C. Jain and M. Jain, Engineering Chemistry, 15/e, Dhanapat Rai & Sons, Delh (2014) 2. B.K. Sharma, Engineering Chemistry, Krishna Prakashan, Meerut. 3. O G Palanna, Engineering Chemistry, Tata McGraw Hill (2009). Reference Books 1. Sashichawla, A Textbook of Engineering Chemistry, Dhanapath Rai and sons, (2003) 2. B.S Murthy and P. Shankar, A Text Book of Nano Science and Nano Technology, University Press (2013). 3. S.S. Dara, A Textbook of Engineering Chemistry, S.Chand& Co, (2010) 4. N.Krishna Murthy and Anuradha, A text book of Engineering Chemistry, Murthy Publications (2014). 5. K. Sesha Maheshwaramma and Mridula Chugh, Engineering Chemistry, Pearson India Edn services, (2016). e- Resources & other digital material https://nptel.ac.in/courses/105105178/ https://202.53.81.118/course/view.php?id=82			
 Text Books 1. P.C. Jain and M. Jain, Engineering Chemistry, 15/e, Dhanapat Rai & Sons, Delh (2014) 2. B.K. Sharma, Engineering Chemistry, Krishna Prakashan, Meerut. 3. O G Palanna, Engineering Chemistry, Tata McGraw Hill (2009). Reference Books Sashichawla, A Textbook of Engineering Chemistry, Dhanapath Rai and sons, (2003) 2. B.S Murthy and P. Shankar, A Text Book of Nano Science and Nano Technology, University Press (2013). 3. S.S. Dara, A Textbook of Engineering Chemistry, S.Chand& Co, (2010) 4. N.Krishna Murthy and Anuradha, A text book of Engineering Chemistry, Murthy Publications (2014). 5. K. Sesha Maheshwaramma and Mridula Chugh, Engineering Chemistry, Pearson India Edn services, (2016). e- Resources & other digital material https://ptel.ac.in/courses/105105178/ http://202.53.81.118/course/view.php?id=82		Learning Resources	
 Sashichawla, A Textbook of Engineering Chemistry, Dhanapath Rai and sons, (2003) B.S Murthy and P. Shankar, A Text Book of Nano Science and Nano Technology, University Press (2013). S.S. Dara, A Textbook of Engineering Chemistry, S.Chand& Co, (2010) N.Krishna Murthy and Anuradha, A text book of Engineering Chemistry, Murthy Publications (2014). K. Sesha Maheshwaramma and Mridula Chugh, Engineering Chemistry, Pearson India Edn services, (2016). e- Resources & other digital material https://nptel.ac.in/courses/105105178/ http://202.53.81.118/course/view.php?id=82 	Text 1. P.0 (2014) 2. 3. O Refe	C. Jain and M. Jain, Engineering Chemistry, 15/e, Dhanapat Rai & S K. Sharma, Engineering Chemistry, Krishna Prakashan, Meerut. G Palanna, Engineering Chemistry, Tata McGraw Hill (2009). rence Books	ons, Delh
 (2003) 2. B.S Murthy and P. Shankar, A Text Book of Nano Science and Nano Technology, University Press (2013). 3. S.S. Dara, A Textbook of Engineering Chemistry, S.Chand& Co, (2010) 4. N.Krishna Murthy and Anuradha, A text book of Engineering Chemistry, Murthy Publications (2014). 5. K. Sesha Maheshwaramma and Mridula Chugh, Engineering Chemistry, Pearson India Edn services, (2016). e- Resources & other digital material https://nptel.ac.in/courses/105105178/ http://202.53.81.118/course/view.php?id=82 	1. Sa	ashichawla, A Textbook of Engineering Chemistry, Dhanapath Rai	and sons,
https://nptel.ac.in/courses/105105178/ http://202.53.81.118/course/view.php?id=82	(2003 2. B.S. Tech 3. S.S. 4. N. Murt 5. K. India	 S Murthy and P. Shankar, A Text Book of Nano Science and nology, University Press (2013). S. Dara, A Textbook of Engineering Chemistry, S.Chand& Co, (2010) Krishna Murthy and Anuradha, A text book of Engineering Chemistry, hy Publications (2014). Sesha Maheshwaramma and Mridula Chugh, Engineering Chemistry Edn services, (2016). 	Nano , Pearson
http://202.53.81.118/course/view.php?id=82	e- Ke	//nntel ac in/courses/105105178/	
μιτρ.// ΔυΔ. JJ. 01.110/ υυμιου/ γιο γγ. μμρ. μα-υΔ	http://	//10/2 53 81 118/course/view.php?id=82	

	PROBLEM SOLVING AND PROGRAMMING										
CourseCode	19ES1202	Year	Ι	Semester	II						
Course Category	Engineering Sciences	Branch	ECE	Course Type	Theory						
Credits	4	L-T-P	3-1-0	Prerequisites	Nil						
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100						

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1 Develop algorithm and flowchart for simple problems.

CO2 Understand the structure, fundamentals and decision making statements in C.

CO3 Choose suitable iterative statements and arrays to solve the problems.

CO4 Solve problems using functions and pointers.

CO5 Apply the structures, unions and file operations in a specific need.

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1:Low)

	Suchgui of correlations (5. Ingli, 2. Weulum, 1.Low)													
	PO	РО	РО	PO	PO	РО	РО	PO	РО	PO1	PO1	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	2	2										1	2	2
CO2	1	1											2	2
CO3	2	2	2									1	2	2
CO4	2	2	2									1	2	2
CO5	2	2	2									1	2	2
Average	2	2	2									1	2	2
(Rounded to nearest integer)														

Syllabus							
Unit No.	Contents	Mapped CO					
Ι	Introduction to Computer Problem-Solving – Introduction, The Problem-Solving Aspect, Top-Down Design, Fundamental Algorithms – Exchanging the values of two variables, Counting, Summation of a Set of Numbers, Factorial Computation, Sine Function Computation, Generation of the Fibonacci Series. Basics of Flow charts.	CO1					
II	Introduction to C: Introduction, Structure of C Program, A Simple C Program, C-Tokens, Basic Data types, Variables, Constants, Input / Output statements, Operators, Type conversion and Type casting. Conditional Branching Statements: if, if-else, if-else-if Statements and Switch case.	CO2					
III	Iterative Statements: while, for and do - while loops, Nested loops, break and continue statements. Arrays: Declaration, Accessing array elements, Storing values, Operations on arrays, Multi-dimensional arrays. Strings: Introduction, String manipulation functions.	CO3					

IV	 Functions: Introduction, Using Functions, Function declaration, Function definition and Function call, Parameter passing, Passing arrays to functions, Recursion, Storage classes. Pointers: Declaration and Initialization of pointer variables, Pointer arithmetic, Pointers and arrays, Pointer to pointer, Array of pointers, Pointers and functions, Dynamic memory allocation. 	CO4				
V	 Structures: Introduction, Nested structures, Array of structures, Structures and functions, Unions. Files in C: Using Files in C, Read data from files, Writing data to files, Random access to files of records. 	CO5				
Learning Resources						
Text	Books					
1. R.C	3. Dromey, How to Solve it by Computer, 1/e, Pearson Education	on, 2006.				
(Fo	rUnit I).					
2. Ree	ema Thareja, Programming in C, Oxford University Press, AICTE Edition	n, 2018.				
Refer	ence Books					
1. B.	A. Forouzan and R. F. Gilberg, Computer Science: A Structured Pro	gramming				
Appro	oach Using C, 3/e, Cengage Learning, 2007.					
2. Pra	udip Dey, Manas Ghosh, Programming in C, Oxford University Pres	s, AICTE				
Editio	n,					
3. B.	Gottfried, Programming with C, 3/e, Schaum's outlines, McGraw Hi	ll (India),				
2017.						

4.Jeri R. Hanly, Ellot B. Koffman, Problem Solving and Program Design in C, 5/e, Pearson.

e- Resources & other digital material

1. http://cprogramminglanguage.net/

https://www.geeksforgeeks.org/c-programming-language/
 <u>https://nptel.ac.in/courses/106105085/4</u>

	COM	IMUNICATIVE	ENGLI	SH - II LAB	
Course Code	19HS1251	Year	Ι	Semester	II
Course Category	Humanities	Branch	ECE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Fundamental knowledge of Listening and Speaking skills
Continuous Internal Evaluation	25	Semester End Evaluation	50	Total Marks	75

	Course Outcomes								
Upon	successful completion of the course, the student will be able to:								
CO1	Understand the purpose of a presentation and learn strategies to present the text.								
CO2	Comprehend talks/lectures and answer inferential questions using PPTs/audio- visual								
	aids								
CO3	Analyze the comprehensive ability and logical thinking for better listening and								

speaking.
 CO4 Facilitate active listening to enable inferential learning through expert lectures and talks and team up with a colleague to participate well in role plays.

CO5 Develop advanced listening skills for an in-depth understanding of complex texts and collaborate with a partner for effective performance in mock interviews

Contribution of Course Outcomes towards achievement of Program Outcomes &														
Strength ofcorrelations (H-High, M-Medium, L-Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1									2	3		3	1	
CO2									2	3		3	1	
CO3									2	3		3	1	
CO4									2	3		3	1	
CO5									2	3		3	1	
Average*									2	3		3	1	
(Rounded to nearest integer)														

	SYLLABUS							
Expt.	CONTENT	Mapped						
no		CO						
1	Listening for presentation strategies and answering questions on the	CO1						
	speaker, audience, and key points							
2	Formal presentations using PPT slides (individual)							
3	Relating a reading text to a talk/presentation – understanding	CO2						
	different perspectives and drawing inferences							
4	Formal team presentations using PPT slides/audio- visual aids							
5	Identifying views and opinions expressed by different speakers	CO3						
	while listening to discussions							
6	Group discussion on general topics							
7	Processing of information using context clues while listening to							
	talks/lectures	CO4						

8	Role plays – people from various fields of work
9	Processing of explicit information presented in the text and implicit
	information inferable from the text or from previous/background CO5
	knowledge
10	Mock interviews for jobs/internships
	LEARNING RESOURCES
Referen	ce Books:
1. Chas Heir	se, Becky Tarver. <i>Pathways: Listening, Speaking and Critical Thinking</i> .
	lful Level 2 Reading & Writing Student's Rook Pack (R1) Macmillan
2. SKII Edu	pational
3 Heu	rings Martin Cambridge Academic English (R2) CUP 2012(Student Rook
Teac	ther ResourceBook (CD & DVD)
e- Reso	irces & other digital material:
Gramm	ar/Listening/Writing:
1-langu	age.com http://www.5minuteenglish.com/
https://w	ww.englishpractice.com/
Listenii	ng:
https://le	earningenglish.voanews.com/z/3613;
http://w	ww.englishmedialab.com/listening.html
Speakir	ng:
https://v	www.talkenglish.com/BBC; Learning English – Pronunciation tipsMerriam-
Webstei	- Perfect pronunciation Exercises
All Skil	ls:
https://v	vww.englishclub.com/;
http://w	ww.world-english.org/
http://le	arnenglish.britishcouncil.org/
Online	Dictionaries:
Cambrie	lge dictionary online;
MacMil	lan dictionary;
Oxford	learner's dictionaries

Course	Docio				
Category	Sciences	Branch	ECE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

CO1 Explain the functioning of the instruments such as pH, Conductometric and Potentiometric methods.

CO2 Identify different ores (Cr & Cu) and their usage in different fields (industry, software devices, electronic goods).

CO3 Experiment with the physical parameter of organic compounds.

CO4 Compare the viscosities of oils.

CO5 List the preparation of polymers and nano materials.

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2											1
CO2	3		2											1
CO3	3		2											1
CO4	3		2											1
CO5	3		2											1
Average* (Rounded to nearest integer)	3		2											1

Syllabus								
Expt. No.	Contents	Mapped CO						
1	Determination of strength of an acid by pH metric method							
II	Determination of conductance by conductometric method	COI						
III	Determination of viscosity of a liquid	CO4						
IV	Determination of surface tension of a liquid	CO3						
V	Determination of chromium (VI) in potassium dichromate							
VI	Determination of Zinc by EDTA method	CO2						
VII	Estimation of active chlorine content in Bleaching powder	CO3						
VII	Preparation of Phenol-Formaldehyde resin							
IX	Preparation of Urea-Formaldehyde resin	CO5						
X	Thin layer chromatography	CO3						

Learning Resources

Text Books

N.KBhasin and Sudha Rani Laboratory Manual on Engineering Chemistry 3/e, DhanpatRai Publishing Company (2007).

Reference Books

Mendham J, Denney RC, Barnes JD, Thosmas M and Sivasankar B Vogel's Quantitative Chemical Analysis 6/e, Pearson publishers (2000).

e- Resources & other digital material

https://nptel.ac.in/courses/105105178/ http://202.53.81.118/course/view.php?id=82

	PROBLEM	SOLVING AN	ND PROGRAM	MMING LAB	
Course	19ES1252	Year	Ι	Semester	II
Code					
Course	Engineering	Branch	ECE	Course Type	Lab
Category	Sciences				
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous		Semester		Total	
Internal	25	End	50	Marks:	75
Evaluation:		Evaluation:			

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1 Build algorithm and flowchart for simple problems.

CO2 Use suitable control structures to solve problems.

CO3 Use suitable iterative statements and arrays to solve the problems.

CO4 Implement Programs using functions and pointers.

CO5 Develop code for complex applications using structures, unions and file handling features.

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H: High, M: Medium, L:Low)

								. (-,	<i>e</i> ,	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2										1	2	2
CO2	2	2	2		2							1	2	2
CO3	2	2	2		2							1	2	2
CO4	2	2	2		2							1	2	2
CO5	2	2	2		1							1	2	2
Average*	2	2	2		2							1	2	2
(Rounded to														
nearest														
integer)														

	Syllabus	
Expt. No.	Contents	Mapped CO
Ι	Draw flowcharts for fundamental algorithms.	CO1
II	C Programs to demonstrate C-tokens.	CO2
III	C Programs on usage of operators.	
IV	C Programs to demonstrate Decision making and branching (Selection)	
V	C programs to demonstrate different loops.	
VI	C programs to demonstrate 1-D arrays.	CO3
VII	C programs to demonstrate multi-dimensional arrays.	
VIII	C programs to perform operations on strings with String handling functions and without String handling functions.	
IX	C programs to demonstrate functions.	CO4
X	C programs on pointers.	
XI	C programs on structures and unions.	
XII	C programs to demonstrate files.	
<u>L</u>		1

Learning Resources

Text Books

1. R.G. Dromey, How to Solve it by Computer, 1/e, Pearson Education, 2006.

2. Reema Thareja, Programming in C, Oxford University Press, AICTE Edition, 2018.

Reference Books

1. B. A. Forouzan and R. F. Gilberg, Computer Science: A Structured Programming Approach Using C, 3/e, Cengage Learning, 2007.

2. Pradip Dey, Manas Ghosh, Programming in C, Oxford University Press, AICTE Edition,

3. B. Gottfried, Programming with C, 3/e, Schaum's outlines, McGraw Hill (India), 2017.

4.Jeri R. Hanly, Ellot B. Koffman, Problem Solving and Program Design in C, 5/e, Pearson.

e- Resources & other digital material

1. http://cprogramminglanguage.net/

2. https://www.geeksforgeeks.org/c-programming-language/

3. https://nptel.ac.in/courses/106105085/4

BASIC WORKSHOP

CourseCode	19ES1253	Year	Ι	Semester	II
Course	Engineering	Branch	ECE	Course Type	Lab
Category	Sciences				
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous		Semester End		Total Marks:	
Internal	25	Evaluation:	50		75
Evaluation:					

Course Outcomes

Upon	successf	ul completio	on of the	cour	se, the st	udent will	be able to)	
CO1	Apply v	vood worki	ng skills	in rea	al world	application	15		
CO2	Build d	ifferent part	ts with m	netal s	sheets in	real world	application	ons.	
CO3	Apply f	itting opera	tions in	vario	us applic	ations.			
CO4	Apply	different	types	of	basic	electric	circuit	connections	and
	demons	trate solder	ing.						

Contr	ibutic	on of (Cours	se Ou	tcom	es tow	ards	achie	veme	nt of F	Progra	m Out	tcomes	s &	
		Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	
CO1	3					1			3		1				
CO2	3					1			3		1				
CO3	3					1			3		1				
CO4	3					1			3		1				
Average *	3					1			3		1				
(Doundod															

to nearest integer)								
			 C.	11 - 1	 			

Job Type	Contents	Mapped
		ĊÔ
Wood	Familiarity with different types of woods and tools used in wood	CO1
Working	working and make following joints Half – Lap joint.	
	Mortise and Tenon joint. Corner Dovetail joint or Bridle joint.	
Sheet	Familiarity with different types of tools used in sheet metalworking,	, CO2
Metal	Developments of following sheet metal job from GI sheets Tapered	L
Working	tray, Conical funnel	
	ii) Elbow pipe	
Fitting	Familiarity with different types of tools used in fitting and do the	CO3
	following fitting exercises V-fit Semi-circular fit iii) Bicycle tire)
	puncture and change of two wheeler tire	
Electrical	Familiarities with different types of basic electrical circuits and	CO4
Wiring	make the following connections	
-	Preparation of a circuit for Parallel and series connection.	
	ii) Preparation of a circuit Go down lighting using two way	7
	switch and tube light. Soldering of wires	

Learning Resources

Text Books

Work shop Manual - P.Kannaiah/ K.L.Narayana/ Scitech Publishers.
 Workshop Manual / Venkat Reddy/ BS Publications/Sixth Edition

		ELECTRONIC	CS WORKSHO)P	
Course Code	19EC3251	Year	Ι	Semester	II
Course Category	Program Core	Branch	ECE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	BEEE
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Decode the Resistance values & tolerances.
CO2	Understand and use RPS, voltmeter, ammeter, multimeter, function generator and CRO.
CO3	Study and use breadboard for various circuit wiring.
CO4	Fabricate simple circuits on a PCB and test them.
CO5	Understand various hardware parts of a computer.
CO6	Complete a hobby project and test it.

Contrib	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		3		2	3			2				2	2
CO2	3		3		2	3			2				2	2
CO3	3		3		2	3			2				2	2
CO4	3		3		2	3			2				2	2
CO5	3		3		2	3			2				2	2
CO6	3		3		2	3			2		3	2	2	2
Average* (Rounded to nearest integer)	3		3		2	3			2		3	2	2	2

	Syllabus	
Expt.	Contents	Mapped
No.		CO
Ι	Study of resistance color codes, identification of active and passive	CO1
	Electronic components.	COI
II	Study and use of Bread Board Trainer Kit.	CO3
III	Study of multimeter and CRO.	CO2
IV	Study of function Generator and Regulated Power supply.	CO2
V	Soldering of Electronic components on PCBs.	CO4
VI	Function of diode as a switch.	CO2
VII	Different types of batteries.	CO2
VIII	Voltage measurement using solar panel.	CO2
IX	Battery charger using microcontroller.	CO5

	Study of Computer system hardware.	CO5
XI	Mini Hobby Project	CO6

Learning Resources

Text Books

- 1. Electronics Lab Manual –Volume-1-PHI- KA NAVAS Fifth Edition
- 2. laboratory Manual for Introductory Electronics Experiments- New Age International (P) Ltd

e- Resources & other digital material

- 1. http://www.circuitstoday.com/simple-electronics-projects-and-circuits
- 2. https://study.com/academy/lesson/what-is-computer-hardware-components-definition

II YEAR

ENGINEERING MATHEMATICS-III (COMPLEX VARIABLES &TRANSFORM TECHNIQUES)

Course Code	19BS1301	19BS1301 Year		Semester	Ι
Course Category	Basic Sciences	Branch	CE/EEE/ ME/ECE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous		Semester			
Internal	30	End	70	Total Marks	100
Evaluation		Evaluation			

Course Outcomes							
Afte	After successful completion of the course, the student will be able to						
C01	Determine Laplace transform and inverse Laplace transforms of given function(s).						
CO2	Develop a Fourier series in terms of sine and cosine of a given function.						
CO3	Find out Fourier sine and cosine transforms.						
CO4	Determine complex potential function, evaluate integrals by applying Cauchy's integral formula and construct series expansions of complex functions.						
CO5	Apply method of separation of variables to find the solution of wave, heat, Laplace equations with given boundary conditions.						

Contr	Contribution of Course Outcomes towards achievement of Program Outcomes &													
Strength of correlations (3-High, 2: Medium, 1:Low)														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2					2						2	
CO2	3	2											2	
CO3	3	2											2	
CO4	3	2											2	
CO5	3	2					2						2	
Average*	3	2					2						2	
(Rounded to														
nearest														
integer)														

Syllabus						
UNIT No.	Contents	Mapped COs				
I	Laplace Transforms & Inverse Laplace Transforms Definition of Laplace transform, properties of Laplace transforms, transforms of derivatives, transforms of integrals, multiplication by t^n , division by t , unit step function, unit impulse function. Inverse Laplace transforms by partial fractions, convolution theorem (All theorems/properties without proofs)	CO1				
II	Fourier Series Fourier series, Dirichlet's conditions, functions of any period, odd and even functions - half range series. (All theorems/properties without proofs)	CO2				
III	Fourier Transforms 6hrs Fourier integrals, Fourier cosine and sine integrals, Fourier transform, sine and cosine transform. (All theorems/properties without proofs)	CO3				

		PVP 19
IV	Complex VariablesDifferentiation, Cauchy-Riemann equations, analytic functions, harmonic////functions, finding harmonic conjugate. Cauchy theorem, Cauchy integralformula, Taylor's series, Laurent's series. (All theorems/properties withoutproofs)	CO4
V	Applications of Partial Differential EquationsClassification of second order partial differential equations, method ofseparation of variables, solutions of one dimensional wave equation, onedimensional heat equation and two dimensional Laplace's equation inCartesian coordinates.(All theorems/properties without proofs)	CO5
	Learning Recourses	
Te	kt Book(s)	
1. I 2. I	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 200	06.
Re	ference Book(s)	
1.	N.P. Bali and Manish Goyal, A Text book of Engineering Mathematics, Laxmi Publications, 2008.	
e-]	Resources & other digital material	
$\frac{1}{2}$	https://www.nptel.ac.in/courses/111/105/111105123/ https://www.nptel.ac.in/courses/111/105/111105134/	

https://www.nptel.ac.in/courses/111/105/111105134/
 https://www.nptel.ac.in/courses/111/105/111105093/

AI TOOLS										
Course Code	19ES1401	Year	II	Semester	II					
Course Category	Engineering	Branch	Common to	Course Type	Theory					
	Sciences		All Branches							
Credits	2	L-T-P	2-0-0	Prerequisites	-					
Continuous		Semester								
Internal	30	End	70	Total Marks	100					
Evaluation		Evaluation								

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	Understand the Fundamentals of Artificial Intelligence and its Applications.							
CO2	Summarize various machine learning methods.							
CO3	Identify different machine learning applications.							
CO4	Compare Machine Learning & Deep Learning and Outline basic Deep Learning							
	Algorithm.							
CO5	Make use of Deep Learning Concepts for various Applications.							

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3-High, 2: Medium, 1:Low)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2												1	2
CO2	2	2											2	2
CO3	2	2		2									2	3
CO4	2	2											2	2
CO5	2	2	2	2		1						2	2	3
Average* (Rounded to nearest integer)	2	2	2	2		1						2	2	3

	Syllabus						
Unit	Contents	Mapped					
No		ĊŌ					
Ι	Introduction to Artificial Intelligence:	CO1					
	What is AI, Foundations of AI, Goals of AI, and Applications of AI.						
II	Machine Learning: Definition, Learning Methods:	CO2					
	Supervised Learning, Unsupervised Learning, Semi-Supervised						
	Learning, Reinforcement Learning.						
III	Machine Learning Applications:	CO3					
	Computer vision, Speech Recognition, Natural Language Processing,						
	Decision Making process.						
IV	Deep Learning: Basics of Deep Learning, Machine Learning Vs Deep	CO4					
	Learning, Fundamental Deep Learning Algorithm- Convolution Neural						
	Network (CNN).						
V	Deep Learning Applications:	CO5					
	Computer vision, Speech Recognition, Natural Language Processing,						
	Decision Making process.						
L							
Learning Resources

Text Books

- 1. Artificial Intelligence: A Modern Approach, Stuart Russell and Norvig, Third Edition, 2015, Pearson Education. (Unit-1)
- 2. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, 2012, MIT Press (Unit-2&3)
- Deep Learning (Adaptive Computation and Machine Learning series), Ian Good fellow, Yoshua Bengio, Aaron Courville, Francis Bach, 2017, MIT Press. (Unit- 4 & 5)

e-Resources& other digital material

- 1. https://swayam.gov.in/nd1_noc19_cs52/preview
- 2. https://swayam.gov.in/nd1_noc19_cs85/preview
- 3. https://emerj.com/ai-sector-overviews/machine-learning-healthcare-applications/

DESIGN THINKING & PRODUCT INNOVATION

Course code	19ES1302	Year	II	semester	Ι
Course category	Engineering Sciences	Branch	ECE	Course Type	Theory
Credits	2	L-T-P	2-0-0	prerequisites	Nil
Continuous		Semester			
Internal	30	End	70	Total marks	100
evaluation		Evaluation			

Course outcomes

Upon successful completion of the course the student will able to

CO1 Explain the principles of design thinking and its approaches

CO2 Identify the empathy, define phases in human centred design problems

CO3 Understand the idea generation, prototype and testing in design thinking context

CO4 Apply design thinking techniques for product innovation

CO5 Use design thinking in business process models

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			3			1						1		2
CO2			3	2		1			2	2		1		2
CO3			3	2		1			3	2		1		2
CO4			3	2		1			2	2		1	2	2
CO5			3	2		1			2	2	1	1		2
Average* (Rounded to nearest integer)			3	2		1			3	2	1	1	2	2

	Syllabus	
Unit no	Contents	Mapped CO
Ι	Introduction To Design Thinking: An insight into Design, origin of Design thinking, Design thinking Vs Engineering thinking, importance of Design thinking, Design Vs Design thinking, understanding Design thinking and its process models, application of Design thinking	CO1
II	Empathize In Design Thinking: Human-Centred Design (HCD) process - Empathize, Define, Ideate, Prototype and Test and Iterate. Role of Empathy in design thinking, methods and tools of empathy, understanding empathy tools. Explore define phase state users' needs and problems using empathy methods	CO2
III	Ideation, Prototyping and Testing : Ideation methods, brain storming, advantages of brain storming, methods and tools of ideations, prototyping and methods of prototyping, user testing methods, Advantages and disadvantages of user Testing/ Validation	CO3
IV	Product Innovation: Design thinking for strategic innovation, Definition of innovation, art of innovation, teams for innovation, materials and innovation in	CO4

	materials, definition of product and its classification. Innovation	
	towards product design Case studies	
	Design Thinking in Business Processes:	
	Design Thinking applied in Business & Strategic Innovation, Design	
V	Thinking principles that redefine business – Business challenges:	CO5
	Growth, Predictability, Change, Maintaining Relevance, Extreme	
	competition. Standardization. Design thinking to meet corporate needs.	
	Learning Resources	
Text H	Books:	
1.	"Change by design", Tim Brown, Harper Collins, 2009	
2.	Engineering design by George E Dieter	
Refer		
1	101 Design Methods: A Structured Approach for Driving Innovation	in Your
1.	Organization by Vijay Kumar	
2	Human - Centered Design Toolkit: An Open-Source Toolkit To Ins	nire New
2.	Solutions in the Developing World by IDEO	spile new
3	Idris Mootee "Design Thinking for Strategic Innovation" John Wile	v & Sons
5.	(2013)	
4	"Design Thinking- The Guide Book" – Facilitated by the Royal Civ	vil service
т.	Commission Bhutan	ii service
Addit	ional Laarning Resources	
Auun 1	https://www.interaction_design.org/literature/topics/design_th/nking	
$\frac{1}{2}$	https://www.interaction-design.org/literature/article/how-ta- <eve on-an-<="" th=""><th></th></eve>	
۷.	empath\capproach_in_design_thinking	
	empatricapproach in design uniking	

NETWORK THEORY AND ANALYSIS

Course Code	19EC3301	Year	II	Semester	Ι
Course	Program	Branch	ECE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester End	70	Total Marks	100
Internal		Evaluation			
Evaluation					

Course Outcomes

Upon	successful completion of the course, the student will be able to
CO1	Analyse various networks by applying transformation techniques, mesh analysis,
	nodal analysis and network theorems
CO2	Analyse various circuits in the time and transform domains using transient analysis
	methods
CO3	Determine steady state response of RC, RL and RLC circuits for sinusoidal excitation
CO4	Evaluate the bandwidth and quality factor of series and parallel resonant circuits
CO5	Determine the characteristics of different two port networks

Contri	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (H: High, M: Medium, L: Low)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2			1	1	1		1	2	1
CO2	3	3	2	2	2			1	1	1		1	2	1
CO3	3	3	2	2	2			1	1	1		1	2	1
CO4	3	3	2	2	2			1	1	1		1	2	1
CO5	3	3	2	2	2			1	1	1		1	2	1
Average* (Rounded to nearest integer)	3	3	2	2	2			1	1	1		1	2	1

	Syllabus	
Unit	Contents	Mapped
<u>NO.</u>		CO
Ι	Introduction: Ohms law, Kirchhoff's laws, series and parallel circuits, source transformations, delta-wye conversion, linearity and superposition theorem with simple examples, Thevenin's and Norton's theorem with simple examples, maximum power transfer theorem, mesh super mesh analysis nodal super node analysis	CO1
II	Analysis of aircuits: transiant analysis of first order and second order	CO^{2}
11	systems, initial and final conditions in networks, dc transients: source free and forced response of RL, RC and RLC circuit analysis using Laplace transform.	02
III	Sinusoidal Steady-State Analysis: sinusoids, sinusoidal functions and complex functions, instantaneous power, average power, effective values of current and voltage, apparent power and power factor, complex power, phasors, phasor relationships for R, L and C and steady state analysis of RL, RC and RLC circuits.	CO3
IV	Resonance: series resonance, parallel resonance, bandwidth, selectivity, quality factor.	CO4
V	Two Port Networks: impedance parameters, admittance parameters,	CO5

hybrid parameters and transmission parameters, relationships between
parameters.
Learning Resources
1 M E Van Valkanburg, Natwork Analysis, III Edition, Dearson Education / DHI
2 A Sudhakar and Shyammohan S Palli Network Analysis Tata McGraw Hill
Publication
Reference Books
1. William H Hayt, Jack E Kimmerly and Steven M.Durbin, Engineering Circuit Analysis, Tata McGraw Hill
2. A. Chakrabarti, Circuit Theory: Analysis and Synthesis, Dhanpat Rai Publishing
Co Pvt Ltd
3. John O. Attia, Electronics and Circuit Analysis using MATLAB, CRC Press
e- Resources & other digital material
1. <u>https://www.youtube.com/playIIst/IIst=PLC/D5EAEFAUCCU420&app-ucskupp</u> 2. https://www.tutorialspoint.com/network_theory/network_theory_quick_guide.htm
3. https://notel.ac.in/courses/108/105/108105159/

ELECTRONIC DEVICES AND AMPLIFIER CIRCUITS

Course Code	19EC3302	Year	II	Semester	Ι
Course	Program	Branch	ECE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	BEEE
Continuous	30	Semester	70	Total Marks	100
Internal		End			
Evaluation		Evaluation			

Course Outcomes

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Characterize and analyse BJT amplifiers at low and high frequencies
CO2	Determine MOSFET amplifier performance at low and high frequencies.
CO3	Adapt different models of BJT and MOSFET circuits for improving the IC
	performance
CO4	Design single stage and multistage differential amplifiers using MOSFET.

Co	ontribu	ition o	f Cou	rse Ou	tcome	es towa	ards a	chieve	ement	of Pro	gram (Outcor	nes &	
		5	Streng	th of c	correla	ations	(3-Hig	gh, 2:]	Mediu	m, 1:L	low)			
0c	PO1	PO2	PO3	PO4	PO5	PO6	PO7	DU8	PO0	PO10	PO11	PO12	PSO1	D

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2			1	1	1		2	2	1
CO2	3	3	2	2	2			1	1	1		2	2	1
CO3	3	3	2	2	2			1	1	1		2	2	1
CO4	3	3	2	2	2			1	1	1		2	2	1
Average* (Rounded to nearest integer)	3	3	2	2	2			1	1	1		2	2	1

	Syllabus								
Unit No.	Contents	Mapped CO							
I	Bipolar Junction Transistors: Device structure and physical operation, current-voltage characteristics, the BJT as an amplifier and as a switch, BJT circuits at dc, biasing in BJT amplifier circuits, small signal operation and models.	CO1							
II	MOS Field-Effect Transistors: Device structure and physical operation, current-voltage characteristics, MOSFET circuits at dc, the MOSFET as an amplifier and as a switch, biasing in MOS amplifier circuits, small signal operation and models.	CO2							
III	IC Design Philosophy, Comparison of the MOSFET and the BJT, IC biasing-current sources, current mirrors and current-steering circuits, current-mirror circuits with improved performance.	CO3							
IV	Single Stage MOSFET Amplifiers: Estimating 3dB frequency of amplifiers, Basic MOSFET amplifier configurations, MOSFET internal capacitances and high frequency model. Low Frequency and High Frequency Response of Common Source, Common Gate and Common Drain Amplifiers.	CO2							
v	Differential Amplifiers: The MOS differential pair, small-signal operation of the MOS differential pair, other non-ideal characteristics	CO4							

of MOS differential amplifier, the MOS differential amplifier with active load, multistage MOS amplifiers.

---Learning Resources

Text Books

1. Adel S. Sedra, Kenneth C. Smith, Arun N. Chandorkar, Microelectronic Circuits, 6/e, Oxford University Press, 2013.

Reference Books

- 1. Behzad Razavi, Fundamentals of Microelectronics, 2/e, Wiley Student Edition, 2013.
- 2. Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuits Theory, 10/e, Pearson Education, 2009.
- 3. Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2/e, Pearson Education, 2008.

e- Resources & other digital material

- 1. http:// www.faadooengineers.com/threads/4615-Electronic-Devices-and-Circuit-Theory-Boylestad-and-Nashelsky
- 2. https://docplayer.net/53934331-J-b-gupta-electronic-devices-and-circuits.html

Course Code	19EC3303	Year	II	Semester	Ι
Course	Program	Branch	ECE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks	100
Internal		End			
Evaluation		Evaluation			

	Course Outcomes								
Upon	Upon successful completion of the course, the student will be able to								
CO1	Recognize different characteristics of signals and systems								
CO2	Determine the response of LTI system to any arbitrary input signal using								
	convolution								
CO3	Resolve continuous-time signals in frequency domain using Fourier series and								
	Fourier transform								
CO4	Analyse discrete-time signals and systems using DTFT								
CO5	Apply the concepts of Laplace transform/Z-transform to analyze continuous-								
	time/discrete-time signals in complex plane								

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)													
COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	3	3	2	2	2							2	2	1
CO2	3	3	3	2	2							2	2	1
CO3	3	3	2	2	2							2	2	1
CO4	3	3	3	2	2							2	2	1
CO5	3	3	2	2	2							2	2	1
Average* (Rounde d to nearest integer)	3	3	3	2	2							2	2	1

Syllabus							
Contents	Mapped						
	CO						
Signals and Systems: Continuous-time and Discrete-time signals,							
Transformations of the independent variable, Exponential and Sinusoidal	CO1						
signals, The unit impulse and unit step functions, Continuous-time and	COI						
Discrete-time systems, Basic System properties.							
Linear Time Invariant Systems (LTI systems): Discrete-time LTI							
systems, The convolution sum, Continuous time LTI systems, The	CO2						
convolution Integral, Properties of Linear Time-Invariant Systems.							
Fourier analysis of Continuous Time Signals and Systems: Fourier							
series representation of continuous time periodic signals, convergence of	CO2						
the Fourier series, Properties of continuous-time Fourier series. The	COS						
Continuous-Time Fourier Transform: The Fourier transform for periodic							
	SyllabusContentsSignals and Systems: Continuous-time and Discrete-time signals, Transformations of the independent variable, Exponential and Sinusoidal signals, The unit impulse and unit step functions, Continuous-time and Discrete-time systems, Basic System properties.Linear Time Invariant Systems (LTI systems): Discrete-time LTI systems, The convolution sum, Continuous time LTI systems, The convolution Integral, Properties of Linear Time-Invariant Systems.Fourier analysis of Continuous Time Signals and Systems: Fourier series representation of continuous time periodic signals, convergence of the Fourier series, Properties of continuous-time Fourier series. The Continuous-Time Fourier Transform: The Fourier transform for periodic						

	signals. Properties of the Continuous-time Fourier transform, Systems characterized by linear constant-coefficient differential equations.					
IV	Fourier analysis of Discrete Time Signals and Systems: The Discrete-					
	Time Fourier Transform, Properties of the Discrete-time Fourier	CO4				
	transform, The Fourier transform for periodic signals. Systems	004				
	characterized by linear constant-coefficient difference equations.					
V	Analysis of Continuous time and Discrete time signals using Laplace					
	Transform and Z Transform: The Laplace Transform: The Region of					
	convergence for Laplace transforms, the Inverse Laplace transform,	CO5				
	roperties of the Laplace transform. The Z-Transform: The Region of					
	Convergence for the Z-transform, The Inverse Z-transform, Properties of					
	the Z-transform.					

Learning Resources

1. Alan V. Oppenheim, Alan S. Wilsky with S.Hamid Nawab, 'Signals and Systems', 2/e, Pearson Education, 1997.

Reference Books

Text Books

- 1. Bhagawan das P. Lathi, 'Linear Signals and Systems', Oxford University Press, 2009.
- 2. Simon Haykin, Barry Van Veen, 'Signals and Systems', 2/e, Wiley Student Edition.
- 3. Luis Chaparro, Signals and Systems using MATLAB, Kindle Edition,

e- Resources & other digital material

- 1. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%2 0and %20System/TOC-M1.htm
- 2. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%2 0and %20System/Course%20Objective.htm
- 3. http://www.stanford.edu/~boyd.ee102
- 4. http://www.ece.gatech.edu/users/bonnie/book
- 5. http://ocw.mit.edu

CONSTITUTION OF INDIA										
Course Code	19MC1302	Year	II	Semester	Ι					
Course	Mandatory	Branch	ECE	Course Type	Theory					
Category	course									
Credits	0	L-T-P	3-0-0	Prerequisites	Nil					
Continuous	100	Semester	0	Total Marks	100					
Internal		End								
Evaluation		Evaluation								

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1 Understand the meaning and importance of Constitution, Fundamental rights and duties, union government, state and local governments, other statutory bodies (L2).
 CO2 Create awareness about social responsibilities (L5)

CO3 To apply the functioning of Union, State and Local Governments in Indian federal system (L3)

CO4To analyze election commission and amendment procedure for various statuary bodies (L4).

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)

COs	PO1	PO 2	PO3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	1					3	3	3				2		1
CO2						3	3	3				2		1
СОЗ						3	3	3				2		1
CO4						3	3	3				2		1
19MC1302	1					3	3	3				2		1

	Syllabus								
Unit No	Contents	Mapped							
INO.									
Ι	Introduction to Indian Constitution: Constitutional history,	CO1							
	constituent assembly, salient features of the constitution, significance								
	of preamble, amending process of the constitution.								
Π	II Rights and Duties: Citizenship, fundamental rights and directive principles, fundamental duties.								
III	Union Government: President and vice president, election, removal and powers, prime minister and council of ministers, parliament, supreme court, union, state relations, emergency provisions.	CO1, CO3							
IV	State and Local Governments: Governor, state legislature, assembly and council, chief minister and council of ministers, high court, rural and urban local governments with special reference to 73rd and 74th constitutional amendment acts.	CO1, CO3							

7	Other Constitutional and Statutory Bodies: Comptroller and	~ ~ .
	auditor general, election commission, finance commission, attorney	CO1,
	general and advocate general, union public service commission	CO4
	(UPSC), state public service commissions (SPSCs), tribunals,	
	national human rights commission (NHRC).	

Learning Resources

Text Book(s):

- 1. J. C. Johari, Indian Government and Politics, Vishal Publications, Delhi, 2009.
- 2. M. V. Pylee, Introduction to the Constitution of India, 5/e, Vikas Publishing House, Mumbai, 2007

References:

- 1. D.D. Basu, Introduction to the Indian Constitution, 21/e, Lexis Nexis, Gurgaon, India, 2011.
- 2. Subhas C. Kashyap, Our Constitution, 2/e, National Book Trust India, New Delhi, 2013.

AI TOOLS LAB										
Course Code19ES1351YearIISemesterI										
Course Category	ES	Branch	Common to	Course Type	Lab					
			All Branches							
Credits	1	L-T-P	0-0-2	Prerequisites	-					
Continuous		Semester								
Internal	25	End	50	Total Marks	75					
Evaluation		Evaluation								

Course Outcomes

Upon successful completion of the course, the student will be able to **CO1** Apply various preprocessing techniques on different datasets

CO2Construct Machine learning programs for Supervised, Unsupervised and Semi supervised learning models.

CO3 Develop Deep learning programs for Supervised & Unsupervised learning models **CO4** Identify and Apply Artificial Intelligence concepts to solve real world problems

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H: High, M: Medium, L:Low)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1	2					1		2	1	2
CO2	3	3	2	1	2					1		2	1	2
CO3	3	3	2	1	2					1		2	1	2
CO4	2	2	3	1	2		1			1		2	1	3
Average* (Rounded to nearest integer)	3	3	3	1	2		1			1		2	1	3

Syllabus							
Exp. No.	Contents	Mapped					
		ĊŌ					
1	Apply Data pre-processing techniques	CO1					
2	Construct a Machine Learning model using supervised learning method	CO2					
3	Construct a Machine Learning model using Unsupervised learning	CO2					
	method						
4	Construct a Machine Learning model using Semi supervised learning	CO2					
	method						
5	Develop a Deep Learning model using supervised learning method	CO3					
6	Develop a Deep Learning model using Unsupervised learning method	CO3					
7	Apply a Convolutional Neural Network for Image Classification	CO3					
8	Build an AI application	CO4					

Learning Resources

Text Books

- 1. Artificial Intelligence: A Modern Approach, Stuart Russell and Norvig, Third Edition, 2015, Pearson Education
- 2. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, 2012, MIT Press
- 3. Deep Learning (Adaptive Computation and Machine Learning series), Ian Good fellow, Yoshua Bengio, Aaron Courville, Francis Bach, 2017, MIT Press

e-Resources & other digital material

- 1. <u>https://github.com/atinesh-s/Coursera-Machine-Learning-Stanford</u>
- 2. https://github.com/Kulbear/deep-learning-coursera

DESIGN THINKING & PRODUCT INNOVATION LAB

Course code	19ES1352	Year	II	semester	Ι
Course category	Engineering science	Branch	Common to all Branches	Course Type	Lab
Credits	1	L-T-P	0-0-2	prerequisites	nil
Continuous	25	Semester	50		75
Internal	25	End	50	Total marks	15
Evaluation		Evaluation			

Course outcomes

Upon successful completion of the course the student will able to

CO1 Develop a mind maps for design thinking process

CO2 Prepare empathy maps and journey maps for problems.

CO3 Construct mock-up models through ideation and innovation techniques

CO4 Use software for design thinking problems

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H: High, M: Medium, L:Low)

	P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02									PSO2		
CO1			2	2					3			2
CO2			2	2					3			2
CO3			2	2					3			2
CO4			2	2					3			2
Average* (Rounded to nearest integer)			2	2					3			2

NOTE: Any 12 of the following

	Syllabus	
Exp NO	List of Experiments	Mapped CO
1	Design a mind map of design thinking	CO1
2	Thirty circle Exerciseideation	CO3
3	Prepared a toothpick bridge (mock-up model)	CO1,CO3
4	Prepared a marble maze (mock up model)	CO1,CO3
5	Build a wind power car (mock up model)	CO1,CO3
6	Make a hydraulic elevator (mock up models)	CO1,CO3
7	Construct empathy maps for a given case study-1	CO2
8	Develop customer journey map for a given case	CO2
9	Construct empathy maps for a given case study-2	CO2
10	Develop customer journey map for a given case -2	CO2
11	Make a paper prototype for user testing (mock-up model)	CO2
12	Design and development of cell phone wallet (mock-up model)	CO1,CO2,CO3
13	Design thinking using sprint base software	CO4
14	Design thinking using sprint base software	CO4

Learning Resources

Text Books

- 1. Idris Mootee, "Design Thinking for Strategic Innovation", John Wiley & Sons (2013).
- 2. "Change by design", Tim Brown, Harper Collins, 2009
- 3. "Design Thinking- The Guide Book" Facilitated by the Royal Civil service Commission, Bhutan
- 4. Engineering design by George E Dieter

Reference Books

- 1. 101 Design Methods: A Structured Approach for Driving Innovation in Your Organization by Vijay Kumar
- 2. Human-Centered Design Toolkit: An Open-Source Toolkit To Inspire New Solutions in the Developing World by IDEO

Additional Learning Resources

- 1. <u>https://www.interaction-desiqn.ora/literature/topics/desiqn-th/nkinq</u>
- 2. <u>https://www.interaction-desiqn.prq/literature/article/how-tq-<eve'op-an-empath\capproach-in-design-thinking</u>

NETWORK THEORY	AND ANALYSIS LAB
-----------------------	------------------

Course Code	19EC3351	Year	II	Semester	Ι
Course	Program	Branch	ECE	Course Type	Lab
Category	Core				
Credits	1	L-T-P	0-0-2	Prerequisites	Nil
Continuous	25	Semester	50	Total Marks	75
Internal		End			
Evaluation		Evaluation			

Course Outcomes

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Analyse various networks by applying transformation techniques, mesh analysis,
	nodal analysis and network theorems
CO2	Determine peak voltage, frequency, phase and time period of a signal using CRO
CO3	Analyse various circuits in the time and transform domains using transient analysis
	methods
CO4	Evaluate the bandwidth and quality factor of series and parallel resonant circuits
CO5	Determine the characteristics of different two port networks

Co	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Stren	gth of	corre	lation	s (3-H	igh, 2	: Med	ium, 1:	Low)			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2			1	1	1		1	2	1
CO2	3	3	2	2	2			1	1	1		1	2	1
CO3	3	3	2	2	2			1	1	1		1	2	1
CO4	3	3	2	2	2			1	1	1		1	2	1
CO5	3	3	2	2	2			1	1	1		1	2	1
Average*	3	3	2	2	2			1	1	1		1	2	1
(Rounded														
to nearest														
integer)														

	Syllabus	
Expt.	Contents	Mapped
No.		СО
Ι	Experimental verification of Kirchhoff's voltage and current laws.	CO1
II	Experimental verification of Thevenin's and Norton's theorems.	CO1
III	Experimental verification of Superposition Theorem.	CO1
IV	Experimental verification of Maximum power transfer Theorem.	CO1
V	Measurement of sinusoidal voltage, frequency and power factor using	CO2
	CRO.	
VI	Experimental determination of step response of RL, RC & RLC	CO3
	circuits.	
VII	Experimental determination of time constant of series R-C electric	CO3
	circuits.	
VIII	Experimental determination of frequency response of RLC circuits.	CO3
IX	For the given network function, draw the pole zero diagram and	CO3
	hence obtain the time domain response. Verify the result analytically.	
	$\{Ex: V(s) = 5(s+5) / (S+2) (S+7)\}$	
X	Simulation of a given series resonance circuit.	CO4

XI	Simulation of a given parallel resonant circuits.	CO4
XII	Determination of two port network parameters for a given network.	CO5

Learning Resources

Text Bo	oks
1.	M. E. Van Valkenburg, Network Analysis, III Edition, Pearson Education / PHI
2.	A. Sudhakar and Shyammohan S.Palli, Network Analysis, Tata McGraw Hill
	Publication

Reference Books

- 1. William H Hayt, Jack E Kimmerly and Steven M.Durbin, Engineering Circuit Analysis, Tata McGraw Hill
- 2. A. Chakrabarti, Circuit Theory: Analysis and Synthesis, Dhanpat Rai Publishing Co Pvt Ltd

3. John O. Attia, Electronics and Circuit Analysis using MATLAB, CRC Press

e- Resources & other digital material

- 1. http://vlabs.iitkgp.ernet.in/asnm/
- 2. <u>https://www.youtube.com/playlist?list=PLC7D3EAEFA0CC0420&app=deskto</u> <u>p</u>
- 3. <u>https://personal.utdallas.edu/~rmh072000/EE3101/readfirst.pdf</u>

Course Code	19EC3352	Year	II	Semester	Ι
Course	Program	Branch	ECE	Course Type	Lab
Category	Core				
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous	25	Semester	50	Total Marks	75
Internal		End			
Evaluation		Evaluation			

Course Outcomes

Upon	Upon successful completion of the course, the student will be able to						
CO1	Measure the device small signal parameters of BJT and MOSFET						
CO2	Design, simulate and implement BJT and MOSFET amplifiers for the given						
	specifications.						
CO3	Construct NMOS differential amplifier circuits for the given specifications.						
CO4	Fabricate PCB for multivibrator circuits using BJT.						

Co	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3-High, 2: Medium, 1:Low)													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	3			1	1	1	2	2	2	2
CO2	3	3	2	3	3			1	1	1	2	2	2	2
CO3	3	3	2	3	3			1	1	1	2	2	2	2
CO4	3	3	2	3	3			1	1	1	2	2	2	2
Average* (Rounded to nearest integer)	3	3	2	3	3			1	1	1	2	2	2	2

Syllabus							
Expt. No.	Contents	Mapped CO					
Ι	Voltage-Current Characteristics of BJT / Measurement of scale current & common emitter current gain	CO1					
II	Measurement of small signal parameters (g_m, r_o, r_π, r_e) of BJT at a given operating (Q) point	CO1					
III	Design, Simulate and Implement BJT amplifier and Inverter logic gate	CO1					
IV	Voltage-Current Characteristics of MOSFET / Measurement of threshold voltage	CO1					
V	Measurement of small signal parameters (g_m, r_o, g_{mb}) of MOSFET at a given operating point.	CO1					
VI	Design and simulation of basic NMOS current mirror, cascode NMOS current mirror and current steering circuit	CO2					
VII	Design and Simulation of Common Source Amplifier for Gain, Power dissipation requirements	CO2					
VIII	Design and Simulation of Common Drain Amplifier (Voltage Buffer) for Gain, Output Impedance, Level Shift requirements	CO2					

IX	Analysis and Verification of Basic NMOS Differential Pair for Gain, Input Common Mode Range, Maximum Input differential voltage requirements	CO3
X	Design and Simulation of Differential Amplifier with active current mirror load for gain, power dissipation CMRR requirements.	CO3
XI	Design, Simulation and PCB fabrication of a BJT Multivibrator Circuit	CO4

Learning Resources

Text Books

1. Adel S. Sedra, Kenneth C. Smith, Arun N. Chandorkar, Microelectronic Circuits, 6/e, Oxford University Press, 2013

Reference Books

- 1. Behzad Razavi, Fundamentals of Microelectronics, 2/e, Wiley Student Edition, 2013.
- 2. Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuits Theory, 10/e, Pearson Education, 2009.
- 3. Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2/e, Pearson Education, 2008.

e- Resources & other digital material

- 1. <u>https://www.researchgate.net/publication/314154179_Electronics_Lab_Manual</u>
- 2. <u>http://abexp.aiaiai.dk/electronic_devices_and_circuits_lab_manual_bgpltd.pdf</u>

ENGINEERING MATHEMATICS- IV

(PROBABILITY THEORY AND RANDOM PROCESSES)

Course Code	19BS1402	Year	II	Semester	II
Course	Basic	Branch	ECE	Course Type	Theory
Category	Sciences				
Credits	3	L-T-P	3-0-0	Prerequisites	Engineering
					Mathematics-I
					(19EMA101)
					Engineering
					Mathematics-II
					(19EMA102)
Continuous	30	Semester	70	Total Marks	100
Internal		End			
Evaluation		Evaluation			

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1 Apply the knowledge of probability to solve engineering problems							
CO2	O2 Distinguish various types of noise by using the probability distribution and density						
	functions						
CO3	Evaluate the characteristics of single and multiple random variables						
CO4	Analyze the temporal characteristics of random processes						
CO5	Evaluate the spectral characteristics of noise in communications						

Co	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3-High, 2: Medium, 1:Low)													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	2	1							2	2	
CO2	3	2	1	2	1							2	2	
CO3	3	3	1	2	1							2	2	
CO4	3	3	1	2	1							2	2	
CO5	3	3	1	2	1							2	2	
Average* (Rounded to nearest integer)	3	3	1	2	1							2	2	

	Syllabus						
Unit Contents							
No.		COs					
Ι	Probability: Probability introduced through sets and relative frequency, joint and conditional probability, independent events, combined experiments, Bernoulli trials.	CO1					
II	Random Variable: Introduction, random variable concept, distribution function, density function, the Gaussian random variable, other distribution and density examples, conditional distribution and density functions. Operation on One Random Variable: Introduction, expectation, moments, functions that give moments, transformations of a random variable.	CO2& CO3					

III	Multiple Random Variables Vector random variables, joint distribution and density functions, properties, conditional distribution and density, statistical independence, distribution and density of a sum of random variables, central limit theorem. Expected Value of a Function of Random Variables: Joint moments about the origin, joint central moments, jointly Gaussian random variables - two random variables case, N random variable case.	CO3
IV	Random Process-I: Temporal characteristics - the random process concept, stationary and statistical independence, correlation functions, Gaussian random processes, Poisson random process.	CO4
V	Random Process-II: Spectral characteristics, the power spectrum: Properties, relationship between power spectrum and autocorrelation function, the cross-power density spectrum: Properties, relationship between crosspower spectrum and cross-correlation function	CO5

Learning Resources	
--------------------	--

- Text Books

 1. Peyton Z. Peebles, Probability, Random Variables and Random Signal Principles, 4/e, Tata McGraw Hill, 2002.
 - 2. Athanasios Papoulis, S. Unnikrishna Pillai, Probability, Random Variables and Stochastic Processes, 4/e, Tata McGraw Hill, 2002.

Reference Books

- 1. Simon Haykin, Communication Systems, 4/e, Wiley Student Edition, 2006.
- 2. Henry Stark, John W. Woods, Probability and Random Processes with Application to Signal Processing, 3/e, Pearson Education, 2002.

e- Resources & other digital material

- 1. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%2 0and %20System/TOC-M1.htm
- 2. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%2 0and %20System/Course%20Objective.htm
- 3. <u>http://www.stanford.edu/~boyd.ee102</u>
- 4. <u>http://www.ece.gatech.edu/users/bonnie/book</u>
- 5. <u>http://ocw.mit.edu</u>

	LIF	E SCIENCES FOR	R ENGINE	CERS	
Course	19BS1404	Year	II	Semester	II
Code					
Course	Basic	Branch	ECE	Course Type	Theory
Category	Sciences				-
Credits	2	L-T-P	2-0-0	Prerequisites	Nil
Continuous	30	Semester End	70	Total	100
Internal		Evaluation		Marks	
Evaluation					

	Course Outcomes
After succes	sful completion of the course, the student will be able to
CO1	Apply the principles of biology to create tangible and economically viable
	engineering goods.
CO2	Know and illustrate bio-engineering field.
CO3	Analyse the importance of bioenergetics and apply the knowledge to
	improve the living standards of societies.
CO4	Gain the knowledge in genetic engineering.
CO5	Design and develop new technologies in genetic industrial field.

Contribu	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	9	Stren	gth of	f corr	elatio	ons (3	: Higł	n, 2: N	Mediu	ım, 1:I	Low)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3						2							
CO2	3						2							
CO3	3						2							
CO4	3						2							
CO5	3						2							
Average* (Rounded to nearest integer)	3						2							

	Syllabus						
Unit No.	Contents	Mapped COs					
Ι	Introduction to Biology: Comparison of Biological organisms with	CO1					
	manmade systems- eye and camera, flying bird and aircraft.	CO3					
	Classification of living organisms- Cellular basis of life, differences	CO5					
	between prokaryotes and eukaryotes, classification on the basis of carbon and energy sources						
II	Bio-molecules: Structure and functions of proteins and nucleic	CO1					
	acids, hemoglobin, antibodies. Enzymes-Industrial applications,	CO2					
	Fermentation and its industrial applications.						
III	Bioenergetics and Respiration: Glycolysis and TCA cycle,	CO2					
	Electron transport chain and oxidative phosphorylation, Mechanism	CO3					
	of photosynthesis. Human physiology.						
IV	Genetic Engineering: Mendel's laws, gene mapping, Mitosis and	CO2, CO4					
	Meiosis, Epitasis, single gene disorders in humans. Genetic code	CO5					
V	Recombinant DNA Technology: Recombinant vaccines, transgenic	CO1, CO4					
	microbes, plants and animals. Animal cloning, biosensors, biochips.	CO5					
		•					

Learning Recourses

Text Books

1. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Ed.ltd, 2018.

2. Arthur T Johnson, Biology for Engineers, CRC press, 2011.

Reference Books

1. Alberts et al., The molecular biology of the cell, 6/e, Garland Science, 2014

- 2. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009
- 3. John Enderle and Joseph Bronzino Introduction to Biomedical Engineering, 3/e, 2012

DIGITAL LOGIC DESIGN

Course Code	19EC3401	Year	II	Semester	II
Course	Program	Branch	ECE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks	100
Internal		End			
Evaluation		Evaluation			

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1 Compare the various features of Binary codes.

CO2 Simplify Boolean functions using K-map & implement them using Logic gates

CO3 Design and Realize various Combinational circuits for the given specifications

CO4 Analyze and Design Clocked Sequential circuits

CO5 | Construct Logic gates using CMOS

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2							1	2	1
CO2	3	3	2	2	2							1	2	1
CO3	3	3	2	2	2							1	2	1
CO4	3	3	2	2	3							1	2	1
CO5	3	3	2	2	3							1	2	1
Average* (Rounded to nearest integer)	3	3	2	2	3							1	2	1

Syllabus Unit Contents Mapped CO No. Binary Codes: Signed Binary Numbers, Complements, Binary Codes, CO1 Ι Error detection and correction code, Binary Logic. Boolean Algebra: Basic definitions, Axiomatic definition of Boolean algebra, Basic theorems and properties of Boolean algebra, Boolean functions, Canonical and standard forms, Digital logic gates. Π Simplification of Boolean functions: The map method, Four-variable CO2 map, Five-variable map, Tabulation Method, Product of sums simplification, Don't-care conditions. NAND and NOR implementation, Exclusive-or function. Combinational Logic: Combinational circuits, Analysis procedure, III CO3 Design procedure, Binary Adder- Subtractor, Decoders, Encoders, Multiplexers, De-Multiplexer Memories: Random-access memory, Memory decoding, Read-only memory. IV Synchronous Sequential Logic: Sequential circuits, Latches, Flip-CO4 Flops, Analysis of clocked sequential circuits, State reduction and assignment, Design procedure

1	Registers and Counters: Registers, Shift registers, Ripple counters,	CO5
	Synchronous Counters, Ring counter.	
	Digital Integrated circuits: Special characteristics, Complementary	
	MOS (CMOS), CMOS transmission gate circuits.	

Learning Resources

Text Books
1. Michael D. Ciletti, M. Morris Mano, Digital Design, 4/e. Pearson Education, 2007.
Reference Books

1. ZviKohavi, Switching and Finite Automata Theory, 2/e, Tata McGraw-Hill Education, 2008.

2. John F. Wakerly, Digital Design Principles and Practices, 4/e, Pearson Education, 2008.

3. Frederick J. Hill and Gerald R. Peterson, Introduction to Switching Theory and Logic Design, 3/e, John Willey and Sons, 1981.

4. Charles Roth, Jr., Larry Kinney, Fundamentals of Logic Design, 7/e, Cengage Learning, India, 2013.

e- Resources & other digital material

1. http://www.ece.ubc.ca/~saifz/eece256.html

2. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Guwahati/digital_circuit /frame/index.html

	ELECTROMAGNETIC WAVES							
Course	19EC3402	Year	II	Semester	II			
Code								
Course	Program	Branch	ECE	Course Type	Theory			
Category	Core							
Credits	3	L-T-P	3-0-0	Prerequisites	Engineering Physics (19EPH131); Engineering Mathematics-I (19EMA101) Engineering Mathematics-II (19EMA102)			
Continuous	30	Semester	70	Total Marks	100			
Internal		End						
Evaluation		Evaluation						

	Course Outcomes						
Upon	successful completion of the course, the student will be able to						
CO1	Apply the knowledge of Laws, Concepts and proofs related to Electrostatic Fields						
	and Magnetostatic Fields to solve field problems						
CO2	Distinguish between the static and time-varying fields and derive the						
	corresponding Maxwell's Equations with Boundary Conditions						
CO3	Evaluate wave equations for good Conductors and Dielectrics also develop the						
	power and polarization of waves						
CO4	Analyze the uniform plane wave characteristics for propagation in practical						
	mediums						

Contribution	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3-High, 2: Medium, 1:Low)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1	2			1	1	2	1	2	2	
CO2	3	3	2	1	2			1	1	2	1	2	2	
CO3	3	3	2	1	2			1	1	2	1	2	2	
CO4	3	3	2	1	2			1	1	2	1	2	2	
Average*	3	3	2	1	2			1	1	2	1	2	2	
(Rounded to nearest integer)														

	Syllabus							
Unit	Contents	Mapped						
No.		CO						
Ι	Review of coordinate systems; Electrostatics: Coulomb's Law, Electric Field Intensity, Field due to a line charge, Electric Flux Density, Guass's law, Electric Potential, Potential gradient, energy stored, Laplace's and Poison's equations.	CO1						
II	Magneto-statics: Steady current, Biot-Savart's law, Static magnetic field due to line current, Magnetic flux Density, Ampere's circuital law, Lorentz force equation, Magnetic Vector Potential, energy stored.	C01						

III	Time-varying Fields and Maxwell's Equations: Time varying fields, Faraday's law of electromagnetic induction, Displacement current, Maxwell's equations in point form and integral form, boundary conditions of electromagnetic fields, Polarization, Magnetization.	CO2						
IV	Uniform Plane Wave: Wave equation, Wave propagation in free space, wave propagation in conductor and dielectrics, Poynting Theorem, skin effect, wave polarization, Direction cosines.	CO3						
V	V Plane Waves at Boundaries and in Dispersive Media: Reflection of uniform plane waves by perfect conductor – normal and oblique incidence, standing wave ratio, Reflection and transmission of uniform plane waves by perfect dielectric – normal and oblique incidence.							
Text	Learning Resources							
1.	E. C. Jordan, EM Wayes and Radiating Systems, PHI, 2nd edition, 2007							
2.	2. William H. Hayt, Engineering Electromagnetics, Tata McGraw Hill Publications							

R Shevgaonkar, "Electromagnetic Waves ", Tata McGraw Hill Publications
 Matthew N.O.Sadiku, "Principles of Electromagnetics", Oxford University Press

1. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-013-

Reference Books

e- Resources & other digital material

electromagnetics-and-applications-spring-2009/ 2. https://nptel.ac.in/courses/117/103/117103065/

	ANALOG CIRCUITS									
Course Code	19EC3403	Year	II	Semester	II					
Course Category	Program Core	Branch	ECE	Course Type	Theory					
Credits	3	L-T-P	3-0-0	Prerequisites	Nil					
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100					

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1 Design and analyze feedback amplifiers

CO2 | Design and analyze Power amplifiers and oscillators

CO3 Realize linear and non-linear applications using op-amp

CO4 Design and understand various applications related to filter circuits and IC 555

CO5 Compare the performance of various types of ADC and DAC using Op-Amp

Contr	Contribution of Course Outcomes towards achievement of Program Outcomes &													
		Str	ength	of co	rrelat	ions (3-Hig	h, 2: 1	Mediu	ım, 1:I	Low)			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	3							2	3	2
CO2	3	3	2	2	3							2	3	2
CO3	3	3	2	2	3							2	3	2
CO4	3	3	2	2	3							2	3	2
CO5	3	3	2	2	3							2	3	2
Average*	3	3	2	2	3							2	3	2
(Rounded to														
nearest														
integer)														

	Syllabus	
Unit No.	Contents	Mapped CO
Ι	Feedback Amplifiers: The general feedback structure, properties of	CO1
	negative feedback, basic feedback topologies, the series-shunt feedback	
	amplifier, the series-series feedback amplifier, shunt-shunt and shunt-	
	series feedback amplifiers, determining loop gain.	
Π	Oscillators: Basic principles of sinusoidal oscillators, op amp RC	CO2
	oscillator circuits, LC and crystal oscillators. Power amplifiers:	
	Classification of output stages, class A output stage, class B output	
	stage, class AB output stage, Power Transistors.	
III	Operational Amplifiers: The ideal op amp, the inverting and non-	CO3
	inverting configuration, difference and instrumentation amplifiers,	
	summing, scaling and averaging amplifiers, integrators, differentiators,	
	logarithmic amplifiers, V/I and I/V converters, Comparators and	
	waveform generators.	
IV	IC Timers: Introduction, operating modes of the 555 timer, terminals	CO4
	of the 555 timer, free running mode and applications. Active Filter	
	Design: LPF, HPF, BPF, BEF, all-pass filters. Voltage reference	
	circuits: Power supplies: ripple removal and regulation.	

7	Data Converters: Digital to analog conversion process, voltage output	CO5
	DACs, multiplying DAC, DAC characteristics. Analog to Digital	
	Converters: integrating ADC, successive approximation ADC, Flash	
	converters: Principle of operation, Dual slope ADC, Remote control	
	applications, ADC characteristics.	

Learning Resources

Text Books

- 1. Adel S. Sedra, Kenneth C. Smith, Arun N. Chandorkar, Microelectronic Circuits, 6/e, Oxford University Press, 2013.
- 2. D Choudhury Roy, Shail B. Jain, Linear Integrated Circuits, New Age International, 2003
- 3. Ramakanth Gayakward, Op-Amps and Linear Integrated Circuits, 4/e, Pearson Education, 2007

Reference Books

- 1. Behzad Razavi, Fundamentals of Microelectronics, 2/e, Wiley Student Edition, 2013.
- 2. R.F Coughlin, F.F Driscoll, Op-Amps and Linear Integrated Circuits, 6/e, Pearson Education, 2008.
- 3. Sergio Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata Mc-Graw Hill, 2002.

ANAL	DG COM	MUNIC	ATIONS	

Course Code	19EC3404	Year	II	Semester	II
Course	Program	Branch	ECE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks	100
Internal		End			
Evaluation		Evaluation			

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	Design High Performance AM Radio Receiver System with minimum cost.							
CO2	Analyse Complexity involved in DSB, SSB and VSB modulation and demodulation Techniques							
CO3	Design low cost FM Transmitter and Receiver Systems used for community service.							
CO4	Analyse Noise performance of different Analog modulation Techniques required for specific application							
CO5	Analyse different Pulse modulation Techniques							

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	3	2	2	2					1		1	2	1
CO2	3	3	2	2	2					1		1	2	1
CO3	3	3	2	2	2					1		1	2	1
CO4	3	3	2	2	2					1		1	2	1
CO5	3	3	2	2	2					1		1	2	1
Average* (Rounded to nearest integer)	3	3	2	2	2					1		1	2	1

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	Amplitude modulation: Introduction, Block diagram of communication system, Time domain and Frequency domain description of AM, single tone modulation, power relations in AM waves, Generation of AM waves: square law Modulator, Switching modulator. Detection of AM waves: Square law detector, Envelope	CO1
	detector.AM Radio Broadcasting, The Superheterodyne Receiver	
Π	 DSBSC modulation : Time domain and Frequency domain description of DSBSC waves ,Generation of DSBSC Waves: Balanced modulator, Ring modulator, Coherent detection of DSB-SC Modulated waves: COSTAS Loop, Quadrature carrier multiplexing SSB modulation: Time domain and Frequency domain description of SSB waves, Generation of SSB waves, Demodulation of SSB waves. VSB modulation: Time domain and frequency domain description of VSB modulated waves Generation of VSB Modulated wave, and 	CO2

	Envelope detection of a VSB Wave pulse Carrier. Comparison of AM							
	techniques, Frequency Division Multiplexing							
III	Angle Modulation : Basic concepts of Phase and Frequency							
	Modulation, Frequency modulation, Narrow band FM, wide band FM,							
	Generation of FM waves: Indirect FM, Direct FM, Demodulation of FM	CO3						
	Order). FM Radio Broadcasting, The Super heterodyne Receiver,							
	FM Stereo Multiplexing. Basics of DRM.							
IV	Noise in Analog modulation : Signal to Noise Ratios, AM Receiver							
	model, , Signal to Noise Ratios for Coherent Reception, Noise in DSB							
	Receiver, Noise in SSB Receivers, Noise in AM receivers using	CO4						
	Envelope Detection ,Threshold Effect, FM Receiver model, Noise in							
	FM receiver, FM Threshold effect, Pre-emphasis and De-emphasis in							
	FM.							
V	Digital Representation of Analog Signals: Introduction, The Sampling							
	process, Pulse amplitude modulation and Demodulation, Time							
	Division Multiplexing, Generation and Demodulation of Pulse Width	CO5						
	Modulation and Pulse Position Modulation waves ,Comparison between							
	TDM and FDM							
	Learning Resources							
Text	Books							
1. Ii	ntroduction to Analog and Digital Communication System-Simon Hay	kin, John						
	Viley and Sons, 3rd Ed., 2009.	1 0 1 1 .						
2. F	fundamentals of Communication Systems - John G. Proakis, Masou	d Salehi,						
P	'EARSON, 2nd Ed., 2013							
Refe	rence Books							
1. P	rinciples of Communication Systems – H Taub & D. Schilling, Gautam Sa rd Ed.,2007	he, TMH,						
2. A	analog and Digital Communication System-Sam Shanmugam, John W	viley and						
S	ons,3rd Edition,2009							
e- Re	esources & other digital material							
1. <u>h</u>	ttps://www.youtube.com/playlist?list=PLC7D3EAEFA0CC0420&app=desk	<u>ktop</u>						
2. <u>h</u>	ttps://nptel.ac.in/courses/108/105/108105159/							

Course Code	19MC1401	Year	II	Semester	II
Course	Mandatory	Branch	ECE	Course Type	Theory
Category	course				
Credits	0	L-T-P	3-0-0	Prerequisites	Nil
Continuous	100	Semester	0	Total Marks	100
Internal		End			
Evaluation		Evaluation			

	Course Outcomes						
After s	After successful completion of the course, the student will be able to						
CO1	Develop an awareness and knowledge on natural resource protection.						
CO2	Compile for the better future of environment in India which is based on many						
	positive factors like Biodiversity and ecosystems.						
CO3	Apply knowledge how to manage the harmful pollutants						
CO4	Identify solutions for global environmental problems for sustainable environment.						
CO5	Create awareness among the youth on environmental acts; take part in						
	Environment impact assessment and management plans.						

Co	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (H: High, M: Medium, L:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3						2							
CO2	3						2							
CO3	3						2							
CO4	3						2							
CO5	3						2							
Average*	3						2							
(Rounded														
to nearest														
integer)														

Syllabus						
UNIT	Contents	Mapped				
NO		COs				
Ι	Introduction To Environment And Natural Resources:	CO1				
	Introduction to environment: Definition scope importance need for					
	public awareness. Natural resources: Renewable and non-renewable					
	resources, natural resources and associated problems. Forest					
	resources: Uses, Reasons for over-exploitation, deforestation effects					
	case studies. Water resources: Use and over - utilization of surface					
	and ground water, floods, drought, conflicts over water, dams-					
	benefits and problems. Mineral resources: Uses, environmental					
	effects of extracting and using mineral resources, case studies. Food					
	resources: World food problems, Impacts of overgrazing, effects of					
	modern agriculture, fertilizer-pesticide problems, water logging,					
	salinity, case studies. Energy resources: Growing energy needs, use					
	of renewable and non-renewable energy sources, case studies.					
II	Ecosystems And Biodiversity	CO2				
	Structure components of ecosystem: Biotic and Abiotic components.					
	Functional components of an ecosystem: Food chains, Food webs,					
	Ecological pyramids, Energy flow in the ecosystem,					

gical succession. Biogeochemical cycle: Nitrogen, carbon, horus cycle. rersity: Definition, Levels of biodiversity: genetic, species and tem diversity. Bio-geographical classification of India, Values diversity: consumptive use, productive use, social, ethical, tic and optional values. India as a mega – diversity nation. Hot- of biodiversity. Threats to biodiversity: habitat loss, poaching dlife, man-wildlife conflicts. Conservation of biodiversity: In– d Ex-situ conservation of biodiversity. onmental Pollution and Control onmental Pollution: Definition, causes, effects and control res: Air Pollution, Water pollution, Soil pollution, Marine on, Thermal pollution, Nuclear hazards, Solid waste gement, e-waste, Pollution case studies. Issues and Global Environment Problems and Efforts Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. onmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone tepletion.	CO3
horus cycle. rersity: Definition, Levels of biodiversity: genetic, species and tem diversity. Bio-geographical classification of India, Values diversity: consumptive use, productive use, social, ethical, tic and optional values. India as a mega – diversity nation. Hot- of biodiversity. Threats to biodiversity: habitat loss, poaching dlife, man-wildlife conflicts. Conservation of biodiversity: In– d Ex-situ conservation of biodiversity. onmental Pollution and Control mental Pollution: Definition, causes, effects and control res: Air Pollution, Water pollution, Soil pollution, Marine on, Thermal pollution case studies. Issues and Global Environment Problems and Efforts Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. mental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion. n Population and Environment Legislation	CO3
rersity: Definition, Levels of biodiversity: genetic, species and tem diversity. Bio-geographical classification of India, Values diversity: consumptive use, productive use, social, ethical, tic and optional values. India as a mega – diversity nation. Hot- of biodiversity. Threats to biodiversity: habitat loss, poaching dlife, man-wildlife conflicts. Conservation of biodiversity: In– d Ex-situ conservation of biodiversity. onmental Pollution and Control onmental Pollution: Definition, causes, effects and control res: Air Pollution, Water pollution, Soil pollution, Marine on, Thermal pollution case studies. Issues and Global Environment Problems and Efforts Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. onmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion.	CO3
tem diversity. Bio-geographical classification of India, Values diversity: consumptive use, productive use, social, ethical, tic and optional values. India as a mega – diversity nation. Hot- of biodiversity. Threats to biodiversity: habitat loss, poaching dlife, man-wildlife conflicts. Conservation of biodiversity: In– d Ex-situ conservation of biodiversity. Domental Pollution and Control onmental Pollution: Definition, causes, effects and control res: Air Pollution, Water pollution, Soil pollution, Marine on, Thermal pollution case studies. Issues and Global Environment Problems and Efforts Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. onmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion.	CO3
diversity: consumptive use, productive use, social, ethical, tic and optional values. India as a mega – diversity nation. Hot- of biodiversity. Threats to biodiversity: habitat loss, poaching dlife, man-wildlife conflicts. Conservation of biodiversity: In– d Ex-situ conservation of biodiversity. Inmental Pollution and Control onmental Pollution: Definition, causes, effects and control res: Air Pollution, Water pollution, Soil pollution, Marine on, Thermal pollution, Nuclear hazards, Solid waste gement, e-waste, Pollution case studies. Issues and Global Environment Problems and Efforts Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. onmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion.	CO3 CO4
tic and optional values. India as a mega – diversity nation. Hot- of biodiversity. Threats to biodiversity: habitat loss, poaching dlife, man-wildlife conflicts. Conservation of biodiversity: In– d Ex-situ conservation of biodiversity. Inmental Pollution and Control onmental Pollution: Definition, causes, effects and control res: Air Pollution, Water pollution, Soil pollution, Marine on, Thermal pollution, Nuclear hazards, Solid waste gement, e-waste, Pollution case studies. Issues and Global Environment Problems and Efforts Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. onmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion.	CO3
of biodiversity. Threats to biodiversity: habitat loss, poaching dilife, man-wildlife conflicts. Conservation of biodiversity: In- d Ex-situ conservation of biodiversity. Domental Pollution and Control onmental Pollution: Definition, causes, effects and control res: Air Pollution, Water pollution, Soil pollution, Marine on, Thermal pollution, Nuclear hazards, Solid waste gement, e-waste, Pollution case studies. Issues and Global Environment Problems and Efforts Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. onmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion. n Population and Environment Legislation	CO3 CO4
dlife, man-wildlife conflicts. Conservation of biodiversity: In- d Ex-situ conservation of biodiversity. Domental Pollution and Control onmental Pollution: Definition, causes, effects and control res: Air Pollution, Water pollution, Soil pollution, Marine on, Thermal pollution, Nuclear hazards, Solid waste gement, e-waste, Pollution case studies. Issues and Global Environment Problems and Efforts Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. onmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion.	CO3 CO4
d Ex-situ conservation of biodiversity. Domental Pollution and Control Domental Pollution: Definition, causes, effects and control res: Air Pollution, Water pollution, Soil pollution, Marine on, Thermal pollution, Nuclear hazards, Solid waste gement, e-waste, Pollution case studies. Issues and Global Environment Problems and Efforts Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. Domental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion. Population and Environment Legislation	CO3 CO4
 In the conservation of oronaversely. Insue conservation of oronaversely. Insue conservation and Control Insues and Pollution: Definition, causes, effects and control res: Air Pollution, Water pollution, Soil pollution, Marine on, Thermal pollution, Nuclear hazards, Solid waste gement, e-waste, Pollution case studies. Issues and Global Environment Problems and Efforts Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. Inmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion. In Population and Environment Legislation 	CO3 CO4
 Internal Pollution: Definition, causes, effects and control res: Air Pollution, Water pollution, Soil pollution, Marine on, Thermal pollution, Nuclear hazards, Solid waste gement, e-waste, Pollution case studies. Issues and Global Environment Problems and Efforts Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. onmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion. 	CO4
 Indication Pollution, Values, Checks and Control res: Air Pollution, Water pollution, Soil pollution, Marine on, Thermal pollution, Nuclear hazards, Solid waste gement, e-waste, Pollution case studies. Issues and Global Environment Problems and Efforts Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. Inmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion. Population and Environment Legislation 	CO4
on, Thermal pollution, Nuclear hazards, Solid waste gement, e-waste, Pollution case studies. Issues and Global Environment Problems and Efforts Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. onmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion.	CO4
 Issues and Global Environment Problems and Efforts Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. onmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion. 	CO4
Issues and Global Environment Problems and Efforts Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. onmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion.	CO4
Unsustainable to Sustainable development. Urban problems to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. onmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion.	
to energy. Water conservation, rain water harvesting, hed management, Remote sensing and GIS methods. onmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion.	
hed management, Remote sensing and GIS methods. onmental ethics: Issues and possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion.	
neurona and environment Legislation	
possible solutions. Green building ot, Environmental Impact Assessment Environmental gement Plan, Climate change: global warming, acid rain, ozone lepletion.	
gement Plan, Climate change: global warming, acid rain, ozone lepletion.	
lepletion.	
n Population and Environment Legislation	
	C05
ation growth Environment and human health UIV/AIDS	005
Education Woman and Child Walfara Pole of Information	
plogy in Environment and human health Environment	
ation Air (Prevention and Control of Pollution) Act Water	
ntion and Control of Pollution) Act. Wildlife Protection Act.	
Conservation Act Environmental Protection Act	
Learning Recourses	
a Kaushik and C.P. Kaushik, Text book of environmental studies tional Publisher (2014).	New Age
Barucha. Text book of environmental studies for undergraduate	es courses.
ed by – University Grants Commission, University Press (2005)	,
a Basak, Environmental Studies. Pearson (2009)	
ζS	
sthana and Meera Asthana, A Text book of Environmental S	Studies, S.
(2010).	
perry Solid and Hazardous waste Management, CBS Publisher (2	.016).
infy solid and mazardous waste Management, CDS I donsher (2	
In the solution of the second state of the sec	2 044
	ntion and Control of Pollution) Act. Wildlife Protection Act. Conservation Act. Environmental Protection Act. Learning Recourses A Kaushik and C.P. Kaushik, Text book of environmental studies tional Publisher (2014). Barucha, Text book of environmental studies for undergraduate ed by – University Grants Commission, University Press (2005) ta Basak, Environmental Studies. Pearson (2009) (2010). herry Solid and Hazardous waste Management, CBS Publisher (2014).

LIFE SCIENCES FOR ENGINEERS LAB									
Course Code	19BS1451	Year	II	Semester	II				
Course Category	Basic Sciences	Branch	ECE	Course Type	Lab				
Credits	1	L-T-P	0-0-2	Prerequisites	Nil				
Continuous Internal Evaluation	25	Semester End Evaluation	50	Total Marks	75				

	Course Outcomes					
After	After successful completion of the course, the student will be able to					
CO1 Understand basic facts and concepts in life sciences.						
CO2	Evaluate and explain different processes in industrial applications					
CO3	Summarize the applications of various spheres in life sciences in relevance to					
	future studies					
CO4	Develop the ability to apply the principles of Mendalian laws and acquire problem					
	solving skills.					

Contr	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High 2: Medium 1:Low)													
Strength of correlations (5: fligh, 2: Wethun, 1:Low)														
	POI	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	POI0	POII	PO12	PSOI	PSO2
CO1	3						2							
CO2	3						2							
CO3	3						2							
CO4	3						2							
Average*	3						2							
(Rounded	_													
to nearest														
integer)														

Syllabus						
Expt.	Contents	Mapped				
No		СО				
Ι	Microscopy	CO1,CO3				
II	Dissect & mount different parts of plants using Microscope	CO1,CO3				
III	Estimation of Proteins by using Biuret method	CO1,CO2				
IV	Estimation of enzyme activity.	CO1,CO2				
V	Estimation of chlorophyll content in some selected plants.	CO1,CO3				
VI	Nitrogen Cycle: Estimation of Nitrates /Nitrites in soil by using	CO2,CO3				
	Spectrophotometer					
VII	Mendal's laws	CO1,CO4				
VIII	Solve Problems based on Mapping.	CO2,CO4				

Learning Recourses

Text Books

- 1. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2018.
- 2. Arthur T Johnson, Biology for Engineers, CRC press, 2011.

Reference Books

- 1. Alberts et al., The molecular biology of the cell, 6/e, Garland Science, 2014.
- 2. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.
- 3. John Enderle and Joseph Bronzino Introduction to Biomedical Engineering, 3/e, 2012.

DIGITAL LOGIC DESIGN LAB								
Cour	se Code	19EC3451	Year	II	Semester	II		
Cour	se Category	Program Core	Branch	ECE	Course Type	Lab		
Cred	lits	1.5	L-T-P	0-0-3	Prerequisites	Nil		
Cont	inuous	25	Semester End	50	Total Marks	75		
Inter	nal Evaluation		Evaluation					
		Cou	arse Outcomes					
Upon	successful compl	etion of the course	e, the student will b	e able to				
CO1	Verify Truth tabl	les of different Log	cic Gates, Simplify &	k Implem	ent Boolean Fund	ctions in		
	Standard forms							
CO2	Realize & Imple	ment different Con	nbinational circuits					
CO3	Verify excitation	tables of different	Flip-flops					
CO4	Design & Verify	counters using dif	ferent Flip-flops					
(Contribution of C	Course Outcomes	towards achieveme	nt of Pro	ogram Outcomes	&		
l	Str	ength of correlation	ons (3-High, 2: Me	dium, 1:l	Low)			

			0) C							
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2							1	2	1
CO2	3	3	2	2	2							1	2	1
CO3	3	3	2	2	2							1	2	1
CO4	3	3	2	2	3							1	2	1
Average* (Rounded to nearest integer)	3	3	2	2	3							1	2	1

Syllabus						
Expt.	Contents					
INO.		CO				
1	Verification of Truth Tables of Logic gates and implementation of Basic gates using Universal Gates	CO1				
II	Implementation of the given Boolean functions using logic gates in both SOP and POS form.	CO1				
III	Simplification of the given Boolean function using K-map and implement using logic gates.	CO1				
IV	Realization and verification of Full adder and Full Subtractor using logic gates.	CO2				
V	Implementation of the given function using decoder and logic gates	CO2				
VI	Implementation of the given function using decoder and logic gates.	CO2				
VII	Verification of State Tables of SR, D, JK and T-Flip-Flops	CO3				
VIII	Design and Verify the operation of 4-bit Synchronous Counter using T flip-flops.	CO4				
IX	Design and Verify the operation of 4-bit and Mod-N Ripple Counters using JK flip-flops	CO4				
X	Mini Project	CO4				
Learning Resources

Text Books

1. Michael D. Ciletti, M. Morris Mano, Digital Design, 4/e. Pearson Education, 2007.

Reference Books

1. Zvi Kohavi, Switching and Finite Automata Theory, 2/e, Tata McGraw-Hill Education, 2008.

2. John F. Wakerly, Digital Design Principles and Practices, 4/e, Pearson Education, 2008.

3. Frederick J. Hill & Gerald R. Peterson, Introduction to Switching Theory and Logic Design 3/e, J.Willey& Sons, 1981.

4. Charles Roth, Jr., Larry Kinney, Fundamentals of Logic Design, 7/e, Cengage Learning, India, 2013.

e- Resources & other digital material

1. http://www.ece.ubc.ca/~saifz/eece256.html

2. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Guwahati/digital_circuit /frame/index.html

ANALOG CIRCUITS LAB														
Course Code	19EC3452	Year	II	Semester	Π									
Course	Program	Branch	ECE	Course Type	Lab									
Category	Core													
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil									
Continuous	25	Semester	50	Total Marks	75									
Internal		End												
Evaluation		Evaluation												

---Course Outcomes

Upon successful completion of the course, the student will be able to

CO1 Design and analyze feedback amplifiers

CO2 Design and analyze Power amplifiers and oscillators

CO3 Realize linear and non-linear applications using op-amp

CO4 Design and understand various applications related to filter circuits and IC 555

CO5 Compare the performance of various types of ADC and DAC using Op-Amp

Contribution of Course Outcomes towards achievement of Program Outcomes &	
Strength of correlations (3-High, 2: Medium, 1:Low)	

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	3							2	3	2
CO2	3	3	2	2	3							2	3	2
CO3	3	3	2	2	3							2	3	2
CO4	3	3	2	2	3							2	3	2
CO5	3	3	2	2	3							2	3	2
Average* (Rounded to nearest integer)	3	3	2	2	3							2	3	2

	Syllabus	
Expt. No.	Contents	Mapped CO
I	Feedback Amplifier - calculation of gain, input resistance, output resistance with and without feedback, frequency response characteristic.	CO1
II	Design and Implementation of Two stage RC Coupled amplifier for given voltage, current gain & bandwidth.	CO1
III	RC phase-shift, Wien bridge, Colpitts Oscillators	CO2
IV	Class A power amplifier.	CO2
V	Class B Push - pull power amplifier.	CO2
VI	Tuned voltage amplifier.	CO2
VII	Analysis and simulation of RC differentiator/integrator	CO3
VIII	Operational Amplifier Circuits (Adders, Integrators, Differentiators, Filters	CO3
IX	Op amp based AM/FM Modulator/Demodulator Circuits.	CO3
Х	Bistable/Monstable/Astable multivibrators with 555 timer and using 741	CO4
XI	Active Filter Design (LPF AND BANDPASS types)	CO4
XII	Data Converters	CO5

Learning Resources

Text Books

- 1. Adel S. Sedra, Kenneth C. Smith, Arun N. Chandorkar, Microelectronic Circuits, 6/e, Oxford University Press, 2013.
- 2. D Choudhury Roy, Shail B. Jain, Linear Integrated Circuits, New Age International, 2003
- 3. Ramakanth Gayakward, Op-Amps and Linear Integrated Circuits, 4/e, Pearson Education, 2007

Reference Books

- 1. Behzad Razavi, Fundamentals of Microelectronics, 2/e, Wiley Student Edition, 2013.
- 2. R.F Coughlin, F.F Driscoll, Op-Amps and Linear Integrated Circuits, 6/e, Pearson Education, 2008.
- 3. Sergio Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata Mc-Graw Hill, 2002.

				ANA	LOC	G CO	MM	UNIC	CATI	IONS	LAB				
Course	Code		1	9EC3	453		Yea	r			Π	Sen	nester		Π
Course	Catego	ory	P	rogra	m Co	re	Bra	nch			ECE	Cou	urse Ty	уре	Lab
Credits	0		1	.5			L-T	-P			0-0-3	Pre	requis	ites	Nil
Continu	ous In	terna	al 2	5			Sem	ester	End		50	Tot	al Ma	rks	75
Evaluati	ion						Eva	luatio	n						
						Co	urse (Dutco	mes						
Upon	succes	sful c	compl	etion	of the	cours	se, the	stude	ent wi	ll be a	able to				
<u>CO1</u>	Ana	lyze d	liffere	nt par	amete	ers of	Analo	og mo	dulati	ion teo	chnique	es			
C02	CO2 Analyze different parameters of pulse modulation techniques CO3 Study various parameters of Radio Receivers.														
CO3Study various parameters of Radio Receivers.CO4Design and Construct Radio Receivers on their own															
Contribution of Course Outcomes towards achievement of Program Outcomes &															
Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H: High, M: Medium, L:Low)															
Strength of correlations (H: High, M: Medium, L:Low)CosPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02CO1222222221111															
CO	1	3	3	2	2	2					1		1	2	1
	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
	3 3 2 2 2 1 1 2 1 4 3 3 2 2 2 1 1 2 1													1	
Averag	4 5 3 2 2 2 ge* 0 0 0 0 0													1	
(Rounde nearest in	Led to 3 3 2 2 2 1 1 2 1 Integer) 3 3 2 2 2 1 1 2 1												1		
							Svll	ahuc							
Expt.							Syn	abus						Ma	nned
No.						(Cont	ents						(CO
Ι	Amp	litud	e Mo	dulat	ion a	nd D	emod	ulatio	on us	ing N	IATL	ĄВ		C	201
II	DSB	SC N	Iodul	ation	and	Demo	odula	tion u	ising	MAT	LAB			C	201
III	SSB	mod	ulatio	n and	l Den	nodul	ation	using	g MA	TLA	В			C	201
IV	Frequ	uency	y moc	lulati	on an	d De	modu	latio	n usir	ng M.	ATLA	В		C	201
V	Spec	tral A	Analy	sis of	AM	and H	FM us	sing S	Spect	rum A	Analyz	zer		C	201
VI	Pre-e	mph	asis a	nd D	e-em	phasi	S							C	201
VII	Time	e Div	ision	multi	plexi	ng an	d de-	mult	iplex	ing u	sing M	IATLA	AB	C	201
VIII	Pulse	e amp	<u>olitud</u>	e moo	lulati	ion ar	nd De	modu	<u>ilatio</u>	n usi	ng MA	TLA	B	0	202
	Pulse	Pos	ition I	modu	latio	n and	Dem	odula	ation	using	g MAT	LAB			202
	AGU	$\frac{1}{2}$	racte		$\frac{1}{100}$		Kece	iver i	ising	MA	LAB				203
	Phase	e Loc	Cond Con	op us	ing N stion	$\frac{A \Pi}{A \Pi}$		tio D	ocoiv	or					$\frac{103}{104}$
	Desi	gii all		iisuu	20011	OI I'N		K	LUCIV	CI					.04
						Lear	ning	Reso	urces						
Text Boo	ks														
1. Introdu	uction	to A	nalog	and	Digita	al Co	mmur	nicatio	on Sy	stem-	Simon	Hayk	in, Joh	n Wil	ey and
Sons, 3rd	Ed., 20	009. S. of (⁷ omm	unico	tion (System	na I	ohn (] Dro	alzia	Magor	d Sala	hi DE	٨٩٢٥	N 2nd
Ed., 2013	2. Fundamentals of Communication Systems - John G. Proakis, Masoud Salehi, PEARSON, 2nd Ed., 2013														
Reference Books															
1. Principles of Communication Systems – H Taub & D. Schilling, Gautam Sahe, TMH, 3rd Ed.,2007															
2. Analo	g and	Digi	ital C	omm	unicat	tion S	Syster	n-San	n Sha	anmug	gam, J	ohn V	Viley	and So	ons,3rd
Edition,2	009														

III-YEAR

INTERNET OF THINGS															
Co	urse	rse Code 19ES1501 Year III Semester													
Co	urse	9	Er	iginee	ring	Br	anch		All	Brand	ches	Cours	е Туре	e Th	eory
Cat	tega	ory	Sc	ience	s								• •		
Cre	edit	S	2			L-'	Т-Р		2-0-	-0		Prere	quisite	s Ni	1
Co	ntin	uous	30			Se	meste	r	70		: 10	0			
Int	ern	al				En	d								
Eva	alua	tion:				Ev	aluati	ion:							
 Course Outcomes															
Course Outcomes Upon successful completion of the course, the student will be able to															
Upon successful completion of the course, the student will be able to														world	$(\mathbf{I},2)$
$\frac{cor}{cor}$	CO1 Summarize the genesis and impact of IoT applications, architectures in real wo													world	L. (L2).
$\frac{CO2}{CO3}$		onstruc	t sim	nle an	nlicat	ions u	sing A	Ig sind Ardmin	(L)	3)		neet in			\mathbf{K} (L3).
<u>CO4</u>	In	terpret	diffe	erent	protoc	cols a	ind se	elect v	which	prote	ocol ca	in be	used for	oras	pecific
	ap	plicatio	on (L	2).	F					F					F
CO5	Id	entify a	and d	evelop	o a sol	ution	for a	given	applic	cation	using A	APIs (I			
-															
	Μ	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
C0)s	* - AV6	PO2	e valu	e indi	PO5	COURS	e cori	PO8	on stro	ength v	With m	PO12	PO PSO1	PSO2
CO)1	2	102	2	2	2	3	3	100	10)	1010	1011	2	3	3
C0	<u>)2</u>)3	2	3	2	2	2	3	3					2	3	3
CO)4	3	3	3	3	5	5	2					2	3	3
CO Avera)5 396*	3	3	3	3	3	3	2	2			3	3	3	3
(Roun	ided	3	3	3	3	3	3	3	2			3	3	3	3
to nea integ	rest ger)														
							S	yllabı	us						
Unit	,						Co	ntents	5					M	apped
No.		~ .					<u> </u>				~			CO)
I	(Jenesis	of I	loT, I	oT ar	d Di	gitizat	tion, I	oT Ir	npact	, Conv	ergenc	e of I	r cc)1
	8	ind lo'	Г, <u>Г</u>	or C	haller	iges,	ToT	Netw	ork A	Archit	ecture	and	Design	ı,	
		Jrivers	Be	ehind	Nev	v N	etwor	K A	rchite	ctures	s, Co	mparir	ig lo'	ľ	
	I	Archite	cture	s, A S	sımpl	ified	IOT A	rchite	cture	, The	Core I	of Fu	nctiona	น	
		stack, I	$\frac{OT}{OT}$	vata N	lanag	emen	t and	Comp	ute S	tack.					
11		smart	Obje	cts:]	the T	hings	s in I	loT, S	senso	rs, A	ctuator	rs, and	Smai	rt CC) 2
		Jbjects	, Sen	isor N	etwoi	ĸs, C	onnec	eting S	smart	Obje	cts, Co	mmun	ication	S	
	(riteria	, 10'f	Acce	ss Te	chnol	ogies.			11	~		<u> </u>		22
	I	mbeda	ied	Com	outing	g Bas	sics,	Micro	oconti	ollers	, Sys	tem-or	n-Chips	s, CC)3
		L'hoosii	ng Y	our P	latfor	m, A	rduinc	o, Dev	velopi	ng or	the A	rduino	o, Som	e	
	1	Notes o	n the	Hard	lware,	Ope	nness						_		
IV	0	Commu	inica	tion	in	the	IoI	: I	nterne	et F	rincip	les,	Interne	et CO)4
	0	Commu	inica	tions:	An	Over	view,	IP,	TCP,	, The	IP F	rotoco	ol Suit	e	
	(TCP/II	P), U	DP,	IP Ac	ldress	ses, D	NS, S	Static	IP A	Address	s Assig	gnmen	t,	
	I	Dynam	ic IP	Add	ress	Assig	nmen	t, IPv	6, M	AC A	Addres	ses, T	CP an	d	
	J	JDP I	Ports	, An	Exa	mple	: HT	TP I	Ports,	Oth	er Co	mmon	Ports	5,	

ſ		Application Layer Protocols HTTP, HTTPS: Encrypted HTTP, Other	
		Application Layer Protocols.	
Γ	V	Prototyping Online Components: Getting Started with an API, Mashing	CO5
		Up APIs, Scraping, Legalities, Writing a New API, Clockodillo,	
		Security, Implementing the API, Using Curl to Test, Going Further,	
		Real-Time Reactions, Polling, Comet, Other Protocols, MQ Telemetry	
		Transport, Extensible Messaging and Presence Protocol, Constrained	
		Application Protocol.	

Learning Resources

Text Books

- 1. Adrian McEwen, Hakim Cassimally Designing the Internet of Thing Wiley Publications, 2012.
- 2. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry,"IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things, 1stEdition, Pearson Education (Cisco Press Indian Reprint). (ISBN: 978-9386873743)

Reference Books

1. Arshdeep Bahga, Vijay Madisetti - Internet of Things: A Hands-On Approach, Universities Press, 2014

2. Srinivasa K G, Internet of Things, CENGAGE Leaning India, 2017

			Al	NTEN	INA A	NAL	YSIS	ANI) SYN	THE	SIS			
Cou	rse		19EC3	501	Ye	ear		III			Semes	ter	Ι	
Cou	rse]	Progra	m	Br	anch		EC	E		Cours	e Type	The	ory
Cate	gory		Core											
Cred	lits		3		L-	T-P		3-0	-0		Prerec	quisites	EM	W
Con	tinuou mal	S.	30		Se	meste	er	70			Total Monke		100	
Eval	mai Nation					iu zaliiat	ion				WIATKS			
Lvu	uuuion	•			11,	uiuu								
	Course Outcomes													
Upon	Upon successful completion of the course, the student will be able to													
CO1	1 Interpret the fundamental parameters of antennas in order to construct a wireless													
~~	communication link. L2													
$\frac{CO2}{CO2}$	Analyse various wire antennas and establish their mathematical relations. L4													
COS	Develop antennas for different frequency ranges and analyse radiation properties L3													
CO4	L3 Construct and analyse antenna arrays and synthesize the arrays L4													
001	Construct and analyse antenna arrays and synthesize the arrays L4													
N	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
	*	Avera	age val	ue ind	licates	s cour	se cor	relati	on stre	ength v	vith ma	pped P	0	DCO
COs	PO 1	PO 2	PO 3	РО 4	РО 5	РО 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C01	3	2	2	2	1	1					1	1	2	3
CO2 CO3	3	3	3	$\frac{2}{2}$	$\frac{2}{3}$	1					1	1	$\frac{2}{2}$	3
CO4	3	3	3	3	3	1					1	1	2	3
Average* (Rounde														
d to nearest	3	3	3	3	3	1					1	1	2	3
integer)														
						6								
Unit	Conte	nte				2	synao	us					Ma	nned
No.	Cont												CO	ppcu
Ι	Anter	nna 1	Basics:	Basi	c An	tenna	Para	neters	s – P	atterns	, Bean	n Area,	CO	1
	Radia	tion	Intens	ity, l	Beam	Effi	cienc	y, Di	irectiv	ity-Ga	in-Res	olution,		
	Anten	na A	pertur	es, Ef	fectiv	e Hei	ight.]	Fields	from	Oscil	lating	Dipole,		
	Field Potor	LON Dad D	es, Fro	ont -	to-ba	CK R	atio, becro	Anter m	ina T	neorer	ns, Ka	diation,		
П	Thin	Line	ar Wi	re An	tenns	$\frac{1}{1}$ $\frac{1}$	Radiati	ion fr	om Sr	nall F	lectric	Dinole	CO	1.
	Quart	er Wa	ave Mo	onopol	le and	Half	Wave	Dipo	le - C	Current	Distril	outions.	CO	2
	Field	Com	ponent	s, Rad	iated	Powe	r, Rac	liation	n Resi	stance	, Beam	Width,		
	Direct	ivity	, Effe	ctive	Area	and	Effe	ctive	Heigl	nt, Na	atural	Current		
	Distri	butio	ns, Fa	r Fie	lds_a	ind F	Pattern	is of	Thin	Line	ar Cei	ntre-fed		
	Anten	nas	of Di	ifferen	t Le	engths	Lo	op A	Intenn	as -	Small	Loop,		
	Comp	ariso	n of F	ar Fie	Ids of	I Sma	all Lo	op an	a Sho	rt Dıp tativa	ole, Ka Treatm	adiation		
	RESIS	ance	s anu L	mecu	vittes	01.20	nan L	oops (Quan	lative	rreatin	ciii <i>)</i> .		

III	VHF, UHF and Microwave Antennas - I: Arrays with Parasitic	CO1,
	Elements, Yagi-Uda Array, Folded Dipoles and their Characteristics,	CO3
	Helical Antennas – Helical Geometry, Helix Modes, Practical Design	
	Considerations for Monofilar Helical Antenna in Axial and Normal	
	Modes Horn Antennas – Types Fermat's Principle Optimum Horns	
	Design Considerations of Pyramidal Horns	
117	VIIE LILE and Microways Antonnog II. Microstrin Antonnos	CO1
1 V	VHF, UHF and Microwave Antennas - II . Microsurp Antennas -	CO1,
	Introduction, Features, Advantages and Limitations, Rectangular Patch	003
	Antennas – Geometry and Parameters, Characteristics of Microstrip	
	Antennas. Reflector Antennas – Introduction, Flat Sheet and Corner	
	Reflectors, Paraboloidal Reflectors – Geometry, Pattern characteristics,	
	Feed Methods, Reflector Types – Related Features.	
V	Antenna Arrays: Point Sources – Definition, Patterns, arrays of 2	CO1,
	Isotropic Sources - Different Cases, Principle of Pattern Multiplication,	CO3
	Uniform Linear Arrays – Broadside Arrays, Endfire Arrays, EFA with	CO4
	Increased Directivity, Derivation of their Characteristics and	
	Comparison, BSAs with Non-uniform Amplitude Distributions -	
	General Considerations and Binomial Arrays.	
	Antenna Synthesis: Introduction, Continuous Sources, Schelkunoff	
	Polynomial Method and Fourier transform Method.	
		11
Loom	ning Deservees	
Tear	ning Kesources	
lext	BOOKS	1.0
1.	Antennas and Wave Propagation – J.D. Kraus, R.J. Marhefka and Ahmac	1 S.
	Khan,	
	TMH, New Delhi, 4th ed., (Special Indian Edition), 2010.	
2.	Antenna Theory - C.A. Balanis, John Wiley & Sons, 3rd Ed., 2005.	
Refer	rence Books	
1.	Electromagnetic Waves and Radiating Systems – E.C. Jordan and K.G. B PHI, 2 nd ed., 2000.	almain,
2.	Antennas and Wave Propagation – K.D. Prasad, Satya Prakashan, Tech In Publications, New Delhi, 2001	ndia
2	Antonna Engineering Handbook John Laonidas Valakis 3rd adition 20	07
<u> </u>	Antenna Engineering Handbook – John Leondas Volakis, 510 edition, 20	07
e- Ke		
1. <u>ntt</u>	ss://npte1.ac.1n/courses/108/105/108105114/	
<u>2. htt</u>	ps://nptel.ac.in/courses/108/105/108105114/	

DIGITAL COMMUNICATIONS

Course Code	19EC4501A	Year	III	Semester	Ι
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective - I				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks	100
Internal		End			
Evaluation		Evaluation			

	Course Outcomes								
Upon successful completion of the course, the student will be able to									
CO1	Construct different Baseband Digital Systems. (L3)								
CO2	Analyze different parameters of digital Pass-band modulation Techniques. (L4)								
CO3	Analyze different parameters in Spread Spectrum modulation Techniques. (L4)								
CO4	Develop various Source Coding techniques.(L3)								
CO5	Build Coding sequences for different error correcting codes.(L3)								

Contribution Strength of co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2:Medium, 1:Low)													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2					1		2	2	1
CO2	3	3	3	2	2					1		2	2	1
CO3	3	3	2	2	2					1		2	2	1
CO4	3	3	3	2	2					1		2	2	1
CO5	3	3	2	2	2					1		2	2	1
Average*	3	3	3	2	2					1		2	2	1
(Rounded to nearest integer)														

Syllabus						
Unit No.	Contents	Mapped CO				
I	 Waveform Coding Techniques: Introduction, Pulse code modulation (PCM), Delta modulation, Adaptive delta modulation, Differential Pulse Code Modulation (DPCM), output Signal to quantization Noise ratio in PCM and DM systems. Base band Pulse Transmission: Inter symbol interference, Nyquist's Criterion for Distortion less Baseband Binary Transmission, Correlative coding. 	CO1				
Π	 Signal Space Analysis: Introduction, Gram Schmidt Orthogonalization procedure, Geometric interpretation of signals, Coherent detection of signals in noise, Probability of error, Correlation receiver, Matched filter, Properties. Digital Modulation Techniques: Coherent Phase Shift Keying, Coherent Frequency Shift Keying, Quadrature Phase Shift Keying, Non Coherent Frequency Shift Keying, Differential Phase Shift keying. 	CO2				

Ш	Spread-Spectrum Modulation: Introduction, Pseudo-Noise Sequences,	
	Direct sequence spread spectrum, Processing Gain, Probability of Error,	
	Antijam Characteristics, Frequency- Hop Spread spectrum, Slow frequency	CO3
	Hopping, Fast Frequency Hopping	000
V	Information Theory: Introduction, information, Entropy, Source Coding	
	Theorem, Data Compaction, Shannon-Fano coding, Huffman coding,	
	Lempel-Ziv Coding, Discrete memory less channels, Mutual information,	
	channel coding Theorem, Differential Entropy, Information Capacity	CO4
	Theorem and its implications.	001
/	Error Control Coding: Introduction, Linear Block codes, Syndrome and its	
	Properties, Syndrome Decoding, Cyclic Codes, Encoder, Syndrome	
	calculator, Convolutional Codes, Code Tree, Trellis and State Diagram.	CO5

Learning Resources

Text Books

1. Digital communications, Simon Haykin, John Wiley, 4th Edition 2010

2. Digital Communications–John Proakis, TMH, 3rd Edition, 1995

Reference Books

- 1. Digital and Analog Communication Systems Sam Shanmugam, John Wiley, 1979
- 2. Communication systems-AB Carlson, McGraw-Hill,4th Edition, 2002
- 3. Principles of Communication Systems-H.Taub , D.Schilling, TMH, 3rd Edition, 2008
- 4. Digital communications -B Sklar, Pearson Education, 2nd Edition, 2013

e-Resources & other digital material

1. http://www.ece.utah.edu/~npatwari/ece5520/lectureAll.pdf

2. http://nptel.iitm.ac.in/syllabus/syllabus.php?subjectId=117105077

DSP PROCESSORS AND APPLICATIONS

Course Code	19EC4501B	Year	III	Semester	Ι
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective - I				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks	100
Internal		End			
Evaluation		Evaluation			

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1 Develop the Computational Accuracies in DSP implementation. (L3)							
CO2	Demonstrate Architectures for different DSP devices. (L2)						
CO3	Evaluate different pipelining concepts. (L5)						
CO4	Classify different DSP Processors.(L4)						
CO5	Interpret different DSP algorithms. (L2)						

Contribution of (Contribution of Course Out comes towards achievement of Program Outcomes &													
Strength of correlations (3: High, 2: Medium, 1: Low)														
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2							2	2	1
CO2	3	3	3	2	2							2	2	1
CO3	3	3	2	2	2							2	2	1
CO4	3	3	3	2	2							2	2	1
CO5	3	3	2	2	2							2	2	1
Average*	3	3	3	2	2							2	2	1
(Rounded to nearest														
integer)														

-	-	-	

Syllabus					
Unit No.	Contents	Mapped CO			
Ι	Computational Accuracy in DSP Implementations: Number formats for signals and coefficients in DSP systems, dynamic range and precision, sources of error in DSP implementations, A/D conversion errors, DSP computational errors, D/A conversion errors, compensating filter.	CO1			
II	Architectures for Programmable DSP Devices: Basic architectural features, DSP computational building blocks, bus architecture and memory, data addressing capabilities, address generation unit, programmability and program execution, speed issues, features for external interfacing.	CO2			
III	Execution Control and Pipelining: Hardware looping, interrupts, stacks, relative branch support, pipelining and performance, pipeline depth, interlocking, branching effects, interrupt effects, pipeline programming models	CO3			

Programmable Digital Signal Processors: Commercial digital signal							
processing devices, data addressing modes of TMS320C54XX							
typrocessors, memory space, program control, instructions and	CO4						
programming, on-chip peripherals, interrupts and pipeline operation of							
TMS320C54XX processors.							
V Implementations of Basic DSP Algorithms & Interfacing: The Q-notation,							
FIR Filters, IIR Filters, interpolation filters, decimation filters, Computation							
of the signal spectrum, Memory space organization, External bus interfacing							
signals, Memory interface, Parallel I/O interface, Programmed I/O, Interrupts							
and I/O, Direct memory access (DMA).							
• •							
Learning							
Resources							

Text Books

- 1. Avtar Singh, S.Srinivasan, Digital Signal Processing, Cengage Learning, 2004.
- 2. Phil Lapsley, DSP Processor Fundamentals: Architectures and Features, IEEE Press, 1997.

Reference Books

- 1. Sen M.Kuo, Real-Time Digital Signal Processing, 2/e, Wiley Student Edition, 2010.
- 2. B.Venkata Ramani, M.Bhaskar, Digital Signal Processors, Architecture,
- Programming and Applications, Tata McGraw Hill, 2004.
- 3. 3. Jonatham Stein, Digital Signal Processing, Wiley Student Edition, 2005

DIGITAL SYSTEM DESIGN

Course Code	19EC4501C	Year	III	Semester	Ι	
Course	Program	Branch	ECE	Course Type	Theory	
Category	Elective-I					
Credits	3	L-T-P	3-0-0	Prerequisites	Digital	Logic
					Design	
Continuous	30	Semester	70	Total Marks:	100	
Internal		End				
Evaluation:		Evaluation:				

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1 Understand Memories and Programmable Logic Devices (L2).

CO2 Analyze algorithmic state machines and asynchronous sequential circuits (L4).

CO3 | Design logic gates using different logic families(L5)

CO4 | Impart the basics of functional verification languages (L2)

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note:1- Weak correlation2-Medium correlation3-Strong correlation* - Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO 1	PSO 2
CO1	3		3		3					3			3	
CO2	3		3		3					3			3	
CO3	3	3								3			3	
CO4	3	3								3			3	
Average* (Rounded to nearest integer)	3	3	3	3	3					3			3	

	Syllabus						
Unit	Contents	Mapped					
No.		CO					
Ι	MEMORY AND PROGRAMMABLE LOGIC: Introduction,	CO1					
	Random Access Memory, Memory Decoding, Error Detection and						
	Correction, Read-Only Memory, Programmable Logic Array,						
	Programmable Array Logic.						
II	DESIGN AT THE REGISTER TRANSFER LEVEL: Introduction,	CO2					
	Register Transfer Level (RTL) Notation, RTL Descriptions,						
	Algorithmic State Machines(ASMs), Design Example (ASMD						
	CHART), HDL Description of Design Example, Sequential Binary						
	Multiplier, Control Logic, HDL Description of Binary Multiplier,						
	Design with Multiplexers, Race-Free Design, Latch-Free Design.						
III	ASYNCHRONOUS SEQUENTIAL LOGIC: Introduction,	CO2					
	Analysis Procedure, Circuits with Latches, Design Procedure,						
	Reduction of state and flow tables, Hazards, Design Example.						

IV	DIGITAL INTEGRATED CIRCUITS: Introduction, Special	CO3
	Characteristics, Bipolar-Transistor Characteristics, RTL and DTL	
	circuits, Transistor-Transistor Logic, Emitter Coupled Logic,	
	Metal-Oxide Semiconductor, Complementary MOS, CMOS	
	Transmission Gate circuits.	
V	SYSTEM VERILOG INTRODUCTION: System Verilog	CO4
	Origins-The Accellera System Verilog Standard, Donations to	
	System Verilog, Key System Verilog enhancements for hardware	
	design.	

Learning Resources

Text Books

1. Digital Design-M. Morris Mano, Michael D.Ciletti- 6th Edition, Pearson Publishers

2. System Verilog for Design- Stuart Sutherland, Simon Davidmann, Peter Flake Reference Books

1. Digital Design- John F.Wakerly- 4th Edition, PHI

TRANSMISSION LINES AND WAVEGUIDES

Course Code	19EC4501D	Year	III	Semester	Ι
Course	Programme	Branch	ECE	Course Type	Theory
Category	Elective-I				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	O1 Interpret the parameters of different transmission lines for various application							
	(L2)							
CO2	Develop transmission lines for applications in different frequency ranges (L3)							
CO3	Analyse transmission line parameters using different tools (L4)							
CO4	Analyse rectangular waveguides and cavity resonators for EM wave propagation							
	(L4)							

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation					2-Medium correlation				3-Strong correlation					
* -	* - Average value indicates course correlation strength with mapped PO													
COs	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS0										PSO2			
CO1	3	2	2	3	1								1	2
CO2	2	3	3	2	1								2	2
CO3	3	3	1	2	2								2	2
CO4	2	2	2	3	2								3	2
Average* (Rounded to nearest integer)	3	3	2	3	2								2	2

	Syllabus					
Unit	Contents	Mapped				
No.		CO				
Ι	Basics of Transmission Lines: Concept and definition, Different kinds	CO1				
	of transmission lines, Applications, Equivalent circuit, Primary					
	constants- R, L, C and G, Secondary constants – Propagation constant					
	and Characteristic Impedance, General transmission line equations.					
	Attenuation and phase constant. Wavelength, phase velocity and group					
	velocity. Time domain transmission line equations. The lossless					
	transmission line, The infinite long transmission line, The distortion less					
	transmission line and condition for distortion less ness and minimum					
	attenuation, The low resistance transmission line. Loading, Types of					
	loading, Losses.					
II	Finite Transmission Lines: The load reflection coefficient, Standing	CO2				
	Wave Ratio, Line impedance, Generalized reflection coefficient, The					
	lossless terminated transmission line, The lossless matched transmission					
	line, The lossless shorted transmission line, The lossless open					
	transmission line, The lossless resistively loaded transmission line.					
	Power relations on a general transmission line.					

II	UHF Lines : UHF lines as circuit elements: $\lambda/4$, $\lambda/2$, $\lambda/8$ lines, Smith	CO2,				
	Chart: Construction of smith chart, Smith chart as impedance chart,	CO3				
	smith chart as admittance chart, Problems using smith chart. Impedance					
	matching- Single stub with applications, Quarter wave transformer.					
IV	Waveguides: Introduction, Rectangular Waveguides-Transverse	CO4				
	Electric (TE) and Transverse Magnetic (TM) mode analysis - Field					
	expressions, Characteristic equation, Cut-off frequency, Phase velocity,					
	Group velocity, Attenuation and Phase constants, Wavelength and					
	Impedance. Filter characteristics, Dominant and degenerate modes,					
	Mode dispersion, Power transmission and Power loss expressions.					
	Cavities: Rectangular Cavity Resonators-Dominant modes and Recent Encourage of factor Types of coupling and Coupling					
	coefficients					
V	Strip Lines: Introduction Microstrip Lines, characteristic impedance	CO1				
•	Losses and Quality factor Parallel Strip Lines- distributed parameters	COI				
	characteristic impedance attenuation losses. Coplanar Strip Lines					
	Shielded Strip Lines.					
	Learning Resources					
Te	Text Books					
1.	1. Engineering Electromagnetics, Nathan Ida, Springer International, 2nd Edition 2008.					
2.	Microwave Devices and Circuits - Samuel Y. Liao, Pearson Education, 3rd E	Edition,				
	2003.					

Reference Books

- 1. Electromagnetic Waves and Radiating Systems, E.C. Jordan and K.G. Balmain, PHI, 2nd Edition, 2009
- 2. 2. Annapurna Das, Sisir K Das, "Microwave Engineering", 2nd edition, 2006, Tata McGraw Hill.

e- Resources & other digital material

- $1. \ \underline{http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-\%20Guwahati/em/index.htm}$
- 2. <u>http://nptel.iitm.ac.in/video.php?subjectId=117101056</u>
- http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Transmission %20Lines %20and%20EM%20Waves/TOC.htm
- 4. http://www.mike-willis.com/Tutorial/PF2.htm

COMPUTER ORGANIZATION AND DESIGN

Course Code	19EC4501E	Year	III	Semester	Ι
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective-1				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	CO1 Know the functional unit of the processor such as the register file and arithmetic						
	logical unit and with the basic of system topic (L2)						
CO2	Outline the sequence of instruction execution, concept of pipelining, and modes of						
	data transfer. Analyse the CPU design including the RISC/CISC architectures (L3)						
CO3	Demonstrate the basic knowledge of I/O devices and interfacing of I/O devices.						
	(L2)						
CO4	Analyse various issues related to memory hierarchy (L3)						

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

* - Average	value indicates cours	se correlation strength	with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	РО	PSO	PSO
000		- 0-	1.00		100	100	- 0.	100		0	1	12	1	2
CO1	3	3	3										3	
CO2	3	3	3										3	
CO3	3	3	3										3	
CO4	3	3	3										3	
Average*														
(Rounded to	2	2	2										2	
nearest	5	5	5										5	
integer)														

Unit	Contents	Mapped
No.		CO
Ι	Register Transfer and Micro operations: Register transfer	CO1
	language, register transfer, bus and memory transfer, arithmetic	
	micro operations, logic micro operations, shift micro operations,	
	arithmetic logic shift unit.	
II	Computer Description: Instruction codes, computer registers,	CO2
	computer instructions, timing and control, instruction cycle,	
	memory-reference instructions, input-output and interrupt.	
III	Micro programmed Control: Control memory, address	CO2, CO3
	sequencing. Central Processing Unit: General register organization,	
	stack organization, addressing modes, reduced instruction set	
	computer (RISC).	

IV	Input-Output Organization: Peripheral devices, input-output	CO1,CO3				
	interface, modes of data transfer, direct memory access.					
V	Memory Organization: Memory hierarchy, main memory, cache	CO1, CO4				
	memory, virtual memory.					
	Learning Resources					
Text B	Books					
1.	Morris Mano, Computer System Architecture, 3/e, Pearson Education,	2000.				
Refere	ence Books					
1.	William Stallings, Computer Organization and Architecture, 6	/e, Pearson				
	Education Asia, 2000.					
2.	David A. Patterson, John L. Hennessy, Computer Organization and	Design: The				
	hardware / software interface, 3/e, Morgan Kaufmann, 2002.					
3.	John P. Hayes, Computer Architecture and Organization, 3/e, M	cGraw-Hill,				
	1998.					
e-Res	ources & other digital material					
1.	http://nptel.iitm.ac.in/courses/Webcourse-contents/IITKANPUR/Comp	p				
	Architecture/page1.htm					
2.	http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT20Guwahati/cor	np_org_arc/				
	web/index.htm					
3.	http://williamstallings.com/COA5e.html					

WIRELESS SENSOR NETWORKS AND IOT

Course Code	19EC4501F	Year	III	Semester	Ι
Course	Elective -I	Branch	ECE	Course Type	Theory
Category					
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester End	70	Total Marks:	100
Internal		Evaluation:			
Evaluation:					

Course Outcomes

- -

Upon successful completion of the course, the student will be able to										
CO1	Analyse various WSN of Architectures, Protocols, and IOT Network Architecture and									
	Design, (L4).									
CO2	Analyse various WSN of Architectures, Protocols. (L4).									
CO3	Design and Analyse IOT Network Architectures (L5).									
CO4	Evaluate and Designing protocols for Wireless Networks and IOT Network									
	Architectures (L5).									
CO5	Design protocols for Ad Hoc Wireless Networks (1.5).									

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2		3		2			2	2	2	3
CO2	3	3	2	2		3		2			2	2	2	3
CO3	3	3	2	2		3		2			2	2	2	3
CO4	3	3	2	2		3		2			2	2	2	3
CO5	3	3	2	2		3		2			2	2	2	3
Average* (Rounded to nearest integer)	3	3	2	2		3		2			2	2	2	3

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	Introduction: Key definitions of sensor networks, Advantages of	CO1 ,CO4
	sensor Networks, Unique constraints an challenges, Driving	
	Applications, Enabling Technologies for Wireless Sensor Networks.	
II	Architectures: Single-Node Architecture - Hardware Components,	CO1,CO2
	Energy Consumption of Sensor Nodes, Operating Systems and	,CO4
	Execution Environments, Optimisation Goals and Figures of Merit,	
	Physical Layer and Transceiver Design Considerations, Personal area	
	networks (PANs), hidden node and exposed node problem,	
	Topologies of PANs, MANETs, WANETs	
III	Protocols: Issues in Designing MAC protocol for Ad Hoc Wireless	CO1,CO2,
	Networks, Design goals of a MAC Protocol for Ad Hoc Wireless	CO4,CO5
	Networks and Classifications of MAC Protocols. Issues in Designing	
	a Routing Protocol for Ad Hoc Wireless Networks, Classification of	
	Routing Protocols	

_			
	IV	Genesis of IoT, IoT and Digitization, Connected Roadways, Connected Factory, Smart Connected Buildings, Smart creatures, Convergence of IT and OT IoT Challenges	CO1,CO3, CO4
F	V	Int Network Architecture and Design Int Architectural Drivers. The	CO1 CO3
	v	oneM2M IoT Standardized Architecture The IoT World Forum	CO1, CO3,
		(IoTWE) Standardized Architecture, The 101 world Forum	04
		(101 WF) Standardized Architecture, Things. Sensors and Analytics	
		Layer, Communications Network Layer, Applications and Analytics	
		Layer, 101 Data Management and Compute Stack, Edge, Fog, and	
L		Cloud computing	
		Learning Resources	
	Text	Books	
	1. Ho	ger Karl & Andreas Willig, "Protocols And Architectures for Wireless S	Sensor
	Netwo	prks" John Wiley, 2005	
	2 Ear	ug Zhao & Leonidas I. Guibas "Wireless Sensor Networks" An Informat	tion
	Proce	ssing Approach", Elsevier, 2007.	.1011
	3. IoT	Fundamentals Networking Technologies, Protocols, and Use Cases for	the Internet
	of Thi	ngs by David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Jerome He	nry, Robert
	Barto	n by Cisco Press, 2017	
	Refer	ence Books	
	1. Rag	ghavendra, Cauligi S, Sivalingam, Krishna M., Zanti Taieb, Wireless Ser	nsor
	Netwo	ork, Springer 1/e, 2004 (ISBN: 978, 4020, 7883, 5).	
	2. Ian	F. Akyildiz and Mehmet Can Vuran, Wireless Sensor Networks, John V	Viley and
	Sond	Ltd, Publication, 2010	5
	e- Res	sources & other digital material	
	1.http	s://www.ipwea.org/HigherLogic/System/DownloadDocumentFile.ashx?	DocumentF
	ileKe	<u>y=e0619c58-f639-080a-86c2-055ae9c8af4d</u>	
	2.http	://www.infocobuild.com/education/audio-video-courses/computer-	
	scienc	e/IntroductionToIoT-IIT-Kharagpur/lecture-18.html	

DIGITAL SIGNAL PROCESSING

Course Code	19EC3502	Year	III	Semester	Ι
Course	Program	Branch	ECE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Signals and
					Systems
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

Course Outcomes

Upon	Upon successful completion of the course, the student will be able to						
CO1	Interpret discrete-time signals and systems using Z-transform, DFT & FFT (L2).						
CO2	Build IIR systems in Direct, Cascade and Parallel form structures (L3).						
CO3	Apply FFT algorithms for various signal processing operations (L3).						
CO4	Analyse frequency response and impulse response of discrete-time LTI systems (L4).						
CO5	Design IIR and FIR digital filters for the given specifications (L5).						

Maj	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
	Note	: 1- W	eak c	orrela	tion	2-Mec	lium c	correla	ntion	3-Stro	ong con	rrelatio	on		
	* _	- Avera	age va	lue inc	licates	course	e corre	lation	streng	th with	mappe	ed PO			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C O1	3	3	2	2	2							1	2	1	
202	3	3	3	2	2							1	2) PSO2 1 1	

CO2	3	3	3	2	2				1	2	1
CO3	3	3	2	2	2				1	2	1
CO4	3	3	3	2	2				1	2	1
CO5	3	3	2	2	2				1	2	1
Average* (Rounded to nearest integer)	3	3	2	2	2				1	2	1

	Syllabus			
Unit	Contents	Mapped CO		
No.				
Ι	Transform Analysis of Discrete time LTI Systems: Frequency			
	response of LTI systems, System functions of LTI systems	CO1, CO2,		
	characterized by linear constant coefficient difference equations:	CO4		
	Stability, Causality, Impulse response for rational system			
	functions, Structures for IIR Discrete-Time Systems: Direct,			
	Cascade and Parallel forms.			
II	The Discrete Fourier Transform (DFT): Introduction to			
	Discrete Fourier Transform, Computation of DFT, Properties of	CO1, CO4		
	DFT, Circular convolution, Linear convolution using DFT,			
	Overlap-add method, Overlap-save method.			
III	Fast Fourier Transform (FFT): Introduction, Radix-2			
	Decimation-in-time FFT algorithm, Radix-2 Decimation-in-	CO1, CO3		
	frequency FFT algorithm, Inverse DFT using FFT algorithms.			

IV Decie		
digital approx Butter Invaria	of IIR Digital Filters: Design of analog prototypes from filter specifications using Butterworth and Chebyshev imations, Design of IIR filters from analog filters: worth filter and Chebyshev filter design using Impulse ance Method, Bilinear Transformation Method.	CO1, CO4, CO5
V Design genera Windo and Ka	of FIR Digital Filters: Linear discrete time systems with lized linear phase, Design of linear phase FIR filters using w functions (Rectangular, Hamming, Hanning, Blackman liser), Frequency Sampling technique.	CO1, CO4, CO5
	Learning Resources	
1.J.G.ProalAlgorithm2.FundameSons, 200	is and D.G.Manolakis, Digital Signal Processing: Principles, ns and Applications, 4/e, Pearson Education, 2007. Intals of Digital Signal Processing - Lonnie C Ludeman, 13	John Wiley &
Reference Bo	oks	
 A.V.Opp Hall of Ir Digital S Mc Graw 	enheim, R.W.Schafer, Discrete-Time Signal Processing, 3/e, l dia, 2009. Ignal Processing "A – Computer Based Approach" - Sanjit Hill 2nd Edition, 2003	Prentice K Mitra, Tata
e- Resources	& other digital material	
1. http://ww 2. http://ww 3. http://ww 4. http://c	w.nptel.iitm.ac.in/ w.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.ht w.ece.cmu.edu/~ee791 obweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.h	<u>ml</u> ıtml

	CONT	ROL SYSTEM	S ENGIN	EERING	
Course	19EC3503	Year	III	Semester	Ι
Code					
Course	Program	Branch	ECE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			
		Course Ou	tcomes		
Upon successf	ful completion	of the course, the	student w	vill be able to	
CO1 Classif	y control system	ms and represent	in various	s models (L2)	
CO2 Apply	standard test si	gnals to a system	to determ	nine their characteri	stics (L3)
CO3 Make	use of stability	concepts to obtai	n the desi	red characteristics ((L3)
COL D /				1 . •	

CO4 Determine the characteristics of a linear control system using various time and frequency domain tools (L5)

CO5 Examine the system behaviour using various stability analysis techniques (L4)

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

11/01	age v	arue n	luicat			JIICIU	non st	rengu	II WILLI	mapp				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2			1	1	1		1	2	1
CO2	3	3	2	2	2			1	1	1		1	2	1
CO3	3	3	2	2	2			1	1	1		1	2	1
CO4	3	3	2	2	2			1	1	1		1	2	1
CO5	3	3	2	2	2			1	1	1		1	2	1
Average* (Rounded to nearest integer)	3	3	2	2	2			1	1	1		1	2	1

	Syllabus	
Unit No.	Contents	Mapped CO
I	Introduction: Concepts of control systems. Examples of control systems, classification of control systems, Block diagram algebra, Representation by Signal flow graph. Reduction using Mason's gain formula. Feedback Characteristics, Effects of feedback. Mathematical modelling of systems – Electrical, mechanical translational and rotational systems.	CO1
II	Time Domain Analysis: Standard test signals, Time response of first and second order systems with standard input signals, Time domain specifications, steady state error and error constants. Effects of P, PI, PD and PID Controllers.	CO2, CO3

	Stability Analysis in S-Domain: Concept of stability, Routh	CO3,CO4
III	Hurwitz criterion. Construction of Root locus. Effects of adding	,CO5
	poles and zeros to open loop transfer function on the root loci.	, ,
IV	Frequency Response Analysis: Correlation between time and frequency responses. Determination of frequency domain specifications, Gain margin and Phase margin -Stability Analysis from Bode Plots, Polar plots and Nyquist plots.	CO3CO4, CO5
V	State variable analysis: State, State variables, State variable representation, State variable form from Transfer function (Diagonal form), transfer function from State variable form, State transition matrix, properties of state transition matrix, Controllability and Observability.	CO1

Learning Resources

1. M.Gopal, "Control Systems Engineering", 3/e, Wiley Eastern Ltd., TMH, 2008

2. Benjamin C.Kuo, "Automatic Control Systems", 7/e, Prentice Hall of India, 1997.

Reference Books

- 1. Ogata, "Modern Control Engineering", 2/e, Prentice Hall of India., 2011
- 2. R.C. Sukla, "Control Systems", 3/e, Dhanpatrai and Sons, 1998
- 3. Control Systems Engg., Nise-John wiley, 3rd Edition 2000

e- Resources & other digital material

1. <u>https://nptel.ac.in/courses/108/106/108106098/</u>

2. https://freevideolectures.com/course/2337/control-engineering

DATABASE MANAGEMENT SYSTEMS

Course Code	19CS2501A	Year	III	Semester	Ι
Course Category	IDE-1	Branch	-	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal		Semester En			
Evaluation :	30	Evaluation:	70	Total Marks:	100

	Course Outcomes							
Upon	Blooms Taxonomy Level							
CO1	Understand the basic concepts of database management systems	L2						
CO2	Understand normalization techniques with simple examples.	L2						
CO3	Apply SQL commands to create tables for a given database application	L3						
CO4	Apply ER Model concepts to draw ER Diagrams for a given database application and make an effective report.	L3						

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H: High, M: Medium, L:Low)
* - Average value indicates course correlation strength with mapped PO

1110142	Trendge varae maleades course contenation strength with mapped 1 o													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO
													1	2
CO1	3													
CO2	3													
CO3	3													
CO4	3								3	3				
Average* (Rounded to nearest integer)	3								3	3				

	SYLLABUS							
Unit		Mapped						
No	Contents	CO						
	Introduction to Databases: Characteristics of the Database							
	Approach, Advantages of using the DBMS Approach, A Brief History							
	of Database Applications.	CO1						
Ι	Overview of Database Languages and Architectures: Data Models,							
	Schemas and Instances, Three-Schema Architecture and Data							
	Independence, Database Languages and Interfaces, Database System							
	environment, Centralized and Client-Server Architecture for DBMS.							
	Relational Model: The Relational Model Concepts, Relational Model							
	Constraints and Relational Database Schemas.	CO^{2}						
	SQL: Data Definition, Constraints, Basic Queries and Updates,	005						
	Views(Virtual Tables) in SQL							

	Conceptual Data Modeling : High-Level Conceptual Data Models				
	for Database Design, A Sample Database Application, Entity Types,				
тт	Entity Sets, Attributes and Keys, Relationship Types, Relationship	CO4			
111	Sets, Roles, and Structural Constraints, Weak Entity Types.				
	ER-Diagrams: Refining the ER Design, ER Diagrams, Naming				
	Conventions and Design Issues				
	Database Design Theory: Functional Dependencies, Normal forms				
IV	based on Primary Keys, Second and Third Normal Forms, Boyce-	CO2			
	Codd Normal Form.				
	Transaction Processing: Introduction, Transaction and System				
	Concepts, Desirable Properties of Transactions.				
v	Introduction to Protocols for Concurrency Control in Databases:	CO1			
	Two-Phase Locking Techniques for Concurrency Control - Types of				
	Locks and System Lock Tables.				

	Learning Resources						
Text b	ooks						
1.	DATABASE	SYSTEMS	Models,	Languages,	Design	and	Application
	Programming,	Ramez Elmas	sri, Shamka	ant B.Navathe	, 6th Editi	on, Pe	arson.
Refere	ences						
1.	Data base Ma	nagement Sy	stems, Rag	ghurama Kris	hnan, Joh	annes	Gehrke, 3rd

- Edition, TMH.
- Data base System Concepts, Abraham Silberschatz, Henry F Korth, S.Sudarshan, 5th Edition, McGraw Hill.

QUANTITATIVE TECHNIQUES FOR MANAGEMENT

Course Code	19HS2501A	Year	III	Semester	I
Course Category	IDE-I	Branch	ECE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal	30	Semester End	70	Total	100
Evaluation:		Evaluation		Marks:	

Course Outcomes

Upon sı	Upon successful completion of the course, the student will be able to -						
CO1	Understand the basic concepts for solutions to business problems (L2)						
CO2	Apply the analytical techniques in business transactions that would help in						
	making effective business decisions (L3)						
CO3	Analyze problems in business transactions that would help in making effective						
	business (L4)						
CO4	Apply the least square technique to find the equation of the curve. (L3)						
CO5	Determine the equation of the curve from the given data. (L4)						
CO6	Apply the various methods to find the deviations and submit a report (L3)						

Con	tribut	ion of	Cours	se Out	comes	towa	rds ac	hieven	nent o	f Prog	ram O	utcom	es &	
		St	rengtl	h of co	orrelat	tions (.	3-Higł	1, 2: M	Iediun	n, 1:Lo	w)			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1													2	
CO2	3												2	
CO3		3											2	
CO4	3												2	

CO5		3				2	2		2	
Average* (Rounded to nearest integer)	3	3				2	2		2	

	SYLLABUS	
Unit No.	Contents	Mapped CO
Ι	Introduction to Statistics: Meaning, Definition, Functions, Importance, Limitations of Statistics, Collection of Primary and Secondary Data.	
II	Measures of Central Tendency: Definition, Objectives, Characteristics and Techniques: Mean Median, Mode, Geometric Mean and Harmonic Mean.	CO1 CO2
III	Measures of dispersion : Definition, Objectives, Characteristics and Techniques: Range, Quartile Deviation, Mean Deviation, Standard Deviation and Coefficient of Variation.	CO1,CO2, CO3
IV	Measures of Skewness & Kurtosis: Definition, types of skewness, types of kurtosis, Karl-Pearson's Co-efficient, Bowley's Co-efficient, Kelly Co-efficient, Calculation of Raw Moments and Central Moments	
V	Curve Fitting: Method of least squares, straight line, parabola, exponential curve, power curve	CO1,CO4, CO5

Learning Resources

Text Books:

1. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan Chand & Sons Publications, 2012.

2. Dr.T.K.V. Iyengar, Dr.B.Krishna Gandhi, S. Ranganatham, Dr. M.V.S.S.N. Prasad, "Probability & Statistics", Publications: S.Chand, 4th Revised Edition, 2012.

Reference Books:

- 1. S. Ross, a First Course in Probability, Pearson Education India, 2002.
- 2. Miller and Freunds, Probability and Statistics for Engineers, 7/e, Pearson, 2008.

e- Resources & other digital material:

- 1. <u>www.nptel</u>videos.com/mathematics/(Math Lectures from MIT, Stanford, IIT'S
- 2. nptel.ac.in/courses/111/106/111106150/
- 3. nptel.ac.in/courses/111105035

		OOP with C++	F		
Course Code	19IT2501A	Year	III	Semester	Ι
Course Category	IDE-1	Branch	-	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	C Language
Continuous Internal		Semester End			
Evaluation :	30	Evaluation:	70	Total Marks:	100

	Course Outcomes							
Upon	Upon Successful completion of course, the student will be able to							
CO1	Illustrate the fundamental programming concepts in C++	L2						
CO2	Demonstrate the concepts of Object Oriented Programming	L2						
CO3	Outline the concepts of polymorphism and Exception handling in C++	L2						
CO4	Make use of OOP concepts to develop C++ programs.	L3						

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of
correlations (H: High, M: Medium, L:Low)
* - Average value indicates course correlation strength with mapped PO

	- Average value indicates course correlation strength with mapped FO													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2					1	1				2	2
CO2	2	2	2					1	1				2	2
CO3	2	2	2					1	1				2	2
CO4	2	2	2					1	1				2	2
Average* (Rounded to nearest integer)	2	2	2					1	1				2	2

	Syllabus					
Unit No	Contents	Mapped CO				
I	 Introduction to C++: Difference between C and C++, Evaluation of C++, Programming Paradigms, Key concepts of OOP, Advantages of OOP. Declarations: Tokens, Variable declaration and initialization, Data types in C++, Operators in C++, Scope access operator, Name Space, Memory management operators, Comments. Decision Statements : Introduction, The if statement, Multiple ifs, Nested if-else, else-if ladder, unconditional control transfer statements, the switch statement 	CO1, CO2				
II	 Control Loop Structures : Introduction, What is loop, The for loop, the while loop, The do-while loop Functions in C++: Introduction, Parts of a function, Passing arguments, Inline functions, Function overloading Input and Output in C++: Streams in C++ and Stream Classes, Pre-defined streams. 	CO1, CO2				

III	Classes and Objects: Introduction, Structure in C, Classes in C++, declaring Objects, Access specifiers and their scope, Defining member functions, Characteristics of member functions, Outside member function as inline, Rules for inline functions, Static member variable, static member functions, friend functions. Constructors and Destructors: Introduction, Constructors and destructors, Constructors with default arguments, Parameterized constructor, Overloading constructors, Array of objects using constructors, Constructors with default arguments Operator Overloading: Introduction, The keyword operator, Overloading unary operators, Overloading binary operator.	CO2, CO4
IV	 Inheritance: Introduction, Reusability, Access Specifies and Simple inheritance, Types of inheritance, Single, Multiple, Hierarchical, Hybrid, Multipath inheritances, Virtual base classes, program on simple inheritance Pointers: Introduction, Features of pointers, Pointer Declaration, void pointer, wild pointer, The this pointer, Pointers to derived class and base class 	CO2, CO4
v	Binding and Polymorphism and Virtual Functions:Introduction, Binding in C++, Pointer to base class and derivedclass objects, Virtual functions, pure virtual functions, Abstractclasses.Exception Handling: Introduction, Principles of exceptionhandling, the keywords try, throw and catch, Multiple catchstatements, Re-throwing an exception.	CO3

Learning Recourses							
Text Books							
1. Programming in C++, Second Edition, by Ashok N Kamthane, Pearson Education.							
References							
1. C++ How to Program, Dietel and Dietel, Prentice Hal.							
2. C++ The Complete Reference, 5th Edition, by Herbert Schildt, TMH.							
E-Recourses and other Digital Material							
1 http://www.ophiophic.com							

- 1. http://www.cplusplus.com
- 2. https://www.w3schools.com/cpp/

	COMPUTATIONAL METHODS							
Course Code	19ME2501A	Year	III	Semester	Ι			
Course Category	IDE-I	Branch	ECE	Course Type	Theory			
Credits	3	L-T-P	3-0-0	Prerequisites	Nil			
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100			

	Course Outcomes
	After successful completion of the course, the student will be able to
CO1	Solve System of equations using direct and iterative methods
CO2	Solve Boundary and characteristic Value Problems
CO3	Approximate linear and nonlinear curve using regression analysis
CO4	Find a numerical solution to partial differential equations
CO5	Apply finite difference scheme to solve parabolic and hyperbolic partial differential equations

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)

			0			(0	,		,	/			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2										2	2	
CO2	3	2										2	2	
CO3	3	2										2	2	
CO4	3	2										2	2	
CO5	3	2										2	2	
Average* (Rounded to nearest integer)	3	2										2	2	

	SYLLABUS	
Unit No.	Contents	Mapped CO
Ι	Introduction to numerical methods applied to engineering problems: Examples, solving Sets of equations– Matrix notation– Determinants and inversion– Iterative methods–Relaxation methods– Systems of non-linear equations.	CO1
II	Boundary value problems and characteristic value problems: Shooting method– Solution through a set of equations –Derivative boundary conditions– Characteristic value problems.	CO2
III	Curve fitting and approximation of functions: Least square approximation fitting of non- linear curves by least squares –regression analysis- multiple linear regression, non-linear regression.	CO3
IV	Numerical solutions of partial differential equations: Laplace's equations – Representations as a difference equation – Iterative methods for Laplace's equations – Poisson equation – Examples – Derivative boundary conditions – Irregular and non – rectangular grid.	CO4

V	Parabolic partial differential equations: Explicit method- Crank-	
	Nicolson method- Derivative boundary condition-Stability and	
	convergence criteria. Hyperbolic partial differential equations:	COS
	Solving wave equation by finite differences- stability of numerical	COS
	method-method of characteristics-wave equation in two space	
	dimensions.	

Learning Resources

Text Book(s)

- 1. Steven C.Chapra, Raymond P.Canale, "Numerical Methods for Engineers", Tata Mc- Graw hill,, Fifth edition.
- 2. Curtis F.Gerald, Partick.O.Wheatley, "Applied numerical analysis" Pearson Education –Sixth Edition.2002

Reference Book(s)

- 1. Ward cheney & David Kincaid "Numerical mathematics and computing" Brooks/ cole publishing company 1999, fourth edition.
- 2.Riley K.F.M.P.Hobson & Bence S.J, "mathematical methods for physics and engineering" Cambridge university press, 1999.

e- Resources & other digital material

- 1. https://www.nptel.ac.in/courses/111/107/111107105/
- 2. https://www.nptel.ac.in/courses/111/105/111105041/
- 3. https://www.nptel.ac.in/courses/111/106/111106112/
- 4. https://www.nptel.ac.in/courses/111/105/111105090/

BIOTECHNOLOGY AND SOCIETY

Course Code	19ES5501A	Year	III	Semester	Ι
Course Category	Open Elective I	Branch	-	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes								
Upon su	Upon successful completion of the course, the student will be able to								
CO1	Understanding the basic concepts of advanced and emerging issues in								
	biotechnology (L2)								
CO2	Analyze, and evaluate social and ethical issues in the conduct of biological								
	research and application of biological knowledge (L4)								
CO3	Apply knowledge and analytical approaches in several major domains of the								
	biological sciences that reflects a breadth and depth of understanding (L3)								
CO4	Analyze the scientific method by formulating hypotheses, proposing testable								
	predictions and then testing to reach supportable conclusions about biological								
	processes and systems, and articulate the relevance of modern biology to								
	society (L4)								
CO5	Apply responsibilities to promote societal health and safety, upholding the trust								
	given to the profession by the society (L3)								

Contri	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3					3		3						
CO3	3					3								
CO4						3								
CO5						3	3							
Average*	3					3	3	3						
(Rounded														
to nearest														
integer)														

	Contents	mapped
NO		CO
Ι	History of Biotechnology, Genes (basic concepts), Genetic	CO1
	engineering, Tools for manipulation of genes (introduction to	CO2
	recombinant DNA technology), Vectors and expression systems	
	(introduction)	
II	Intellectual property rights (concepts related to drugs, genes and	CO1
	genomes) Recombinant DNA Debates, Biotechnology and	CO2
	Business, Patenting Life, Genetically Modified Foods: Risk,	
	Regulation, and Our Food	

III	Freezing, Banking, Crossing, Eugenics, The Human Genome	CO2
	Project, Genetic Testing, Disability, and Discrimination, Bioethics	CO3
	and Medicine, From the Pill to IVF, Cloning, Stem Cells.	
IV	Drugs and Designer Bodies, Biotechnology and Race, Bio	CO3
	prospecting and Bio colonialism	CO4
V	Vaccines, Gene therapy, Clinical trials, Synthetic Biology and	CO4
	Bioterrorism, Use of bio fertilisers and bio pesticides for	CO5
	organic farming	

Learning Resources

Text books

 Biotechnology and Society: An introduction. Hallam Stevens. University of Chicago Press. 2016. ISBN 022604615X, 9780226046150

References

1. W. Godbey, an Introduction to Biotechnology, The Science, Technology and Medical Applications, 1/e, Woodhead Publishing, 2014.

2. J.M. Walker and R. Rapley, Molecular Biology and Biotechnology, 5/e, Royal society of chemistry, 2009.

3. B.R.Glick, J.J.Pasternak, C.L.Patten. Molecular Biotechnology.ASM Press. 2009. ISBN-10:1555814980, ISBN-13: 978-1555814984s

ELECTRICAL SAFETY

Course Code	19ES5501B	Year	III	Semester	Ι
Course Category	Open Elective I	Branch	-	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal	20	Semester End	70	Total Manlag	100
Evaluation :	50	Evaluation:	70	i otai marks:	100

	Course Outcomes
Upon s	uccessful completion of the course, the student will be able to
CO1	Understand the Indian power sector organization and Electricity rules, electrical safety in residential, commercial, agriculture, hazardous areas and use of fire extinguishers.(L2)
CO2	Outline the electrical safety during installation, testing and commissioning procedure.(L2)
CO3	Make use of specification of electrical plants and classification of safety equipment for various hazardous locations.(L3)
CO4	Distinguish various fire extinguishers and their classification.(L4)

Contrib	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2
CO1	3		2		1	2		2			1		2	1
CO2	3		2		1	2		2			1		2	1
CO3	3		2		1	2		2			1		2	1
CO4	3		2		1	2		2			1		2	1
Average* (Rounded to nearest integer)	3		2		1	2		2			1		2	1

	Syllabus	
Unit No	Contents	Mapped CO
I	Indian Electricity Rules & Regulations: Power sector organization and their roles; significance of IE rules & IE acts; general safety requirements: Span, conductor configuration, spacing and clearing, sag, erection, hazards of electricity	CO1,
П	Electrical Safety in Residential, Commercial and Agricultural Installations: Wiring and fitting –Domestic appliances –water tap giving shock –shock from wet wall –fan firing shock –multi-storied building – Temporary installations –Agricultural pump installation – Do's and Don'ts for safety in the use of domestic electrical appliances.	CO1
III	Electrical Safety during Installation, Testing and Commissioning, Operation and Maintenance: Preliminary preparations –safe sequence –risk of plant and equipment –safety documentation –field quality and safety personal protective equipment –safety clearance notice –safety precautions – safeguards for operators –safety.	CO2
IV	Electrical Safety in Hazardous Areas: Hazardous zones –class 0,1 and 2 – spark, flashovers and corona discharge and functional requirements – Specifications of electrical plants, equipments for hazardous locations – Classification of equipment enclosure for various hazardous gases and vapours –classification of equipment/enclosure for hazardous locations	CO1, CO3,
----	--	--------------
V	Fire Extinguishers : Fundamentals of fire - initiation of fires, types; extinguishing techniques, prevention of fire, types of fire extinguishers, fire detection and alarm system; CO2 and Halogen gas schemes; foam schemes.	CO1, CO4

Learning Resources

Text books

1. Rao, S. and Saluja, H.L., "Electrical Safety, Fire Safety Engineering and Safety Management", Khanna Publishers, 1988.

References

- 1. Cooper. W.F, "Electrical Safety Engineering", Newness-Butterworth Company, 1978.
- 2. John Codick, "Electrical safety hand book", McGraw Hill Inc., New Delhi, 2000.
- 3. Nagrath, I.J. and Kothari, D.P., "Power System Engineering", Tata McGraw Hill, 1998.
- 4. Wadhwa, C.L., "Electric Power Systems", New Age International, 2004.

FUNDAMENTALS OF CYBER LAW

Course Code	19ES5501C	Year	III	Semester	Ι
Course Category	Open Elective I	Branch	-	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal	20	Semester End	70	Total Manlar	100
Evaluation :	50	Evaluation:	70	Total Marks:	100

Course Outcomes					
Upon	successful completion of the course, the student will be able to				
CO1	Understand the basic concepts of Section 80 of IT Act 2000, Cyber Crime, Computer Crime, Internet Theft/Fraud, Goods and Services.	L2			
CO2	Demonstrate the basic concepts of Cognizable and Non-Cognizable Offences, Hacking, Teenage Web Vandals, Prevalence and Victimology, Consumer Protection Act.	L3			
CO3	Analyze the concepts of Arrest for "About to Commit" an Offence Under the IT Act, A tribute to Draco, Cyber Fraud, Computer as Commodities, Consumer Complaint.	L4			
CO4	Explain the concepts of Arrest, But No Punishment, Cyber Cheating, Theft of Intellectual Property, Restrictive and Unfair Trade practices	L4			

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

correlati	correlations (cristalssianidary 21 moderately risinght)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2	2	3					2	2
CO2						2	2	3					2	2
CO3						2	2	3					2	2
CO4						2	2	3					2	2
Average* (Rounded to nearest integer)						2	2	3					2	2

	Syllabus	
Unit		Mapped
No	Contents	CO
I	The IT Act, 2000:A Critique: Crimes in Millennium, Section 80 of the IT Act, 2000-AWeapon or a Farce?, Forgetting the Line between Cognizable and Non-Cognizable Offences, Arrest for "About to Commit" an Offence Under the IT Act, A tribute to Draco, Arrest, But No Punishment	CO1, CO2, CO3, CO4
п	Cyber Crime and Criminal Justice: Penalties, Adjudication and Appeals Under the IT Act, 2000: Concept of Cyber Crime and the IT Act, 2000, Hacking, Teenage Web Vandals, Cyber Fraud and Cyber Cheating.	CO1, CO2, CO3, CO4
III	Traditional Computer Crime: Early Hacker and Theft of Components: Traditional Problems, Recognizing and Defining Computer Crime, Phreakers: Yesterday's Hackers, Hacking, Computer as Commodities, Theft of Intellectual Property.	CO1, CO2, CO3, CO4

	Identity Theft and Identity Fraud: Typologies of Internet	CO1,					
137	Theft/Fraud, Prevalence and Victimology, Physical Methods of	CO2,					
1 V	Identity Theft.	CO3,					
		CO4					
	Protection of Cyber consumers in India: Are Cyber consumers						
X 7	Covered under the Consumer Protection Act?, Goods and Services,						
V	Consumer Complaint, Restrictive and Unfair Trade practices						
		CO4					

Learning Resources

Text books

- 1. Vivek Sood, "Cyber Law Simplified", Tata McGraw Hill.
- 2. Marjie T. Britz, "Computer Forensics and Cyber Crime", Person.
- 3. Ferrera, "Cyber Laws Texts and Cases", Cengage.

References

- 1. Vakul Sharma, "Handbook of Cyber Laws" Macmillan India Ltd, 2nd Edition, PHI, 2003.
- 2. Justice Yatindra Singh, "Cyber Laws", Universal Law Publishing, 1st Edition, New Delhi, 2003.
- 3. Sharma, S.R., "Dimensions Of Cyber Crime", Annual Publications Pvt. Ltd., 1st Edition, 2004.
- 4. Augastine, Paul T.," Cyber Crimes And Legal Issues", Crecent Publishing Corporation, 2007

e-Resources and other Digital Material

- 1. <u>https://www.coursera.org/lecture/cyber-conflicts/introduction-to-cybercrime-and-fundamental-issues-xndSq</u>
- 2. https://www.youtube.com/watch?v=F7mH5vz1qEI&list=PLf8YqCm9HoI6fb4LdoY2 tFgJfM0PrgInS&ab_channel=ComputingforAll
- 3. <u>https://www.youtube.com/watch?v=F7mH5vz1qEI&t=41s&ab_channel=Computingf</u> orAll

ENVIRONMNET & ECOLOGY

Course Code	19ES5501D	Year	III	Semester	Ι
Course Category	Open Elective I	Branch	-	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal	20	Semester End	70	Total Manka	100
Evaluation :	30	Evaluation:	70		100

	Course Outcomes							
After suc	After successful completion of the course, the student will be able to							
	Understand and integrate information related to structure and functions of							
CO1	ecological units. (L2)							
CO2	Apply and communicate the concepts of environment.(L3)							
	Analyze various environmental components and demonstrate using technology.							
CO3	(L4)							
	Analyze and evaluate policies and frame works for welfare of environment &							
CO4	social sustainability. (L4)							
CO5	Apply system concepts for bio-monitoring environmental issues.(L3)							

Contribution of Course Outcomes towards achievement of Program Outcomes &														
Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3						2							
CO2	3						2							
CO3	3						2							
CO4	3						2							
CO5	3						2							
Average*	3						2							
(Rounded														
to nearest														
integer)														

apped
COs
D1
)2
D1
)2

III	Environmental Geosciences & Computer Applications	CO1
	Structure and composition of atmosphere, hydrosphere, lithosphere	CO3
	and biosphere.	
	Scale of meteorology, pressure, temperature, atmospheric stability.	
	Graphical representation of Data, creating Database tables.	
IV	Environmental Policy, Education and Ethics	CO1
	Important national policies: National environmental policy, 2006 & National agricultural policy etc.	CO4
	Legislation: Environment protection Act, 1986.	
	Environmental education: Goals and objectives of environmental education.	
	Environment awareness and action: Role of NGOs in environmental awareness.	
	Environmental movements in India- silent valley movement, Chipko	
	movement, Narmada bachao andolan, Environmental movements in	
	the West- Greenpeace.	
V	Environmental monitoring and management	CO1
	Environmental impact analysis and EMP;	CO5
	Analytical approaches and instrumentation in environmental monitoring;	
	Bio monitoring of air pollution - plants as biomonitors;	
	Bio monitoring of running water pollution.(Software's)	
	Organic farming and its ecological significance.	
	Learning Recourses	
Text l	Books	
1.	Singh, J.S; Singh, S.P. and Gupta S.R. (2014) Ecology, Environmental S	Science
	and Conservation. S.Chand & Company Pvt. Ltd. New Delhi.	
2.	Sharma, P.D. (2011) Ecology and Environment (11thedn.). Rastogi Publ	licatio

- Sharma, P.D. (2011) Ecology and Environment (11thedn.). Rastogi Publication, Meerut.
- 3. Bharucha, E. (2013) Text Book of Environmental Studies (2nd edn.). Universities Press, Hyderabad.

Reference Books

- 1. Nobel, B.J. and Wright, R.T. (1995) Environmental Science. Prentice Hall.
- 2. Keller, E.A. (2017) Introduction to Environmental Geology (5th edition). Pearson Education, India.
- 3. Agarwal, S.K. (1991) Pollution Ecology. Himanshu Publication, Udaipur.

CONTEMPORARY RELEVANCE OF INDIAN EPICS

Course	19HS5501A	Year	III	Semester	I
Code	1,11,000 0111				-
Course	OPEN	Branch	Common to All	Course Type	Theory
Category	ELECTIVE-I		Branches		_
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous		Semester End		Total Marks:	
Internal	30	Evaluation:	70		100
Evaluation:					

	Course Outcomes								
Upon s	uccessful completion of the course, the student will be able to -								
CO1	Gain preliminary understanding of various Indian epics (L2)								
CO2	Develop a deep insight into the famous epics and cultivate national consciousness								
	(L3)								
CO3	Apply the knowledge gained to various real life situations (L3)								
CO4	Analyze the contemporary relevance of Indian epics(L4)								
CO5	Interpret and correlate the ideals to one's own life. (L4)								

Contri	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (H-High3, M-Medium-2, L- Low-1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2								3	2			2		
CO3								3	2			2		
CO4								3	2			2		
CO5								3	2			2		
Average* (Rounded to nearest integer)								3	2			2		

	SYLLABUS								
Unit No	Contents	Mapped CO							
Ι	Definition of the term epic Features of epic, Introduction to	CO1,CO4							
	Indian epics, Characteristics of classical Indian epics,								
	Importance of Indian epics.								
II	Salient features of Ramayana, Epic qualities of Ramayana,	CO1,CO2,							
	Ideals to be imbibed from the first Indian epic, Moral essence	CO5							
	in Ramayana, Impact of Ramayana on Indian society.								
III	Mahabharata, Epic qualities of Mahabharata, Set of values to	CO1, CO5							
	be acquired from the largest epic, Impact of Mahabharata on								
	our culture and society.								
IV	Relevance Of Indian Epics to the contemporary of Indian society,	CO1,CO3							
	Relevance Of Indian Epics to the contemporary world.								
V	Essence of Bhagavad Gita, justification of the triumph of	CO1,CO2,							
	virtue over vice, Importance of truth and Self-sacrifice.	CO5							

Learning Resources

1. Geethadarshan by Rama krisha mission

- 2. The palace of illusion- Chitra Banerjee Divakaruni,
- 3. My Gita- Devdutt Pattankaik, Asura: tale of Vanquished- Anand Neelakantan
- 4. Prince of Ayodhya: Book one-Ashok K.Banker,
- 5. The Hindus: An Alternative History- Wendy Doniger, Myth and Reality: Studies in the Formation of Indian Culture-D.D. Kosambi, Mahabharath- William Buck

	INDIAN NATIONAL MOVEMENT											
Course Code	19HS5501B	Year	III	Semester	Ι							
Course Category	OPEN ELECTIVE-I	Branch	Common to All Branches	Course Type	Theory							
Credits	3	L-T-P	3-0-0	Prerequisites	Nil							
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100							

Course Outcomes

Upon s	uccessful completion of the course, the student will be able to
CO1	Understand political, social and economic background of freedom struggle (L2)
CO2	Specify major stages of freedom struggle and their ideological distinctions (L5)
CO3	Analyze the role of nationalist movement in the making of modern India(L4)
CO4	Develop an attitude of nationalism cutting across limited boundaries of religion
	in order to resist communal forces(L5)

Contrib	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						1			1					
CO2						2			2					
CO3						2			2					
CO4						2			2					
Average* (Rounded to nearest integer)						2			2					

Unit	Contents	Mapped
N0.		CO
Ι	Module -I	
	Back ground : Early British Colonialism in India, early rebellions –	
	Pazhassi raja (the cotiote war -Kerala, 18 th century), Veerapandiyan	CO1
	Kattabomman (Taminadu/Madras Presedency-18 th century), Paik rebellion	
	(Kalinga/ Odisha, early 19 th century), Vellore mutiny (early 19 th century);	
	The Sepoy Mutiny of 1857 and its consequences.	
II	Module -II	CO1
	Contributory Factors: Socio political consciousness, growth of Western	
	education and its impact socio -religious movement, British Economic	
	Policies and their impact.	
III	Module -III	CO2
	Rise of Organized Movements: Emergence of Indian National Congress, its	
	policies and programmes, partition of Bengal, rise of radical nationalists,	
	Bal-Lal-Pal, formation of Muslim league; Minto-Morely reforms, the	
	national movement during the first world war.	

IV Module -IV	CO3
Gathering Momentum: Non-cooperation and civil disob	edience,
emergence of Gandhi, some prominent revolutionaries - Khudira	m Bose,
Prafulla Chaki, Bhupendra Nath Dutt, V.D. Savarkar, Sardar Aj	it singh,
Lala Hardaval, Sardar Bhagat Singh, Raj Garu, Sukh Deo,	Chandra
Shekhar Azad, development of socialist ideas, communal divide.	
V Module -V	CO4
Towards Independence: Constitutional developments, provincial e	lections,
quit India movement and after, participation of women	national
movement during the second world war, Indian national arm	y, naval
mutiny of 1946, freedom and partition, impact on the world.	
Learning Resources	
Text Books	
1. K. Majumdar, Advent of Independence, Bhartiya Vidya Bhavan, I	3ombay 1969.
2. R. Desai, Social Background of Indian Nationalism, 5th ed., I	Popular Prakashan,
Mumbai, 1976.	
3. Bandyopadhyay, Sekhar, Nationalist Movement in India.	A reader, Oxford
university press, 2008.	
4. Chandra, Bipin, National and colonialism in modern India, Orient	Longman Limited

New Delhi, 1979.

	ENGINEERING FOR COMMUNITY SERVICE												
Course Code	19HS5501C	Year	III	Semester	Ι								
Course Category	OPEN ELECTIVE-1	Branch	Common to all	Course Type	Theory								
Credits	3	L-T-P	3-0-0	Prerequisites	NIL								
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100								

	Course Outcomes								
Upon su	uccessful completion of the course, the student will be able to:								
CO1	Understand the intricacies of engineering profession. (L2)								
CO2	Examine the role that engineering might play in the different aspects of sustainability development. (L3)								
CO3	Solve basic analytical and design problems using engineering tools, and be proficient and efficient in the use of these tools. (L3)								
CO4	Explore various awareness methods about safety, risk & risk benefit analysis (L4)								
CO5	Analyze what constitutes social justice in different areas of social life and the role that engineering might play in these. (L4)								

Contrib	Contribution of Course Outcomes towards achievement of Program Outcomes													
	& Strength of correlations (H-High3, M-Medium-2, L- Low-1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3	3	3				2	2	
CO2						3	3	3				2	2	
CO3						3	3	3				2	2	
CO4						3	3	3				2	2	
CO5						3	3	3				2	2	
Average* (Rounded to nearest integer)						3	3	3				2	2	

		SYLLABUS	
UNIT		CONTENT	Mapped
NO.			CO
	The Enginee	ering Profession	CO1,
	1.1	On being a Professional	CO2,
Ι	1.2	Technical Expertise and Ethical Obligations	CO5
	1.3	Organization of Professional Engineering	
	1.4	Engineering Codes of Ethics	
	Engineering	and Sustainable Community Development	CO1,
	2.1	Understanding Community	CO2,
II	2.2	Engineers' Beliefs about Community Development	CO4
	2.3	Measuring Sustainability	
	2.4	Engineers as Problem Solvers	

	Engineers a	nd Development	001
	3.1	Engineering Disasters: Lessons to be Learned	CO1,
III	3.2	Technology for Community Development	CO3,
	3.3	Renewable Sources of Energy	C04
	3.4	Green and Smart Cities	
	Safety of the	e Public	
	4.1	Ethical Dilemmas	GO 1
	4.2	Calculating the Value of Life	COI,
137	4.3	Whistle blowing	CO3,
11	4.4	Trusting the Experts	C04
	4.5	Case Studies:	
		a. Sinking of the Titanic	
		b. Bhopal Gas Tragedy	
	Engineering	and Social Justice	GO 1
	1.1	Social Justice in Engineering Sciences	COI,
N/	1.2	Humanities and Social Sciences in Engineering	CO3,
v		Education	005
	1.3	Transforming Engineering Education and Practice	
	1.4	Making Social Justice Visible and Valued	

LEARNING RESOURCES

Reference Books:

- 1. Deborah G. Johnson. (2020) Engineering Ethics: Contemporary and Enduring Debates. Yale University Press.
- 2. Vesilind, P. Aarne., Gunn, Alastair S. (2010) Hold Paramount: The Engineer's Responsibility to Society. Cengage Learning.
- 3. Luegenbiehl, Heinz., Clancy, Rockwell. (2017) Global Engineering Ethics. Butterworth-Heinemann, UK.
- 4. Traer, Robert. (2018) Doing Environmental Ethics. New York: Routledge.
- 5. Leydens, Jon., Lucena, Juan. (2017) Engineering Justice: Transforming Engineering Education and Practice. Wiley: IEEE Press.

Course Code	19HS5501D	Year	III	Semester	Ι
Course Category	Open Elective I	Branch	-	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal	20	Semester End	70	Total Manlar	100
Evaluation :	50	Evaluation:	/0	1 Otal Marks:	100

Course Outcomes

Upon succ	Upon successful completion of the course, the student will be able to:						
CO1	Understand the fundamentals of various aspects of personality traits (L2)						
CO2	Apply various aspects of soft skills and personality development(L3)						
CO3	Analyse the various techniques of stress management(LA)						
CO4	Acquire the significant factors of affecting attitudes(L4)						
CO5	Develop Interpersonal communication.(L4)						

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L-Low-1)

-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01														
CO2									3	3		3		
CO3									3	3		3		
CO4									3	3		3		
CO5									3	3		3		
Average*									3	3		3		
(Rounded to														
nearest integer)														

	SYLLABUS								
UNIT NO.	CONTENT	Mapped CO							
Ι	Personality: Grooming one's personality, Personality traits, Influence of heredity and environment on personality, Effective habits, Emotional intelligence.	CO1,CO2							
II	Conflict resolution, Assertive nature, Decision making skills.	CO1,CO2, CO4							
III	Techniques of time management, Teamwork, Self-confidence, Stress management	CO1,CO3, CO5							
IV	Attitude-concept, Positive attitude-advantages, Negative attitude - disadvantages	C01,CO2, CO4							
V	Qualities of successful leader, Interpersonal relationship, Good manners & etiquette.	CO1 ,CO5							
	LEARNING RESOURCES								
Text B	ook								
1. Pers	sonality development & soft skills Barun K.Mith Oxford.								
Refere	nce Books								
1. Pers	onal & emotional competence, V.Bhaskara Rao, B.S.P								
2. Step	by Step –Niruparani. K, Jayasree Mohanra, Pearson.								
e- Resou	urces & other digital material								
1. https	s://www.usingenglish.com/comprehension/;								
2. https	s://www.englishclub.com/reading/short-stories.htm;								
3. https	s://www.english-online.at/All Skills:								
4. https	s://www.englishclub.com/;								
5. http:	//www.world-english.or								

	INTRODUCTION TO INTERNATIONAL BUSINESS													
Cour	Course Code 19HS5501E Year III Semester									I				
Cours	se Categ	gory	Ol I	pen El	ective	B	ranch	1	-		Со	urse T	ype	Theory
Credi	its		3			L	-T-P		3-	-0-0	Pre	requis	ites	-
Conti Evalu	nuous I 1ation :	nterna	il 30			Se Ev	emest valua	er En tion:	d 70)	Tot	al Ma	rks:	100
					C	Cours	se Ou	tcom	es					
Upon	success	ful con	npleti	on of	the co	ourse,	the s	tuden	t will	be abl	e to:			
CO1	Apply t leverag	he conc ing thei	cepts of r capa	of glob bilities	al dyna s and c	amics comp	s whic etenci	ch affe es.	ct bus	sinesses	and m	ultinati	onal fii	rms in
CO2	Compare thical	re and framew	contra orks	ast cult	tures a	and s	ocieti	es glo	bally	using s	socioec	conomic	c, cultu	iral and
CO3	Relate countri	ousines: es.	s expa	insion	concep	pts ab	road	to key	issue	s relate	d to the	eir oper	ations	in other
CO4	Develo forces	p entry zovernii	strate	gies in proces	nto oth ss of g	ner m lobal	arkets	s by ro n.	ecogn	izing tł	ne natu	re of in	nstitutio	ons and
CO5	Use the	concer	ots in i	nterna	tional	busin	ness w	ith res	pect t	o foreig	gn trade	e.		
(Contribu	ition o &	f Cou Stre	irse () noth ()utcor	mes t relat	towar	rds ac (H-H	hievo ioh3	ement M-N	of Pro Mediu	ogram m-2. I	Outco	omes
	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS01	PSO2
CO	1		3	2							3	3		
CO	2		3	2							3	3		
CO	3	_	3	2	$ \longrightarrow $						3	3		
	4		3	2	\rightarrow						3	3		
Avera	3 100*		3	2							3	5		
(Round to near integ	(Rounded to nearest integer) 3 2 3 3													
						<u>cv</u>	T T A	DIIC						
TINIT	T					51		BUS						r 1
	I.	CONTENT Mapped												

UNIT	CONTENT	Mapped
NO.		CO
I	INTRODUCTION: History and Features of International Business. Globalization – Forces and dangers Firms' face during International Business. International Business Environment - Geographical, Economic, Socio-cultural, political and legal environment, Culture and International Business	CO1
п	Conceptual framework of Multinational Enterprise (MNE) International Trade and Foreign Direct Investment, Understanding Emerging Markets and Regional Economic Integration, Fundamentals of International Monetary System	CO2
III	International economic institutions and agreements WTO, UNCAD, IMF, World Bank; Generalized system of preferences- GSTP International commodity agreements	CO3
IV	Modes of Operations in International Business, Exporting, Importing, and Global Sourcing, Differences between Domestic and International Business, E-Business	CO4

	Social Responsibility and Ethics in International Business Counter trade IT and International Business Foreign Trade Policy/Trade Policy framework in India Export Promotion: Export Facilities & Incentives and Status holders and Export Zones.	CO5
		
	LEARNING RESOURCES	
	ext Book	- D - 11. :
1.	Aswatnappa," International Business", Tata Mc Graw Hill publications, New	Deini
2.	Black and Sundaram, "International Business Environment", Prentice Hall	of India,
	New Delhi.	
3.	Cherunilam Francis, "International Business", PHI Learning Pvt. Ltd., 2020	
R	eference Books	
1.	Adhikary, Manab, "Global Business Management", Macmillan, New Delhi.	
2.	Sumati Varma, "International Business", Pearson	

	GANDHIAN PHILOSOPHY															
·		1				11121				<u> </u>	1	T			_	٦
Cour Code	r se		19HS	\$55011	F	Year				III		Semes	Semester			
Cour			OI	PEN					Com	non t	o All			r	Theory	1
Cate	rse gory	I	ELEC	TIVE	-I	3ranc	h		Br	anche	es	Cours	е Тур	e		
Cred	lits			3	I	L-T-P	,			3-0-0		Prere	quisite	s	Nil	
Cont	inuou	S	,		5	Semes	ster E	Ind				Γ			100	
Inter	nal notion		-	30	F	Evalu	ation			70		Tota	l Mark	KS .	100	
Evan	uation				L			I								J
Cours	se Out	come	s													
Upon	succes	sful c	compl	letion	of th	e cou	rse, tł	he stu	udent v	will b	e able	to -				
CO1	Infer	Gand	hi pri	nciple	s of	life ar	nd pe	acefu	ıl metl	nods	for cor	nflict re	esolutio	on		
CO2	Make	use o	of Ga	ndhi l	earne	ed les	sons	in his	s early	v life,	advan	ntages of	of self-	intro	spectio	n
CO3	ana p	bracuo	ce oi	the true	ith ad in	divid	ual to	reer	ect al	l faith	os and	follow	non-d	icorii	ninatio	n
05	with s	simple	e livi	ng		lui vi u	uar to) ICsp	eet ai	1 1 1 1 1 1	15 and	10110 **	non-u	130111	IIIIano	11
CO4	Take	Part i	n Sw	atch B	ahar	at and	1 Atr	nanirl	bhar B	harat	Abhi	yaan				
·	_															_
C	Contril	butio	n of (Cours	e Ou	itcom	es to	ward	ls ach	ieven	nent o	f Prog	ram O	utco	mes &	
			Stre	ength	of co	orrela	tions	5 (H-]	High3	, M	l-Med	<u>ium-2,</u>	, L- L	<u>ow-1</u>)	4
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2	;
	01 02						3	3	3	3						\dashv
C	<u>)3</u>						3	3	3	3					1	
CC Aver	D4 age*						3	3	3	2			3			-
(Roune	ded to						-	-	-	-			-			
integ	ger)															
r									1							
TT	-					C	SYL	LAI	BUS					7.0		_
						U	ontei	nts						IVI	appea	
I I	Gan	dhi –	The	Man a	and]	His T	imes	: Eai	rlv life	e and	l educ	ation,	lesson	s		-
	learr	nt froi	m his	wife,	in So	outh A	Africa	a, inf	luence	e of T	horeau	u, Tols	toy and	d CO	1,CO2	
	othe	r thir	ıkers,	retur	n to	India	1, Sal	barm	ati asl	hram,	, role	in the	India	n		
	natio	onal n	nover ·	nent, l	<u>nis in</u>	npact	durin	ng his	s life t	ime	1.	• •			~	
11	Inter	preta	tion a	and P	ursui	t of	Truth	: Lea	arning	thro	ugh tr	rial and	d error	; CU	2	
	pow	er oi	intro ue de	specu	0Π, ι ο to σ	rutn i rođ tr	n mu uth le	ougni aads t	, spee	cn ai rage a	a acu	on, pu ctory	rsuit o	I		
III	Peac	e an	$\frac{dc}{d}$ Co	nflict	Res	olutio	m: A	hims	a as	nract	ical ic	lealism	n - th	e CO	2	
	mea	ns to	the go	bal of	truth	, non-	-viole	ent ci	vil res	istand	ce, livi	ng fait	h in the	e	-	
	pow	er of	non	violen	ce, j	prereq	luisite	es fo	r prac	ctice,	faith,	coura	ge and	b		
	hum	ility,	prev	ention	of	struct	ural	viole	ence, t	wo p	oronge	d appr	oach -	-		
	cont	lict r	esolu	tion a	nd e	establi	shing	g pea	ice, ex	kamp	les of	metho	ods and	b		
	practices.															

IV	Transformation of the Individual: Liberating the mind from dogmatism,	CO3
	control of the senses, thoughts and actions, respect for all faiths and	
	universalism, a few strategies- Anasakta Karma, non-discrimination,	
	simple living and self-sufficiency.	
V	Contemporary Relevance: Gandhi's social, political and economic	CO4
	thought, sarva dharma sambhava - tolerance, respect towards all	
	religions, educational reform - basic education and adult education,	
	social equality sarvodaya, removal of untouchability, communal unity,	
	women empowerment, prohibition, service of backward classes, village	
	sanitation, political solutions- swaraj, decentralization of power,	
	democracy of enlightened majority, economic solutions - swadeshi,	
	trusteeship, khadi and village industries, decentralization of wealth,	
	sustainable development and equal opportunity, youth as agents of	
	change.	
		•

Learning Resources

References

1.Gandhi M.K., Mahadev H. Desai, Gandhi An Autobiography: The Story of My Experiments With Truth, Beacon Press, 1993.

 Fisher, Louis, the Essential Gandhi: An Anthology of His Writings on His Life, Work, and Ideas. Vintage Books, 1983.

3.<u>http://www.mkgandhi.org/main.htm</u> Comprehensive Website by Gandhian Institutions – Bombay Sarvodaya Mandal and Gandhi Research Foundation

	INDIAN HISTORY									
Course	19HS5501G	Year	III	Semester	Ι					
Code	OPEN		Common to All		Theory					
Category	ELECTIVE-I	Branch	Branches	Course Type	Incory					
Credits	3	L-T-P	3-0-0	Prerequisites	Nil					
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100					

Course Outcomes

Upon successful completion of the course, the student will be able to:

CO1 Understand the socio-economic-cultural conditions of ancient India

CO2 Know the contribution of various dynasties to Indian Culture

CO3 Examine the invasion of different foreign rulers and their effect on Indian culture
 CO4 Analyse the impact of British colonial rule on industrialisation and introduction of western education in India

CO5 Describe the national movements against British rule.

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L- Low-1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2						2		1
CO2						2						2		1
CO3						2						2		1
CO4						2						2		1
CO5						1						1		1
Average* (Rounded to nearest integer)						2						2		1

	SYLLABUS	
Unit		Mapped
No.	Contents	CO
Ι	Ancient Indian History and Culture –Indus Valley Civilization: Salient Features, Vedic and Later Vedic Culture, Doctrines of Jainism and Buddhism, Mauryans – Administration, Ashoka's Dhamma, Satavahanas, Guptas –Socio-Economic-Cultural Conditions.	CO1
II	Medieval Indian History and Culture – Delhi Sultanate, Great Mughals South Supremacy and Conflicts Pallavas, Cholas, Kakatiyas, Vijayanagara Empires their Contribution to Indian Culture.	CO2
III	Modern Indian History and Culture – European penetration In to India, Anglo-French Rivalry for Supremacy, The battle of Plassey establishment of British Power ,Consolidation and expansion tools, Subsidiary Alliance, Doctrine of Lapse.	CO3

 IV Impact of British Colonial Rule –Commercialization of Agriculture, de industrialization- decline of cottage Industries, famines and condition of Peasants, Introduction of Western Education in India, the great Revolt of 1857. V The Rise of Indian National Movement – Socio- Religious Movements the Genesis of Freedom Movement –Birth of Indian National Congress, -Freedom Struggle (1885-1920) Moderate Phase Partition of Bengal-Emergence of Militant Nationalism-Swadeshi & Boycott Movement –Home Rule Movement Freedom Struggle (1920- 1947) Gandhi's role in Indian National Movement . 			
 V The Rise of Indian National Movement – Socio- Religious Movements the Genesis of Freedom Movement –Birth of Indian National Congress, -Freedom Struggle (1885-1920) Moderate Phase Partition of Bengal-Emergence of Militant Nationalism-Swadeshi & Boycott Movement –Home Rule Movement Freedom Struggle (1920- 1947) Gandhi's role in Indian National Movement . 	IV	Impact of British Colonial Rule –Commercialization of Agriculture, de industrialization- decline of cottage Industries, famines and condition of Peasants, Introduction of Western Education in India, the great Revolt of 1857.	CO4
	V	The Rise of Indian National Movement – Socio- Religious Movements the Genesis of Freedom Movement –Birth of Indian National Congress, -Freedom Struggle (1885-1920) Moderate Phase Partition of Bengal-Emergence of Militant Nationalism-Swadeshi & Boycott Movement –Home Rule Movement Freedom Struggle (1920- 1947) Gandhi's role in Indian National Movement .	CO5

Learning Resources

Text Books

1. Krishna Reddy, Indian History, McGraw Hill Education; second edition, 2017

References

1. Sailendranath sen, a text book of Indian history and culture, Primus, 2019.

2. VK Agnihotri, Indian History And Culture , Allied publisher private limited; 28th edition, 2013

e- Resources & other digital material

1. https://onlinecourses.swayam2.ac.in/cec20_hs04/preview

					I	NTER	NET	OF 7	THIN	GS L	AB				
Cours	se	Code		19E	S1552	Ye	ear			III		Sen	nester		Ι
Cours	se	Cate	gory	ES		Br	anch			All branches Course Type					Lab
Credi	its			1		L-	T-P			0-0-2		Prerequisites Nil			
Conti	inu	ious		25		Se	meste	er En	d	50		Tot	al Ma	rks:	75
Inter	na	1				Ev	valuat	tion:							
Evalu	ıat	ion:													
							Cours	se Ou	tcom	es					
Upon s	suc	ccessf	ul con	npleti	on of	the co	ourse,	the s	tuden	t will	be able	to			
CO1	D	evelo	p vari	ious s	ensor	interf	acing	using	g Visu	al Pro	ogramn	ning L	anguag	ge (L6))
CO2	A	nalyz	e vari	ious P	hysic	al Co	mputi	ng Te	chniq	ues (I	(A)				
CO3	E	valua	te Wi	ireless	s Cont	trol of	Rem	ote D	evices	s (L5)					
CO4	D	esign	and	deve	elop 1	Mobil	e Ap	plicat	ion v	vhich	can in	teract	with	Senso	ors and
	A	ctuato	ors (L	6)				- 200							
N	/ Ia	pping	g of co	ourse	outco	mes	with]	Progr	am o	utcon	nes (CO)/ PO	/PSO]	Matri	x)
	Ν	ote:	1- We	eak co	rrelati	ion	2-M	ediun	n corr	elation	n 3-	Stron	g corre	lation	
		* - A	verag	ge val	ue ind	licates	s cour	se cor	relati	on str	ength v	vith m	apped	PO	
COs CO1		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10 3	PO11	PO12	PSO1	PSO2 3
CO2		2	3				2	2		3	3		2	3	3
CO3 CO4		3	3	3	3	3	$\frac{2}{2}$	$\frac{2}{2}$		3	3		2	3	3
Average	*													-	
(Rounde to neare	ed st	3	3	3	3	3	2	2		3	3		3	3	3
integer)														
							S	vllah	115						
Expt.							~	<u>, </u>						Μ	apped
No.							Co	ntent	S						co
Ι	Ι	Digita	1 I/O 1	Interf	ace - I	Multic	colour	Led,	IR Se	ensor,	PIR, S	lotSer	sor.		CO1
п	ŀ	Analo	g Rea	d and	Write	e - Po	tentio	meter	, Tem	perati	ure Sen	sor, L	ed		CO1
п	H	Bright	ness (Contro	ol.										COI
III	Ι	Dc Mo	otor C	ontro	l - Dc	Moto	or Spe	ed an	d Dire	ection	Contro	ol.			CO2
	F	Read of	lata fi	rom se	ensor	and se	end it	to a r	eques	ting c	lient. (1	using s	socket		
IV	C	comm	unica	tion)	Note:	The c	lient	and se	erver	should	l be con	nnecte	d to		CO2
	S	ame l	ocal a	area n	etwor	k.									<u></u>
V		abric	ation	and d	irectio	5000000000000000000000000000000000000	trol c	ot whe	eled	robot	using A	Arduin	0.		$\frac{CO2}{CO2}$
	1	serial	Com		ation	- Dev	$\frac{1 \text{ Ce } \text{C}}{\text{D}^{1-2}}$	ontrol		7; T?'					$\frac{CO2}{CO2}$
	\ T	w irele	ess M	odule	interi	ace -	Bluet	ooth a	$\frac{1}{2}$ matrix	(1-F1.		:			$\frac{003}{002}$
		w irele	SS CC	ontrol	$\frac{01 \text{ Wh}}{20 \text{ D}_{2}}$	volor	KODO	n usir		A nr I	u/ W1-F	1. r			$\frac{CO3}{CO4}$
IΛ	1	Smort	Hom	JU A]	pp De	Velop		using	t unim	App I	nvento n Invor	1. tor or	d		04
Х	X Smart Home Android App Development using App Inventor and CO4														
						L	earni	ng Ro	esour	ces					
Text	B	ooks						0							
1. S	yŀ	via Li	ibow	Marti	nez, (Gary S	S Stag	ger, "	Inven	t To I	Learn:	Makir	ıg, Tin	kering	, and
Engineering in the Classroom", Constructing Modern Knowledge Press, 2016.															
Refe	rei	nce Bo	ooks												
1. Michael Margolis "Arduino Cookbook" Oreilly 2011															
1	•	Mich	ael M	argon	18, A	raum	<u>o Coo</u>	KDOOL	<u>('', O</u> f	eilly,	2011.				

	ANTENNA A	ANALYSIS AN	D SYNI	THESIS LAB	
Course Code	19EC3551	Year	III	Semester	Ι
Course	Program	Branch	ECE	Course Type	Theory
Category	Core				
Credits	1	L-T-P	0-0-2	Prerequisites	EMW,
					AA&S
Continuous	25	Semester	50	Total	75
Internal		End		Marks:	
Evaluation:		Evaluation:			

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Interpret the antenna software simulation tools L2						
CO2	Design and Simulate antennas used in wireless communications for different						
02	frequency ranges and obtain their radiation characteristics L6						
CO3	Experiment with a pyramidal Horn antenna and measure its radiation						
005	characteristics L3						
CO4	Model a rectangular waveguide and obtain its radiation characteristics. L3						

Mapping of	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1-W	/eak c	correl	ation	2-	Medi	um co	orrelat	tion	3-8	Strong	correl	ation		
* - Average	e valu	e ind	icates	cours	se cor	relati	on str	ength	with	mapp	ed PO			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	1	1	3								3	3
CO2	3	3	3	3	3								3	3
CO3	2	2	2	3	3								3	3
CO4	2	3	3	3	3								3	3
Average* (Rounded to nearest integer)	2	3	3	3	3								3	3

	Syllabus	
S.No.	Name of the Experiment	Mapped CO
1	Introduction to Simulation software tools	CO1
2	Design a half wave dipole for a frequency of 600MHz and determine its radiation pattern, reflection coefficient, VSWR	CO2
3	Design a biconical antenna for a frequency of 600MHz and determine its radiation pattern, reflection coefficient, VSWR	CO2
4	Design Yagi - Uda antenna and simulate to get its radiation characteristics	CO2
5	Measurement of radiation pattern of a pyramidal Horn antenna	CO3
6	Design a rectangular microstrip antenna and obtain its radiation characteristics using simulation	CO2
7	Design a Circular microstrip antenna and obtain its radiation characteristics using simulation	CO2
8	Design a square loop antenna for a frequency of 6GHz and obtain its radiation pattern, reflection coefficient, VSWR	CO2

9	Model a rectangular Waveguide and obtain its radiation characteristics	CO4
10	Construct a 3-element linear array & obtain its radiation pattern using	CO1,
	simulation	CO2

Learning Resources

Text Books
1. Antennas and Wave Propagation – J.D. Kraus, R.J. Marhefka and Ahmad S. Khan,
TMH, New Delhi, 4th ed., (Special Indian Edition), 2010.

Reference Books

1. Antenna Theory - C.A. Balanis, John Wiley & Sons, 3rd Ed., 2005.

2. Antenna Engineering Handbook – John Leonidas Volakis, 3rd edition, 2007

e- Resources & other digital material

1. http://anlage.umd.edu/HFSSv10UserGuide.pdf

2. <u>https://www.youtube.com/watch?v=kUDlCVOPlvY</u>

	DIGITAL	SIGNAL PI	ROCES	SING LAB		
Course Code	19EC3552	Year	III	Semester	Ι	
Course	Program	Branch	ECE	Course Type	Lab	
Category	Core					
Credits	1.5	L-T-P	0-0-3	Prerequisites	Signals	and
					Systems	
Continuous	25	Semester	50	Total Marks:	75	
Internal		End				
Evaluation:		Evaluation:				

Course Outcomes

Upon	successful completion of the course, the student will be able to
CO1	Examine the frequency response and impulse response of discrete-time LTI
	systems (L3).
CO2	Interpret discrete-time signals using DFT (L3).
CO3	Apply FFT algorithms for various signal processing operations (L3).
COA	Analyse IIP and FIP digital filters (I 4)

CO4 Analyse IIR and FIR digital filters (L4).

CO5 Design IIR and FIR digital filters for real time DSP applications (L5).

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
N	ote: I	- Wea	ak cor	relati	on 2	-Med	ium c	correl	ation	3-Str	ong co	orrelati	on	
	* - A	verag	e valu	e indi	cates o	course	corre	lation	streng	gth witl	n mapp	ed PO		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	3			1	1	1		2	2	2
CO2	3	3	3	3	3			1	1	1		2	2	2
CO3	3	3	2	3	3			1	1	1		2	2	2
CO4	3	3	3	3	3			1	1	1		2	2	2
CO5	3	3	2	3	3			1	1	1		2	2	2
Average* (Rounded to nearest	3	3	2	3	3			1	1	1		2	2	2
integer)														

Syllabus									
Expt. No.	Contents	Mapped CO							
Part A – Using MATLAB									
Ι	Frequency response of a system described by a difference equation.	CO1, CO4							
II	Implementation of discrete time systems in time domain.	CO1, CO4							
III	DFT & IDFT of the given sequences.	CO2							
IV	Properties of DFT	CO2							
V	Fast Fourier Transform	CO3							
VI	Design of IIR Low Pass filter using Butterworth and Chebyshev approximations.	CO4, CO5							
VII	Design of IIR High Pass filter using Butterworth and Chebyshev approximations.	CO4, CO5							
VIII	Design of FIR Low Pass filters using window technique.	CO4, CO5							
IX	Design of FIR High Pass filter using window technique.	CO4, CO5							
	Part B – Using Code Composer Studio	•							
Х	Linear convolution of two sequences.	CO1, CO4							

XI Circular convolution of two sequences. CO2 XII Generation of Sine wave & Square wave. CO4 Learning Resources Text Books 1. G.Proakisand D.G.Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 4/e, Pearson Education, 2007. 2. A.V.Oppenheim, R.W.Schafer, Discrete Time Signal Processing, 3/e, Prentice Hall or India, 2009. Reference Books 1. Fundamentals of Digital Signal Processing - Lonnie C Ludeman, John Wiley & Sons 2003 2. Digital Signal Processing "A – Computer Based Approach" - Sanjit K Mitra, Tata Mc Graw Hill 2nd Edition, 2003 3. Theory and Application of Digital Signal Processing - Lawrence R Rabiner& Bernard Gold, Prentice Hall. e Resources & other digital material 1. http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html	VI		601
XII Generation of Sine wave & Square wave. CO4 Learning Resources Text Books 1. G.Proakisand D.G.Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 4/e, Pearson Education, 2007. 2. A.V.Oppenheim, R.W.Schafer, Discrete Time Signal Processing, 3/e, Prentice Hall or India, 2009. Reference Books 1. 1. Fundamentals of Digital Signal Processing - Lonnie C Ludeman, John Wiley & Sons 2003 2. Digital Signal Processing "A – Computer Based Approach" - Sanjit K Mitra, Tata Mc Graw Hill 2nd Edition, 2003 3. Theory and Application of Digital Signal Processing - Lawrence R Rabiner& Bernarce Gold, Prentice Hall. e Resources & other digital material 1. http://www.nptel.iitm.ac.in/ 2. http://www.ece.cmu.edu/~ee791 4. http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html	XI	Circular convolution of two sequences.	<u>CO2</u>
 Learning Resources Text Books 1. G.Proakisand D.G.Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 4/e, Pearson Education, 2007. 2. A.V.Oppenheim, R.W.Schafer, Discrete Time Signal Processing, 3/e, Prentice Hall or India, 2009. Reference Books 1. Fundamentals of Digital Signal Processing - Lonnie C Ludeman, John Wiley & Sons 2003 2. Digital Signal Processing "A – Computer Based Approach" - Sanjit K Mitra, Tata Mc Graw Hill 2nd Edition, 2003 3. Theory and Application of Digital Signal Processing - Lawrence R Rabiner& Bernarce Gold, Prentice Hall. e- Resources & other digital material 1. http://www.nptel.iitm.ac.in/ 2. http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html 3. http://www.ece.cmu.edu/~ee791 4. http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html 	XII	Generation of Sine wave & Square wave.	CO4
Learning Resources Text Books 1. G.Proakisand D.G.Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 4/e, Pearson Education, 2007. 2. A.V.Oppenheim, R.W.Schafer, Discrete Time Signal Processing, 3/e, Prentice Hall or India, 2009. Reference Books 1. Fundamentals of Digital Signal Processing - Lonnie C Ludeman, John Wiley & Sons 2003 2. Digital Signal Processing "A – Computer Based Approach" - Sanjit K Mitra, Tata Mc Graw Hill 2nd Edition, 2003 3. Theory and Application of Digital Signal Processing - Lawrence R Rabiner& Bernard Gold, Prentice Hall. e- Resources & other digital material 1. http://www.nptel.iitm.ac.in/ 2. http://www.ece.cmu.edu/~ee791 4. http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html			
 Text Books G.Proakisand D.G.Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 4/e, Pearson Education, 2007. A.V.Oppenheim, R.W.Schafer, Discrete Time Signal Processing, 3/e, Prentice Hall or India, 2009. Reference Books Fundamentals of Digital Signal Processing - Lonnie C Ludeman, John Wiley & Sons 2003 Digital Signal Processing "A – Computer Based Approach" - Sanjit K Mitra, Tata Mc Graw Hill 2nd Edition, 2003 Theory and Application of Digital Signal Processing - Lawrence R Rabiner& Bernard Gold, Prentice Hall. e- Resources & other digital material http://www.netel.iitm.ac.in/ <u>http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html</u> <u>http://www.ece.cmu.edu/~ee791</u> http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html 		Learning Resources	
 G.Proakisand D.G.Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 4/e, Pearson Education, 2007. A.V.Oppenheim, R.W.Schafer, Discrete Time Signal Processing, 3/e, Prentice Hall or India, 2009. Reference Books Fundamentals of Digital Signal Processing - Lonnie C Ludeman, John Wiley & Sons 2003 Digital Signal Processing "A – Computer Based Approach" - Sanjit K Mitra, Tata Mc Graw Hill 2nd Edition, 2003 Theory and Application of Digital Signal Processing - Lawrence R Rabiner& Bernard Gold, Prentice Hall. e Resources & other digital material http://www.nptel.iitm.ac.in/ http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html http://www.ee.unanitoba.ca/~ipollak/ee438/FALL04/notes/notes.html 	Text B	ooks	
 A.V.Oppenheim, R.W.Schafer, Discrete Time Signal Processing, 3/e, Prentice Hall o India, 2009. Reference Books Fundamentals of Digital Signal Processing - Lonnie C Ludeman, John Wiley & Sons 2003 Digital Signal Processing "A – Computer Based Approach" - Sanjit K Mitra, Tata Mc Graw Hill 2nd Edition, 2003 Theory and Application of Digital Signal Processing - Lawrence R Rabiner& Bernarce Gold, Prentice Hall. e- Resources & other digital material http://www.nptel.iitm.ac.in/ http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html http://www.ece.cnu.edu/~ee791 http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html 	1. G.I Ap	Proakisand D.G.Manolakis, Digital Signal Processing: Principles, A plications, 4/e, Pearson Education, 2007.	algorithms and
India, 2009. Reference Books 1. Fundamentals of Digital Signal Processing - Lonnie C Ludeman, John Wiley & Sons 2003 2. Digital Signal Processing "A – Computer Based Approach" - Sanjit K Mitra, Tata Mc Graw Hill 2nd Edition, 2003 3. Theory and Application of Digital Signal Processing - Lawrence R Rabiner& Bernarce Gold, Prentice Hall. e- Resources & other digital material 1. http://www.nptel.iitm.ac.in/ 2. http://www.eee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html 3. http://www.ece.cmu.edu/~ee791 4. http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html	2. A.	V.Oppenheim, R.W.Schafer, Discrete Time Signal Processing, 3/e, P	rentice Hall of
Reference Books 1. Fundamentals of Digital Signal Processing - Lonnie C Ludeman, John Wiley & Sons 2003 2. Digital Signal Processing "A – Computer Based Approach" - Sanjit K Mitra, Tata Ma Graw Hill 2nd Edition, 2003 3. Theory and Application of Digital Signal Processing - Lawrence R Rabiner& Bernarce Gold, Prentice Hall. e- Resources & other digital material 1. http://www.nptel.iitm.ac.in/ 2. http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html 3. http://www.ee.cmu.edu/~ee791 4. http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html	Inc	ia, 2009.	
 Fundamentals of Digital Signal Processing - Lonnie C Ludeman, John Wiley & Sons 2003 Digital Signal Processing "A – Computer Based Approach" - Sanjit K Mitra, Tata Mc Graw Hill 2nd Edition, 2003 Theory and Application of Digital Signal Processing - Lawrence R Rabiner& Bernarc Gold, Prentice Hall. e- Resources & other digital material http://www.nptel.iitm.ac.in/ <u>http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html</u> <u>http://www.ee.ccmu.edu/~ee791</u> http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html 	Refere	nce Books	
 2003 2. Digital Signal Processing "A – Computer Based Approach" - Sanjit K Mitra, Tata Mc Graw Hill 2nd Edition, 2003 3. Theory and Application of Digital Signal Processing - Lawrence R Rabiner& Bernarc Gold, Prentice Hall. e- Resources & other digital material 1. http://www.nptel.iitm.ac.in/ 2. <u>http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html</u> 3. <u>http://www.ece.cmu.edu/~ee791</u> 4. http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html 	1. Fun	damentals of Digital Signal Processing - Lonnie C Ludeman, John	Wiley & Sons,
 Digital Signal Processing "A – Computer Based Approach" - Sanjit K Mitra, Tata Ma Graw Hill 2nd Edition, 2003 Theory and Application of Digital Signal Processing - Lawrence R Rabiner& Bernarce Gold, Prentice Hall. e- Resources & other digital material http://www.nptel.iitm.ac.in/ http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html http://www.ece.cmu.edu/~ee791 http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html 	2003		
Graw Hill 2nd Edition, 2003 3. Theory and Application of Digital Signal Processing - Lawrence R Rabiner& Bernard Gold, Prentice Hall. e- Resources & other digital material 1. http://www.nptel.iitm.ac.in/ 2. <u>http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html</u> 3. <u>http://www.ece.cmu.edu/~ee791</u> 4. http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html	2. Dig	tal Signal Processing "A – Computer Based Approach" - Sanjit K N	Mitra, Tata Mc
 3. Theory and Application of Digital Signal Processing - Lawrence R Rabiner& Bernard Gold, Prentice Hall. e- Resources & other digital material http://www.nptel.iitm.ac.in/ http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html http://www.ece.cmu.edu/~ee791 http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html 	Graw	Hill 2nd Edition, 2003	
Gold, Prentice Hall. e- Resources & other digital material 1. http://www.nptel.iitm.ac.in/ 2. http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html 3. http://www.ece.cmu.edu/~ee791 4. http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html	3. The	ory and Application of Digital Signal Processing - Lawrence R Rab	iner& Bernard
e- Resources & other digital material http://www.nptel.iitm.ac.in/ http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html http://www.ece.cmu.edu/~ee791 http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html 	Gold,	Prentice Hall.	
 http://www.nptel.iitm.ac.in/ <u>http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html</u> <u>http://www.ece.cmu.edu/~ee791</u> http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html 	e- Res	ources & other digital material	
 2. <u>http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html</u> 3. <u>http://www.ece.cmu.edu/~ee791</u> 4. http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html 	1. http	//www.nptel.iitm.ac.in/	
3. <u>http://www.ece.cmu.edu/~ee791</u> 4. http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html	2. http	//www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html	
4. http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html	3. http	//www.ece.cmu.edu/~ee791	
	4. http	//cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html	
	1		

ENGINEERING ECONOMICS AND MANAGEMENT												
Course Code	19HS1601	Year	III	Semester	II							
Course	HS	Branch	ECE	Course Type	Theory							
Category												
Credits	3	L-T-P	3-0-0	Prerequisites								
Continuous	30	Semester	70	Total Marks:	100							
Internal		End										
Evaluation:		Evaluation:										

	Course Outcomes											
Upon s	Upon successful completion of the course, the student will be able to											
CO1	To understanding of the fundamental concepts of Managerial economics and											
	demand.											
CO2	The ability to apply knowledge to evaluate future demand and theory of											
02	production.											
CO3	To understanding of the foundational concepts of cost, market structure and role											
COS	of pricing methods in business.											
COA	To understanding about the principles of management and human resource											
04	management function in an organization.											
COS	To understand the broad scope of marketing, societal, ethical and other diverse											
0.05	aspects of marketing and production.											

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		2								3	3	
CO2	3	3		2								3	3	
CO3	3	3		2								3	3	
CO4	3	3		2								3	3	
CO5	3	3		2								3	3	
Average* (Rounded to nearest integer)	3	3		2								3	2	

Syllabus									
Unit No.	Contents	Mapped CO							
Ι	Introduction to Managerial Economics & Demand Analysis: Definition of Managerial Economics, Nature and Scope – Managerial Economics and its relation with other subjects. Demand Analysis: Meaning - Demand determinants- Law of Demand and its exceptions.	CO1							
II	Elasticity of Demand, Demand Forecasting & Theory of Production: Definition -Types of Elasticity of demand - Measurement of price elasticity of demand. Demand Forecasting: Meaning - Factors governing demand forecasting - Methods of demand forecasting. Production: Production Function- Law of variable proportions- Isoquants, Law of returns to scale.	CO2							

	Cost Analysis, Market Structures & Pricing: Cost concepts - Break-	CO3									
ш	Even Point - Managerial Significance and limitations of BEP - (simple										
111	problems). Market: meaning characteristics of market and Types of										
	market competition – Pricing strategies										
	Introduction to Management & Human Resource Management:										
11/	Meaning, nature, importance and Functions of Management, Henri										
1 V	Fayol principles. HRM: objective and function, manpower planning,										
	sources of recruitment.										
	Introduction to Marketing Management & Production	CO5									
V	management: Meaning, Concepts of Marketing, Marketing Mix,										
v	Marketing Segmentation. Production management: objectives, Types										
	of Plant Layout, location – Factors effecting it										

Learning Resources

Reference Books

- 1. Managerial Economics and Financial Analysis, J.V.Prabhakar Rao, Maruthi Publications, 2011
- 2. Managerial Economics and Financial Analysis, N. Appa Rao. & P. Vijaya Kumar, Cengage Publications, New Delhi, 2011.
- 3. Managerial Economics and Financial Analysis, A R Aryasri, TMH, 2011.
- 4. Management Science, Aryasri, TMH, 2004.
- 5. Management Science, Rajesh C. Jampala, P. Adi Lakshmi, Duvuri Publications, Machilipatnam, 2010.

	MICROPRO	CESSORS AN	D MICF	ROCONTROLL	ERS
Course Code	19EC3601	Year	III	Semester	II
Course	Program	Branch	ECE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Computer
					Architecture and
					Organization
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes	BT						
Upon	successful completion of the course, the student will be able to							
CO1	Compare programmer's model of 8086 microprocessor and ARM	12						
	processor.	LZ						
CO2	Apply knowledge and demonstrate programming proficiency using							
	the various addressing modes and instructions of the target	L3						
	microprocessor and microcontroller.							
CO3	Develop programs to interface various peripherals with microcontroller.	L3						
CO4	Design and develop real time application modules using ARM	16						
	microcontroller	LU						

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average	value	indic	ates c	course	e corre	elatio	n stre	ngth v	with r	nappe	d PO			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2									2	2
CO2	3	3	2	2									2	2
CO3	3	3	2	2									2	2
CO4	3	3	2	2									2	2
CO5	3	3	2	2									2	2
Average*														
(Rounded to	3	3	2	2									2	2
nearest integer)														

	Syllabus	
Unit No.	Contents	Mapped CO
Ι	8086 Architecture: Main features, 8086 microprocessor internal architecture, bus interfacing unit, execution unit, pin diagram/description, interrupts and interrupt response, 8086 system timing, minimum mode and maximum mode configuration.	CO1
Π	8086 Programming: Program development steps, instructions, addressing modes, assembler directives, writing programs with an assembler, assembly language program development tools.	CO2

III	Cortex-M: Architecture: Introduction to Cortex-M Microcontroller, Microprocessor Architecture, Nested Interrupt Vector Controller, Bus system and Bus matrix, Memory and Peripherals, Debug System. Exceptions and Interrupts Architecture: The Cortex-M Exception and Interrupts, Exceptions and Interrupt Priority, Interrupt Configuration, Handling of Exceptions or Interrupts.	CO1
IV	Programming: Basics of Assembly Programming, Data Processing Instructions, Memory Access Instructions, Branch and Control Instructions.	CO2
V	 Interfacing: Fundamentals of Input-Output Interfacing: Basic Microcontroller GPIO Interfacing, Cortex-M-Based TM4C L23 Microcontroller Peripherals, Configuring Microcontroller Pins as GPIOs, Input-Output interfacing for LED and Switch, Seven-Segment LED Interfacing, Keypad Interfacing, Interfacing an LCD module. Timing Interfaces: Basics of Timing Interfaces, Clocking a Microcontroller, TM4C123 Clock and Frequency Configuration, Timer Basics, TM4C123 Timing Interfaces and Systick Timer, Timer as Input Device, Timer as Output Device, General Purpose Timer modules in TMC123. 	CO3, CO4

Learning Resources

Text Books

- 1. Microprocessors and Interfacing Programming and Hardware by Douglas V Hall, SSSP Rao, Tata McGraw Hill Education Private Limited, 3rd Edition.
- 2. ARM Microprocessor Systems Cortex M Architecture, Programming, and Interfacing by Muhammad Tahir and Kashif Javed, CRC Press.
- 3. The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors by Joseph You

Reference Books

- 1. Embedded Systems Fundamentals with ARM Cortex-M based Microcontrollers: A Practical Approach in English, by Dr. Alexander G. Dean, Published by Arm Education Media
- 2. Cortex -M3 Technical Reference Manual

WIRELESS COMMUNICATIONS AND NETWORKS

Course Code	19EC4601A	Year	III	Semester	II
Course	PE - II	Branch	ECE	Course Type	Theory
Category					
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes							
Upon su	ccessful completion of the course, the student will be able to							
CO1	Analyze the characteristics and applications of various technologies in WCN. (L4).							
CO2	Analyse the Overview and Principles of Bluetooth, Cellular Wireless Networks (L4).							
CO3	Evaluate the Fourth Generation Systems, LTE and mobile IP (L5).							
CO4	Evaluate the different Technologies, architecture of Bluetooth and Cellular							
	Wireless Networks and its applications (L5).							
CO5	Analyse the different Multiple Access Techniques in Cellular Wireless Networks							
	(L4)							

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

	•	- Ave	rage v	alue II	luicate	s cour	se con	leiano	n suer	igui wh	п тарг	led PO		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2		3				2			2	3
CO2	3	3	2	2		3				2			2	3
CO3	3	3	2	2		3				2			2	3
CO4	3	3	2	2		3				2			2	3
CO5	3	3	2	2		3				2			2	3
Average* (Rounded to nearest integer)	3	3	2	2		3				2			2	3

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	Wireless LAN Technology: IEEE 802Architecture, IEEE 802.11	CO1
	Architecture and Services, IEEE 802.11 Medium Access Control,	,CO4
	IEEE802.11 Physical Layer, Gigabit Wi-Fi, Other IEEE Standards,	
	IEEE802.11 Wireless LAN Security	
Π	Bluetooth and IEEE 802.15: The Internet of Things, Bluetooth	CO1,CO2
	Motivation and Overview, Bluetooth Specifications, Bluetooth High	,CO4
	Speed and Bluetooth Smart, IEEE 802.15, ZigBee 402	
III	Cellular Wireless Networks: Principles of Cellular Networks, First-	C01,C02,C
	Generation Analog, Second-Generation TDMA, Second-Generation	O4,CO5
	CDMA, Third-Generation Systems	
IV	Fourth Generation Systems and LTE-Advanced: Purpose, Motivation,	CO1,CO3,C
	and Approach to 4G, LTE Architecture, Evolved Packet Core, LTE	O4
	Resource Management, LTE Channel Structure and Protocols, LTE	
	Radio Access Network, LTE-Advanced	
V	Mobile Applications and Mobile IP: Mobile Application Platforms,	CO1,CO3,C
	Mobile App Development, Mobile Application Deployment, Mobile IP	O4
		1

Learning Resources

Text Books

1. Cory Beard, William Stallings, Wireless Communication Networks and Systems, Pearson Education, 2016

Reference Books

- 1. William Stallings, Wireless Communication and Networking, 2/e, Pearson Education, 2005.
- 2. Theodore S. Rappaport, Wireless Communications, Principles and Practice, 2/e, Prentice Hall of India, 2002
- 3. Kaveh Pahlaven, P. Krishna Murthy, Principles of Wireless Networks, 1/e, Pearson Education, 2002.

4. Kamilo Feher, Wireless Digital Communications, 1/e, Prentice Hall of India, 1999

e- Resources & other digital material

1.<u>https://www.egr.msu.edu/~tongli/Introduction-WCN.pdf</u>

2.<u>https://youtu.be/Eu_mTZxPofI</u>

REAL-TIME SIGNAL PROCESSING

Course Code	19EC4601B	Year	Ш	Semester	II
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective II				2
Credits	3	L-T-P	3-0-0	Prerequisites	Digital Signal
					Processing
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

Course Outcomes

	oburise outcomes
Upon	successful completion of the course, the student will be able to
CO1	Generate waveforms using DSK for real time applications (L3)
CO2	Perform various operations using TMS320C6X DSP Processor (L4).
CO3	Implement IIR systems in Direct, Cascade and Parallel forms (L3).
CO4	Develop and realize computationally efficient algorithms on the DSP platform
	using FFT (L5).
CO5	Design real-time FIR and IIR filters on the DSP platform (L5).

Mapping	of co	ourse	outco	omes	with	Prog	ram (outco	mes (CO/ P	O/PS	O Mat	trix)	
Note: 1-V	Weak	corre	latior	n 2-N	Aediu	m co	rrelati	on 3	8-Stro	ng cor	relatio	n		
* - Averag	e valu	ie indi	cates	course	e corre	elation	stren	gth wi	th ma	pped P	0			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	
CO1	3	3	2	2	2							1	2	
CO2	3	3	2	2	2							1	2	
001	0	2	•	0	•							4		

								0.		F F · · ·	-			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2							1	2	1
CO2	3	3	2	2	2							1	2	1
CO3	3	3	2	2	2							1	2	1
CO4	3	3	2	2	2							1	2	1
CO5	3	3	2	2	2							1	2	1
Average* (Rounded to nearest integer)	3	3	2	2	2							1	2	1

	 C-N-b	
Unit No.	Contents	Mapped CO
Ι	 Input and output with DSK: Introduction, sampling, reconstruction aliasing, programming examples using C code, basic input and output using polling, basic input and output using interrupts. Real time Sine wave generation: sine wave generation using sin function call, sine wave generation with table created by Matlab, Signal Reconstruction, Aliasing and properties of the AIC23 codec, AM generation, ramp generation. 	CO1, CO2
Π	Architecture and Instruction set of the C6x Processor: Introduction, TMS320C6x architecture, Linear and Circular Addressing Mode, types of Instruction, Assembler Directives, timers, interrupts, Interrupt control registers, multi-channel buffer serial port, memory considerations, fixed and floating point format, constraints, programming examples using C, Assembly and Linear assembly.	CO2
III	Finite Impulse Response Filters: Introduction, Linear Phase FIR filters, FIR implementation using Fourier series method, FIR	СО2,

	implementation using window (rectangular, Hanning, Hamming, Blackman) technique Moving Average Filter FIR Filter design using	CO5
	MATLAB.	
IV	Infinite Impulse Response Filters : Introduction, IIR filter structure: Direct Form-I, Direct Form-II, Cascade and Parallel forms, Impulse invariance method, Bilinear transformation, IIR filter design using MATLAB.	CO2, CO3, CO5
V	Fast Fourier Transform : Introduction, development of radix-2 FFT algorithms, Decimation in time FFT algorithm, Decimation in frequency FFT algorithm, Inverse Fast Fourier transform using DIT and DIF algorithms. DFT of a sequence of real number without put in CCS graphics display window	CO2, CO4
	Learning Resources	
Text B	ooks	
1. Rulp	h Chassaing, Digital Signal Processing with C6713 and C6416DSK, 2/e V	Wiley
Publica	tions, 2005	
2. DSP	processor fundamentals, Architecture& Features-Lapsleyetal. S. Chand &	Ż
Co.200	0	
Referen	nce Books	
1. Sanja	ay K.Mitra, Digital Signal Processing-A Computer Based Approach, 4/e,	Tata
McGra	w Hill Publications, 2011.	
2. Theo	ry and Application of Digital Signal Processing - Lawrence R Rabiner &	
Bernard	d Gold, Prentice Hall.	
e- Reso	urces & other digital material	
1. http://	//www.nptel.iitm.ac.in/	
2. <u>http:</u>	//www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html	
3.http:/	/cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html	

		1			
Course Code	19EC4601C	Year	III	Semester	II
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective-II				-
Credits	3	L-T-P	3-0-0	Prerequisites	Digital Logic
					Design
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes												
Upon	pon successful completion of the course, the student will be able to												
CO1	Analyze signal processing architectures and implement them on FPGA												
	platforms. [L4]												
CO2	Explain number formats for computers [L2]												
CO3	Analysis and comparison of digital filters for processing of discrete time												
	signals[L4]												
CO4	Analyze Fourier transforms on signals and acquire knowledge about												
	Systems[L4]												

Марр	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
~~~	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		3		3					3			3	
CO2	3		3		3					3			3	
CO3	3	3								3			3	
CO4	3	3								3			3	
Average*														
(Rounded to	2	2	2	2	2					2			2	
nearest	5	5	5	5	5					5			5	
integer)														

Syllabus								
Unit No.	Contents	Mapped CO						
Ι	Overview of Digital Signal Processing, FPGA Technology, DSP Technology Requirements, Design Implementation	CO-1						
II	Computer Arithmetic: Number Representation, Binary Adders, Binary Multipliers, Fixed Point, Arithmetic Implementation, Floating Point Arithmetic Implementation, CORDIC.	CO-2						
III	FIR Digital Filters: Digital Filters, FIR Theory, Designing FIR Filters, Constant Coefficient FIR Design: Direct FIR Design, FIR Filter with Transposed Structure.	CO-3						
IV	IIR Digital Filters: IIR Theory, IIR Coefficient Computation, IIR Filter Implementation	CO-3						
V	Fourier Transforms: DFT algorithms: Fourier Transform Approximations using the DFT, Properties of the DFT, FFT algorithms: Cooley-Tukey FFT algorithm.	CO-4						

#### Learning Resources

## **Text Books**

1. Uwe Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays, Fourth Edition, Springer Publications, 2014

# **Reference Books**

- 1. Roger Woods, John McAllister, Dr. Ying Yi, FPGA-based Implementation of Signal Processing Systems, Wiley Publications, 2011.
- 2. Shoab Ahmed Khan, Digital Design of Signal Processing Systems, Wiley Publications, 2011.
- 3. Keshab Parhi, VLSI Digital Signal Processing, Wiley Student Edition, 2010.

# MICROWAVE ENGINEERING

Course Code	19EC4601D	Year	III	Semester	II
Course	Programme	Branch	ECE	<b>Course Type</b>	Theory
Category	Elective II				
Credits	3	L-T-P	3-0-0	Prerequisites	TLWG
Continuous	30	Semester	70	<b>Total Marks:</b>	100
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

---

	Course Outcomes									
Upon successful completion of the course, the student will be able to										
CO1	Interpret various frequency bands of microwave range and their designations in									
	electromagnetic spectrum and applications of microwaves. [L2]									
CO2	Analyze the properties of microwave tubes and microwave solid state devices									
	[L4]									
CO3	Identify different types of waveguide passive components for engineering									
	applications. [L3]									
<b>CO4</b>	Build Microwave Bench for measurement of various microwave parameters.[L3]									

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	1									1	2
CO2	3	2	2	2									1	2
CO3	3	2	2	3									1	2
CO4	3	2	2	2									1	2
Average* (Rounded to nearest integer)	3	2	2	2									1	2

----

Syllabus									
Unit	Contents	Mapped							
No.		CO							
Ι	Microwave Tubes Electromagnetic Spectrum and Microwave bands,								
	Applications of microwaves, Limitations of conventional Tubes at								
	Microwave Frequencies, Microwave Tubes –Classification. O-type								
	Tubes : Two Cavity Klystron – Re-entrant Cavities, Velocity	CO1							
	Modulation, Bunching Process, Expressions for O/P Power and	,CO2							
	Efficiency. Reflex Klystrons – Velocity Modulation, Power Output,								
	Efficiency, Oscillating Modes and O/P Characteristics.								
II	Helix Traveling -Wave Tubes (TWTs): Slow Wave Structures,								
	Amplification Process (qualitative treatment), Suppression of								
	Oscillations, Gain Considerations.	CO1CO2							
	M-Type Tubes - Introduction, Cross-field Effects, Cylindrical	001,002							
	Traveling Wave Magnetron -Hull Cut-off and Hartree Conditions,								
	Modes of Resonance and PI-Mode Operation, Separation of PI-								
	Mode, o/p characteristics								

III	Microwave Waveguides and Components– Probe, Loop, Aperture types. Waveguide Discontinuities – Waveguide Windows, Tuning Screws and Posts, Matched Loads. Waveguide Attenuators – Resistive Card and Rotary Vane type; Waveguide Phase Shifters – Dielectric and Rotary Vane type. Scattering Matrix Properties - Waveguide Multiport Junctions - E plane and H plane Tees, Magic Tee, S- matrix. Two–Hole Directional Couplers, S- matrix of a Directional Coupler. Ferrites– Composition and Characteristics, Faraday rotation, Ferrite Components – Gyrator, Isolator and Circulator, Smatrix.	CO1,CO3								
IV	Microwave Solid State Devices Introduction, Classification, Applications. TE Devices – Introduction, Gunn Diodes – Principle, RWH Theory, Characteristics, Modes of Operation – Gunn Oscillation Modes, Avalanche Transit-Time Devices- IMPATT and TRAPATT,PIN diode	CO1,CO2								
V	Description of Microwave Bench – Different components and their Features, Errors and Precautions, Measurement of Attenuation, Frequency, Microwave Power using Bolometer Bridge, Calorimetric method, Measurement of VSWR, Cavity Q, Impedance Measurement.	CO1,CO4								
· ////										
Learning Resources										
Text Books										
1. Fou 2. Sau Educa	ndations for Microwave Engineering – R.E. Collin, John Wiley, 2nd Edinuel Y Liao, "Microwave Devices and Circuits", 3rd edition, 200 tion.	tion, 2005 03, Pearson								
Refer	ence Books									
1. An McGra	napurna Das, Sisir K Das, "Microwave Engineering", 2nd edition, aw Hil	2006, Tata								
2. Mic 2004	crowave Engineering- David M.Pozar, John Wiley & Sonsm, Inc., 2	nd Edition,								
3. Mic	rowave Circuits and Passive Devices – M.L. Sisodia and G.S.Raghuva	nshi, Wiley								
Easter	n Ltd., New Age International Publishers Ltd., 1995.	•								
4. Mic	rowave Engineering Passive Circuits – Peter A. Rizzi, PHI, 1999									
e- Res	ources & other digital material									
1 <u>https</u>	s://nptel.ac.in/courses/108/103/108103141/									
2. http	://www.intechopen.com//passive_microwave_components_ana_anten	na 3.								
3.http	://www.slideshare.net/sarahkrystelle/lecture-notes-microwaves									

					ARM	I SYS	STEM	I DEV	<b>ELO</b>	PME	NT				
Cou	rse Co	ode	19E	C460	1E	Yea	r		III			Semes	ter	II	
Cou	rse		Prog	gram		Bra	nch		ECE			Cours	e Th	neory	
Cate	egory		Elec	tive I	Ι										
Crea	lits		3			L-T	-P		3-0-0	)		Prerec	quisite	s Ni	1
Con	tinuou	IS	30			Sem	ester		70			<b>Total</b>	<b>s:</b> 10	0	
Inter	rnal					End									
Eval	luation	<b>1:</b>				Eval	luatio	n:							
						C	ourse	e Outo	comes						
Upon	succes	sful	comp	letion	of the	e cour	rse, th	e stud	ent w	ill be	able to	)			
CO1	Illust	rate	the fe	eature	s of e	embed	lded s	system	ns, arc	hitect	ture of	ARM	7 and	applie	cations
	(L4).														
CO2	Class	sify l	betwe	en Al	RM a	nd T	HUM	B ins	tructio	on set	t and a	achiev	ing co	mpete	ncy in
	assen	nbly	progr	ammi	ng of	ARM	I. (L2	).							
CO3	Artic	ulate	the e	xcepti	ion, ir	nterru	pts an	d inte	rrupt l	handli	ing sch	emes	(L3).		
CO4	Inter	pret t	the are	chitect	tural f	eatur	es of l	LPC2	148 m	icroco	ontroll	ers (L2	2).		
CO5	Dem	onstr	ate th	ne har	dware	and	interfa	acing	periph	neral c	levices	to LP	C2148	(L3)	
	Mapp	oing	of cou	irse o	utcon	nes w	ith P	rogra	m out	come	s (CO	/ <b>PO/P</b>	SO M	latrix)	
	Note:	1- V	Veak	corre	lation	1 2	-Med	lium (	correl	ation	3-	Strong	g corre	elation	1
	* - /	Aver	age v	alue i	ndica	ites c	ourse	corre		1 stre	ngth v	vith m	apped	PO	
CO	)s	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO           12 <th>PO9</th> <th>PO10</th> <th>PO11</th> <th>12</th> <th>PSO1</th> <th>PSO2</th>								PO9	PO10	PO11	12	PSO1	PSO2

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	12	PSO1	PSO2
CO1	2					2						2	3	2
CO2	3	3	2		2	2						2	3	2
CO3	3	2	2			2						2	3	2
CO4	2					2						2	3	2
CO5	2	3	3	2	2	2	2	2				2	3	3
Average* (Rounded to nearest integer)	3	2	2	1	1	2	1	1				2	3	3

Syllabus		
Unit	Contents	Mapped
No.		CO
Ι	Introduction to ARM 7 Architecture: The RISC design philosophy, ARM	CO1
	design philosophy, embedded system hardware- AMBA bus protocol,	
	embedded system software- applications. ARM core data flow model,	
	Registers, CPSR-Processor modes.	
II	ARM Instructions set: Fundamentals of ARM instructions, Barrel shifter,	CO2
	Classification and explanation of instructions with examples-Data	
	processing, Branch, Load-store, SWI and Program Status Register	
	instruction, Introduction to THUMB, Differences between ARM and	
	THUMB, Register usage in Thumb.	
III	Exception handling: ARM processor exceptions and modes, vector table,	CO3
	exception priorities, link register offsets. Interrupts- assigning interrupts,	
	interrupt latency, IRQ and FIQ exceptions with example- code for	
	enabling and disabling IRQ and FIQ exceptions, Comparison between	
	exception and interrupts. Interrupt handling schemes- nested interrupt	
	handler, non-nested interrupt handler. Basic interrupt stack design	
IV	Introduction to ARM7 microcontroller: LPC2148 ARM 7 microcontroller,	CO4
----	----------------------------------------------------------------------	-----
	Features of LPC2148, Architecture of LPC2148, Addressing mode,	
	Memory organization, ARM register model, programmer model,	
	oscillator, PLL, CPSR, SPSR, 3stage pipelining.	
V	Interfacing with ARM: LED, GPIO programming with embedded C, LCD	CO5
	interfacing, programming of LCD, ADC, Interfacing of LM35	
	temperature sensor, DAC, Timers, UART programming, transfer of a	
	character and receive of a character program.	
	· • •	

#### Learning Resources

Text Books
1.Andrew N. SLOSS, "ARM System Developer's guide", ELSEVIER Publications, 2016

2. Steve Furber, "ARM System-on-chip Architecture", Pearson Education, 2012

#### **Reference Books**

1. In Sider 's Guide To Philips Arm7 Based Microcontroller ,Shitex.co.uk

2. ARM Assembly Language - William Hohl, CRC Press

---

Course	19EC4601F	Year	III	Semester	II
Code					
Course	PE - II	Branch	ECE	Course Type	Theory
Category					
Credits	3	L-T-P	3-0-0	Prerequisites	Sensors &IoT
Continuous	30	Semester	70	Total Marks	100
Internal		End			
Evaluation		Evaluation			

---

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	<b>CO1</b> Describe the functions, rules and operations of an RFID components and					
	systems					
CO2	<b>CO2</b> Outline the performance characteristics of different types of RFID sensors					
	and systems					
CO3	Analyze the different RFID enabled sensors	L4				
<b>CO4</b>	Develop RFID for Healthcare, Wellness and Environmental Applications	L5				

#### **Contribution of Course Outcomes towards achievement of Program Outcomes &** Strength of correlations (3-High, 2: Medium, 1:Low) COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 CO2 CO3 CO4 Average* (Rounded to nearest

---

-	-	-	

integer)

	Syllabus					
Unit No.	Contents	Mapped CO				
Ι	Fundamentals and Operating principles of RFID: Introduction- Barcode Systems, magnetic Strip Card, Smart cards, RFID systems- History of RFID. RFID Tag Components: Tag Antenna, Integrated Circuits, Substrate. RFID Tag Types: Passive Tags, Active Tags, The 1-Bit Transponder and Chip less Tags.	CO1, CO2				
Π	Communication Fundamentals in RFID Systems: Coupling Mechanisms-Data Encoding- Multipath Effect-Tag Reader and Sensor Communication-Passive Systems-Active Systems, UWB, Zigbee and Wi-Fi Tags.	CO1, CO2				
III	Fundamentals and Operating principles of Sensors: Types of Sensors, Use of Sensors, Basic Considerations of Sensor Design, Requirements for Accuracy, Requirements for Resolution,	CO1, CO2				

	Environment of the Sensor, Calibration, Wireless Sensors and Wireless Sensor Networks.	
IV	Design of RFID-Enabled Sensors: RFID Antenna Design Challenges, Antenna Basics and the Dipole, Passive RFID Antennas Using Serial Stubs, Bowtie T-Match RFID Antenna, Passive RFID Antenna Using Inductively Coupled Feed Structure, Voltage Multiplier for RFID Integrated Circuits, Microcontroller for Active RFID-Enabled Sensor.	CO3
V	RFID Applications: Short range RFID applications: Access Control- Transportation Ticketing-Personnel identification – Vehicle identification-Production line monitoring. Long range RFID applications: Supply chain management-Mail and shipping-Clothing Tags-Food production control	CO4
_		

#### **Learning Resources**

#### **Text Books**

- 1. V. Daniel Hunt, Alber Puglia, Mike Puglia, "RFID: A guide for radio frequency identification", Wiley & Sons, Inc., Publication, 2011
- 2. Amin Rida, LiYang, Manos Tentzeris, "RFID-Enabled Sensor Design and Applications". 2nd Edition, ARTECH HOUSE, 2010.

# **Reference Books**

1. Steven Shepard, "Radio Frequency Identification", 1st Edition, McGraw Hill, 2011.

# INTRODUCTION TO VLSI DESIGN

<b>Course Code</b>	19EC3602	Year	III	Semester	II
Course	Program	Branch	ECE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

#### **Course Outcomes**

Upon	successful completion of the course, the student will be able to
CO1	Analyze and simulate Verilog modules (L4)
CO2	Program PLDs, CPLDs and FPGAs. (L4)
CO3	Analyze VLSI fabrication processes and CMOS Logic Design (L4).
<b>CO4</b>	Compare different scaling methods of MOS logical circuits and subsystems. (L2)

# Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

		-
* - Average value indicate	es course correlation strength	with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		3		3					3			3	
CO2	3		3		3					3			3	
CO3	3	3								3			3	
CO4	3	3								3			3	
Average* (Rounded to nearest integer)	3	3	3	3	3					3			3	

	Syllabus						
Unit No.	Contents	Mapped CO					
Ι	<b>Computer-Aided Design:</b> Hardware Description Languages, Verilog Description of Combinational Circuits, Verilog Modules, Verilog Assignments, Procedural Assignments, Modelling Flip- Flops Using Always Block, Delays in Verilog, Compilation, Simulation, and Synthesis of Verilog Code, Verilog Data Types and Operators, Simple Synthesis Examples, Verilog Models for Multiplexers, Modeling Registers, Counters and finite state machines using Verilog Always Statements, Behavioural and Structural Verilog, Testing a Verilog Model.	CO1					
II	<b>Programmable Logic Devices: Complex</b> Programmable Logic Devices (CPLDs), Field-Programmable Gate Arrays (FPGAs), Implementing Functions in FPGAs.	CO2					
III	<b>IC Design Technology:</b> Integrated Circuit (IC) Era, Metal-Oxide- semiconductor (MOS) and related VLSI technology, basic MOS transistors, enhancement mode transistor action, NMOS fabrication, CMOS fabrication, comparison of NMOS, CMOS, BICMOS, GaAs technologies.	CO3					

IV	Electrical Properties of MOS circuits: Drain current vs Drain-	CO3										
	Source voltage relationships, MOS transistor threshold voltage,											
	pass transistor, NMOS inverter, CMOS inverter.											
	MOS Circuit Design Process: MOS Layers, Stick Diagrams,											
	Design Rules and Layout, 2µm micron based design rules. Layout											
	Diagrams											
V	Scaling of MOS Circuits: Scaling Models and Scaling factors,	CO3,CO4										
	Scaling factors for device parameters, Limits of scaling											
	Subsystem Design: Some architectural issues, Switch Logic, Gate											
	Logic, Examples of structured design, parity generator,											
	multiplexers											

#### Learning Resources

#### **Text Books**

- 1. Charles H. Roth, Lizy Kurian John, Byeong Kil Lee, Digital Systems Design using Verilog, 1/e, Cengage Learning, 2016.
- 2. Douglas A, Pucknell, Kamran Eshraghian, Essentials of VLSI Circuits and Systems, 1/e, Prentice Hall, 2012

#### References

- 1. Kang, Leblibici, CMOS Digital Integrated Circuits, 3/e, Tata McGraw Hill, 2001.
- 2. Jan M. Rabaey, Digital Integrated Circuits, 2/e, Pearson Education, 2002.
- 3. Jackson, Hodges, Analysis and Design of Digital Integrated Circuits, 3/e, Tata McGraw Hill, 2010.
- 4. Gary S May, Simon M Sze, Fundamentals of Semiconductor Fabrication, 1/e, Wiley, 2004.

#### e-Resources

- 1. https://nptel.ac.in/courses/108/107/108107129/
- 2. <u>https://www.cin.ufpe.br/~mel/pub/prototipac%E3o/referencias/CMOS_design/CMOS_-VLSI-design.pdf</u>

Course Code	19EC4602A	Year	III	Semester	II
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective-III				
Credits	3	L-T-P	3-0-0	Prerequisites	Engineering
					Physics, Analog
					Communications,
					Digital
					Communications
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

Course Outcomes	
Upon successful completion of the course, the student will be able to	Б

---

opon	50.000000000000000000000000000000000000	• ompronor					100 4010						
<b>CO1</b>	Identify the basic components of Fiber Optic Communication system. (L3).												
CO2	Illustrate	different	types	of	Optical	Sources,	Optical	Amplifiers	and	Optical			
	Detectors	. (L2).											

CO3	Apply the concepts of Wavelength Division Multiplexing (L3)
~ ~ .	

**CO4** Analyse the modulation characteristics and effect of noise (L4).

**CO5** Build fiber optic system (L3).

(Rounded

to nearest integer)

2

3

3

2

# Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)Note:1- Weak correlation2-Medium correlation3-Strong correlation

---

Note. 1-	Note. 1- weak contention 2-metation contention 5-Strong contention													
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	PO7	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	2										2
CO2	2	3	3	2										2
CO3	2	3	3	2										2
CO4	2	3	3	2										2
CO5	2	3	3	2										2
Average*														

	Syllabus									
Unit	Unit Contents									
No.		CO								
Ι	Introduction to Fiber Optic Communications- Block Diagram,	CO-1								
	Advantages.									
	<b>Optic Fiber Waveguides:</b> Ray theory, Step – Index Fiber, Graded –									
	Index Fiber, Attenuation, Pulse Distortion and Information Rate in									
	Optic Fibers									
II	Light Sources and Detectors :	CO-1,								
	Light-Emitting Diodes-Surface Emitting LEDs, Edge Emitting	CO-2								
	LEDs. Laser Principles, Distributed – Feedback Laser Diode,									
	Optical Amplifiers, Principles of Photo detection, Photomultiplier,									
	Semiconductor Photodiode, PIN Photodiode, Avalanche Photodiode.									

2

III	Couplers and Connectors: Principles, Fiber end Preparation, Splices,							
	Connectors, Source Coupling, Distribution Networks, Directional	CO-3						
	Couplers, Star Couplers, Switches, Fiber Optical Isolator, Wavelength-							
	Division Multiplexing.							
IV	Modulation, Noise and Detection: Light-Emitting-Diode Modulation							
	and Circuits, Laser-Diode Modulation and Circuits, Analog-Modulation							
	Formats, Digital-Modulation Formats, Optic Heterodyne Receivers,							
	Thermal and Shot Noise, Signal-to-Noise Ratio, Modal Noise,							
	Amplifier Noise, Laser Noise							
V	System Design and Fiber Optical Applications: Analog System	CO-1,						
	Design, Digital System Design, Applications of Fiber Optics.	CO-5						
	^ <u>~ ~ ~ ~ ~ ~ ^ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>							

#### Learning Resources

#### **Text Books**

1. Optical fiber Communication, Gerd Keiser, Mc Graw Hill. 3rd Edition, 2003

2. Joseph. C. Palais, "Fiber Optic Communications", Pearson Education, Asia, 2002.

# **Reference Books**

1. Howes M.J., Morgan, D.V ,"Optical Fiber Communication", John Wiely.1992

2. John M.Senior, "Optical Fiber Communication: Principles and Practice", Pearson Education, 2nd edition, 2006

---

3. John Powers ,"Fiber Optic Systems" Irwin Publications, 1997

Course Code	19EC4602B	Year	III	Semester	II
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective-III				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

#### **Course Outcomes**

Upon successful completion of the course, the student will be able to

**CO1** | Describe and explain basic operations of digital image processing. (L2)

**CO2** Analyse and Design image processing algorithms (L4).

**CO3** Implement image processing algorithms. (L4).

**CO4** Apply the image processing algorithms in practical applications. (L3)

#### Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1		1								2	
CO2	2	2	2	2	1								2	
CO3	2	2	2	2	3								2	
CO4	2	2	2	2	2	1		1	1		1	1	2	
Average* (Rounded to nearest integer)	2	2	2	2	2	1		1	1		1	1	2	

	Syllabus	
Unit No.	Contents	Mapped CO
Ι	<ul> <li>Digital Image fundamentals: Digital Image Representation, Fundamental steps in image processing, Concept of gray levels. Gray level to binary image conversion, Sampling and quantization, Resolution, Relationship between pixels.</li> <li>Image Transforms: 2-D discrete fourier transform and its Properties, Walsh transform, Hadamard Transform, Discrete cosine Transform, Haar transform, Slant transform, Hotelling transform.</li> </ul>	CO1, CO2, CO4
Π	<ul> <li>Image Enhancement in Spatial Domain: Point processing, Histogram processing, Image smoothing &amp; Image sharpening.</li> <li>Image Enhancement in frequency Domain: Steps involved in frequency domain filtering, Image smoothing &amp; Image sharpening.</li> </ul>	CO1, CO2, CO3, CO4
III	<b>Image compression:</b> Redundancies and their removal methods, Fedility criteria, Image compression models, lossy and lossless compression.	C01,C02, C03, C04

117	Image accountation. Detection of disconstitutive and that is 1	CO1
IV	boundary detection, thresholding, region – oriented segmentation.	CO1, CO2,
v	Colour image processing: Colour fundamentals, Colour models	CO3, CO4
v	Pseudo colour image processing, full colour image processing	CO1, CO2.
	r seudo colour image processing, fun colour image processing	CO3, CO4
	Learning Resources	
Te	xt Books	1.5
1.	Digital Image processing – R.C. Gonzalez & R.E. Woods, Addison Wesle education, 3 rd Edition, 2002.	ey/ Pearson
Re	ference Books	
1.	Fundamentals of Digital Image processing – A.K.Jain, PHI. 1989	
2.	Digital Image processing- S Jayaraman, S Esakkirajan and T. Veerakur 3 rd Edition 2010	mar. TMH
3	Digital Image Processing – William K Pratt John Wilely 3rd Edition 2	004
<i>3</i> .	The Essential Guide to Image Processing-Alan c. Bovik Academic Press	s. 2009.
н. е.	Resources & other digital material	3, 2007.
1.	1. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/ Digi	Img Pro
	/ui/TOC.htm	
2	http://nptel.jitm.ac.jn/video.php?subjectId=117105079	
3.	http://en.wikipedia.org/wiki/Digital_image_processing.	
4.	http://www.filestube.com/d/digital+image+processing+gonzalez+solution.	

		ASIC DE	SIGN		
<b>Course Code</b>	19EC4602C	Year	III	Semester	II
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective-III				
Credits	3	L-T-P	3-0-0	Prerequisites	Digital Logic
					Design
Continuous	30	Semester	70	<b>Total Marks:</b>	100
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	Describe the programming technologies of an ASIC and its construction (L2).					
<b>CO2</b>	Design and simulation of digital ICs using Verilog (L5)					
<b>CO3</b>	Compare different testing procedures for VLSI circuits. (L2)					
<b>CO4</b>	Analyze the algorithms of partitioning, placement and routing (L4)					

Mapping	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1- W	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
* - Average	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		3		3					3			3	
CO2	3		3		3					3			3	
CO3	3	3								3			3	
CO4	3	3								3			3	
Average* (Rounded to nearest integer)	3	3	3	3	3					3			3	

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	Types of ASICs: Full-Custom ASICs, Standard-cell-based ASICs,	CO1
	Gate array-based ASICs, channelled gate array, channel less gate array,	
	structured gate array, programmable logic devices, field programmable	
	gate arrays, design flow, case study. ASIC Cell Libraries. ASIC library	
	design: transistors as resistors, transistor parasitic capacitance	
II	Verilog: Basics of the Verilog language, operators, hierarchy,	CO2
	procedures and assignments, timing controls and delay, logic-gate	
	modeling, modelling delay, altering parameters.	
	Logic Synthesis: A logic-synthesis example, MULTIPLEXER, inside	
	a logic synthesizer verilog and logic synthesis.	
III	Simulation: Types of simulation, MUX example, logic systems, how	CO2
	logic simulation works, delay models, static timing analysis, switch-	
	level simulation, transistor-level simulation.	
	·	

IV	Test: The importance of test, boundary-scan test, faults, fault	CO3
	simulation, automatic test-pattern generation, scan test, built-in self-	
	test, a simple test example.	
V	ASIC Construction: Physical design, system partitioning, partitioning	CO4
	methods.	
	Floor planning and Placement: Floor planning, placement, physical	
	design flow, Routing: Global routing, detailed routing,	

#### **Learning Resources**

#### Text Books

1. Michael John Sebastian Smith, Application-Specific Integrated Circuits, Pearson Education, 2001.

#### **Reference Books**

- 1. Jan. M. Rabaey, Digital Integrated Circuits, 2/e, Prentice Hall, 2001
- 2. Sabih Gerez, Algorithms for VLSI Design Automation, Wiley, 1999.
- 3. Wayne Wolf, Modern VLSI Design, 4/e, Pearson Education, 2002.
- 4. Samir Palnitkar, Verilog HDL, 2/e, Pearson Education, 2003

Academic Rules and Regulations PVP19

		<b>RF CIRCU</b>	IT DESI	GN	
Course Code	19EC4605D	Year	III	Semester	II
Course Category	Program Elective-III	Branch	ECE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Electronic Devices and Amplifier Circuits (19EC3305)
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	1 Interpret the properties of active and passive components at high frequency							
	applications (L2)							
CO2	Develop transmission lines used in RF circuit design (L3).							
CO3	Build independent and interconnected networks (L3).							
<b>CO4</b>	Analyze characteristics of transistor amplifiers for RF applications (L4)							

Ma	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Ν	ote:	1- We	ak co	rrelati	on	2-Me	edium	corre	lation	3-	Strong	correl	ation	
* - Average value indicates course correlation strength with mapped PO														
COs	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02													
CO1	2	2	2	2	1								1	2
CO2	3	2	3	2	2								2	3
CO3	2	3	3	2	3								2	3
CO4	2	3	3	3	2								3	3
Average*														
(Rounded	2	2	2	2	2								2	2
to nearest	2	5	5	2	2								2	5
integer)														

Syllabus					
Unit No.	Contents	Mapped CO			
Ι	<b>Introduction:</b> Importance of Radio Frequency Design, Dimensions and Units, frequency Spectrum. RF behavior of Passive Components- Resistors, Capacitors and Inductors at high frequency. Chip Components and Circuit Board Considerations-Chip Resistors, Chip Capacitors, Surface-Mounted inductors. RF circuit Manufacturing Processes	CO1			

II	Active RF Components: Semiconductor Basics – Physical Properties of Semiconductors, the PN-Junction, Schottky Contact. RF Diodes-Schottky Diode, PIN Diode, Varactor Diode, Tunnel Diode. Bipolar-Junction Transistor - Construction, Functionality and Frequency Response. RF Field Effect Transistors - Construction, Functionality, Frequency Response. Metal Oxide Semiconductor Transistors-Construction, Functionality	CO1
III	<b>Transmission Line Analysis:</b> Examples of Transmission Lines – Two- Wire Lines, Coaxial Line, Microstrip Lines. Equivalent Circuit Representation, basic laws, Circuit parameters for a Parallel –Plate Transmission Line. General Transmission line equation, characteristic impedance, lossless transmission line model, Microstrip Transmission lines	CO2
IV	<b>Single and Multiport Networks:</b> Basic definitions, interconnecting networks-series and parallel connection of networks, Cascading networks, ABCD network representation. Network properties and applications-inter relations between parameter sets. Scattering Parameters-Definition of S-parameters, chain scattering matrix	CO3
V	<b>RF Transistor Amplifier Design:</b> Characteristics of Amplifiers – Amplifier Matching Basics, Power amplifiers, Broadband Amplifiers, High Power Amplifiers, multistage amplifiers.	CO4
	Learning Resources	
Text	Books	
1. Rl Pe 2. Se C	F Circuit Design: Theory and applications by Reinhold Ludwing and Gene earson Education Asia Publication, New Delhi 2001 cerets of RF Design by Joseph Carr., 3 rd Edition, Tata McGraw-Hill H company Limited.	Bogdnov Publishing
Refer	rence Books	
1. Ra Pe	adio frequency and microwave electronic illustrated Mathew M. Radmane earson Education.	esh, 2001,
e- Kes	sources & other digital material	

# SOFTWARE DEFINED RADIO

<b>Course Code</b>	19EC4602E	Year	III	Semester	II
Course	Programme	Branch	ECE	Course Type	Theory
Category	<b>Elective-III</b>				
Credits	3	L-T-P	3-0-0	Prerequisites	Basic
					knowledge of
					Signal
					processing and
					communication
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

	Course Outcomes						
Upon successful completion of the course, the student will be able to							
CO1	O1 Understandrequirements, benefits and different models for Software Defined Radio.						
CO2	O2 Understand in detail about Software Defined Radio Architecture for performance						
	optimization.						
CO3	Acquire complete knowledge regarding functioning of different blocks associated with						
	Software Defined Radio.						
<b>CO4</b>	Design circuits at different multirate signalling technique for frequency conversion and						
	sampling issues.						

---

#### ---Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

* - Average value indicates course correlation	strength with mapped PO
------------------------------------------------	-------------------------

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3												2
CO2	3	3	3	3	3	2						1		2
CO3	3	3	3	3	3	2						1		2
CO4	3	3	3	3	3	2						1		2
Average* (Rounded to nearest integer)	3	3	3	3	3	2						1		2

Syllabus							
Unit	Contents	Mapped					
No.		CO					
Ι	Introduction: The requirement for software defined radio, the benefits	CO1					
	of multi-standard terminals, operational requirements, business models						
	for software defined radio, new base station and network architectures,						
	smart antenna systems.						
II	Basic Architecture of a Software Defined Radio: Software defined	CO2					
	radio architectures; Ideal Software defined radio architectures,						
	Required hardware specifications, Digital aspects of a Software						
	Defined radio, Current technology limitations.						

		<b>a a a</b>						
III	Flexible RF receiver architectures: Receiver architecture options,	CO3						
implementation of a digital receiver: frequency up conversion using under sampling, achieving processing gain using oversampling. Noise								
	under sampling, achieving processing gain using oversampling, Noise							
	figure, Receiver sensitivity, ADC spurious signals.							
IV	Multi-Band and General Coverage Systems: Multiband Flexible	CO3,						
	receiver design, The problem of the Diplexer, Achieving Image	CO4						
	rejection, Dynamic range enhancement, feedback and feed forward							
	techniques							
V Flexible transmitters and Power amplifiers: Analog quadrature up								
•	conversion quadrature up conversion with interpolation Interpolated	CO4						
	hand pass up conversion PLI based transmitters Active All-pass	001						
	filter. Use of high pass and low pass filters. Polyphase filtering							
	Learning Resources							
Тех	t Books							
1.	P Kenington, "RF and Baseband Techniques for Software Defined Radi	io", Arteo						
	House,2005							
Ref	erence Books							
1.	Jouko Vanakka, "Digital Synthesizers and Transmitter for Software Radio",							
	Springer,2005							
2.	Wally H. W. Tuttlebee, "Software Defined Radio: Baseband Technologies for 3	G						
	Handsets and Base stations", John Wiley & sons, 2003.							
-	· · · · · · · · · · · · · · · · · · ·							
e-R	esources:							
e- <b>R</b> 1.	esources: https://en.wikipedia.org/wiki/Software-defined_radio							
e-R 1. 2	esources: https://en.wikipedia.org/wiki/Software-defined_radio https://www.wiley.com/en-							
e <b>-R</b> 1. 2. 3	esources: https://en.wikipedia.org/wiki/Software-defined_radio https://www.wiley.com/en- us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Eunction	0 <b>n</b> s_ <b>n</b> _						
e <b>-R</b> 1. 2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 0780470851647	ons-p-						
e <b>-R</b> 1. 2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647	ons-p-						
e-R 1. 2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
e <b>-R</b> 1. 2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
e-R 1. 2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
e <b>-R</b> 1. 2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
e <b>-R</b> 1. 2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
2.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
e <b>-R</b> 1. 2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
e <b>-R</b> 1. 2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
e <b>-R</b> 1. 2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
1. 2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
1. 2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
1. 2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
e- <b>R</b> 1. 2. 3.	esources: <u>https://en.wikipedia.org/wiki/Software-defined_radio</u> <u>https://www.wiley.com/en-</u> us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
e- <b>R</b> 1. 2. 3.	esources: https://en.wikipedia.org/wiki/Software-defined_radio https://www.wiley.com/en- us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
e- <b>R</b> 1. 2. 3.	esources: https://en.wikipedia.org/wiki/Software-defined_radio https://www.wiley.com/en- us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Functio 9780470851647 	ons-p-						
e- <b>R</b> 1. 2. 3.	esources: https://en.wikipedia.org/wiki/Software-defined_radio https://www.wiley.com/en- us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Function 9780470851647 	ons-p-						
e- <b>R</b> 1. 2. 3.	esources: https://en.wikipedia.org/wiki/Software-defined_radio https://www.wiley.com/en- us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Functio 9780470851647 	ons-p-						
2	esources: https://en.wikipedia.org/wiki/Software-defined_radio https://www.wiley.com/en- us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Functio 9780470851647 	ons-p-						
2. 3.	esources: https://en.wikipedia.org/wiki/Software-defined_radio https://www.wiley.com/en- us/Software+Defined+Radio%3A+Architectures%2C+Systems+and+Functio 9780470851647 	ons-p-						

# FIBER OPTIC SENSORS AND APPLICATIONS

Course	19EC4605F	Year	III	Semester	II
Code					
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	<b>Total Marks:</b>	100
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

#### ---Course Outcomes

Upon successful completion of the course, the student will be able to						
CO1	Understand an optical fiber communication link. (L2).					
CO2	Analyze the characteristics of LED&LASER sources and Photo detectors (L4).					
<b>CO3</b>	Identify the industrial applications of Optical Fibers.(L3)					

**CO4** Develop an Optical Network (L3).

# Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation					2-Medium correlation				3-Strong correlation					
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	3								1		2
CO2	2	3	2	2								2		1
CO3	3	2	3	3								2		2
CO4	2	3	2	3								1		1
Average* (Rounded to nearest integer)	3	3	3	3								2		2

---

Syllabus						
Unit	Contents	Mapped				
No.		CO				
Ι	Propagation of EM waves in Optical fibers:	CO1				
	Fiber optic communication system, Light propagation through fibers,					
	Acceptance angle, Numerical Aperture, Types of fibers and their					
	properties - step index, graded index, single mode & multimode,					
	Losses in optical fibers-Absorption, Attenuation, Scattering and					
	Dispersion losses.					
II	Optical Sources:	CO2				
	LED- Principle of operation, LED materials, power and efficiency					
	calculation, LED structures- Homostructure, Heterostructure, LED					
	types-surface emitting and edge emitting LEDs – and their					
	characteristics.					
	LASER-Fundamental characteristics, three level and four level lasers-					
	Properties of lasers-Laser modes-Resonator configuration, Types of					
	lasers - Gas laser, solid laser, liquid laser, semiconductor laser.					

-	Photo detectors:	CO2
	Performance and compatibility requirements for detectors. Optical	
	detection principles, Quantum efficiency, responsivity, noise and gain	
	calculation of detectors. P-i-N photodiodes. Avalanche photodiodes.	
	Ouantum-dot photo detectors. Phototransistors.	
[V	Industrial applications of Optical Fibers and LASERS:	CO3
	Mach-Zehnder Interferometric sensor, fiber optic gyroscope,	
	distributed fiber optic sensor-OTDR, LIDAR, measurement of	
	pressure, temperature, current and liquid level, Material processing-	
	Laser heating, removal and vaporization. Holography - Basic	
	principle, Holographic interferometer, applications –Holography for	
	non-destructive testing-Medical applications of lasers.	
V	Fiber Optic networks and IOT	CO3
	Optical Networking: Network terminology, Network categories,	
	network layers, Network topologies, SONET/SDH-Networks, High-	
	speed light wave links, Building blocks of IOT enabling technologies,	
	characteristics of IOT systems, physical and logical design of IOT,	
	Data acquisition using sensors, camera, GPS, Smart phone.	
ear	rning Resources	
'ex	t Books	
•	Optical Fibre Communications Principles and Practice, Third edition John	M. Senio
	PearsonEducation Limited 2009.	
	Optical Fibre Communications, fourth edition, Gerd Keiser, Tata Mc	Graw H
	EducationPrivate Limited, 2012.	
	Industrial lasers and their applications, John and Harry, McGraw Hill, 1974.	
•	Internet of Things: A Hands-On Approach by Arshdeep Bahga, Vijay Madis	etti, 2014
lefe	erence Books	
•	Optical electronics foundation book, Ghatak A.K. and Thiagarajan K, T Delhi,1991.	TMH, Ne
) '	Fibre Optic Communications, Joseph C. Palais, 5 th Edition, Pearson Education	on, 2008.
•	Introduction to lasers and their applications, D.C.O'shea, Russel Callen, I	Mc Milla
	1977.	
•	Industrial applications of lasers, John F Ready, Academic press, 1978.	
- R	Industrial applications of lasers, John F Ready, Academic press, 1978. esources & other digital material	
• <b>R</b>	Industrial applications of lasers, John F Ready, Academic press, 1978. esources & other digital material https://onlinecourses.nptel.ac.in/noc21_ee40/preview	
• <b>R</b>	Industrial applications of lasers, John F Ready, Academic press, 1978. esources & other digital material https://onlinecourses.nptel.ac.in/noc21_ee40/preview 	
• <b>R</b>	Industrial applications of lasers, John F Ready, Academic press, 1978. esources & other digital material https://onlinecourses.nptel.ac.in/noc21_ee40/preview 	
• <b>R</b>	Industrial applications of lasers, John F Ready, Academic press, 1978. esources & other digital material https://onlinecourses.nptel.ac.in/noc21_ee40/preview 	
• <b>R</b>	Industrial applications of lasers, John F Ready, Academic press, 1978. esources & other digital material https://onlinecourses.nptel.ac.in/noc21_ee40/preview 	
- <b>R</b>	Industrial applications of lasers, John F Ready, Academic press, 1978. esources & other digital material https://onlinecourses.nptel.ac.in/noc21_ee40/preview 	
- <b>R</b>	Industrial applications of lasers, John F Ready, Academic press, 1978. esources & other digital material https://onlinecourses.nptel.ac.in/noc21_ee40/preview 	
- <b>R</b>	Industrial applications of lasers, John F Ready, Academic press, 1978. esources & other digital material https://onlinecourses.nptel.ac.in/noc21_ee40/preview 	
• <b>R</b>	Industrial applications of lasers, John F Ready, Academic press, 1978. esources & other digital material https://onlinecourses.nptel.ac.in/noc21_ee40/preview 	
• <b>R</b>	Industrial applications of lasers, John F Ready, Academic press, 1978. esources & other digital material https://onlinecourses.nptel.ac.in/noc21_ee40/preview 	

ENGINEERING ETHICS									
Course Code	19MC1601	Year	III	Semester	II				
Course Category	Mandatory Course	Branch	ECE	Course Type	Theory				
Credits	0	L-T-P	3-0-0	Prerequisites					
Continuous Internal Evaluation:	100	Semester End Evaluation:		Total Marks:	100				

#### **Course Outcomes**

____

Upon successful completion of the course, the student will be able to

**CO1** Improve knowledge of ethics

**CO2** High sense of responsibility

**CO3** Environmental awareness

**CO4** Professional outlook

**CO5** Developing a broad culture.

 Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

 Note:
 1- Weak correlation
 2-Medium correlation
 3-Strong correlation

 * - Average value indicates course correlation strength with mapped PO

 COs
 PO1
 PO2
 PO3
 PO4
 PO5
 PO6
 PO7
 PO8
 PO9
 PO11
 PO11
 PO11

COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								3				2		
CO2								3				3		
CO3								3				3		
CO4								3				1		
CO5								3				2		
Average*														
(Rounded to								3				3		
nearest								5				3		
integer)														

Syllabus									
Unit	Contents	Mapped							
No.		CO							
Ι	Engineering ethics – Definition,								
	Three types of Engineering ethics								
	Rights and responsibilities of an engineer, Evolution of engineering								
	ethics								
II	II Code of ethics, Kohlberg's theory, Gilligan's theory								
III	Engineering as social experimentation								
	Engineer's social responsibility								
	Technological Optimism: The promise Of Technology								
IV	Computer ethics, Ethical hacking, Computer Privacy	CO1,							
	Impact of globalization on Computer ethics	CO4							
V	Environmental ethics. and its significance, Sustainable	CO1,							
	Development, Technology assessment	CO4,CO5							
		•							

#### Learning Resources

# **Reference Books**

- 1. Ethics in engineering: Mike W.Martin Roland, Mac Grow Hill.Schinzinger
- 2. Engineering ethics-----M.Govindarajan, S.Natarajan & V.S.Senthil Kumar. Eastern economy Edn. PHI

---

- 3. Engineering ethics---Harris pitch and Rabbins, Cengage.
- 4. Caroline whit back---Ethics in engineering practice and research: Cambridge.

# e- Resources & other digital material

1. 1. http://nptel.ac.in/courses.php

2. http://jntuk-coeerd.in/

		ENVIE	RONMENTAL 1	MANAGEM	ENT									
Cours	e Code	19ES5601A	Year	III	Semester	II								
Cours	e	Open	Branch	ECE	Course Type	Theory								
Categ	ory	Elective II												
Credi	ts	3	L-T-P	3-0-0	Prerequisites									
Conti	nuous	30	Semester	70	Total Marks:	100								
Intern	al		End											
Evalu	ation:		<b>Evaluation:</b>											
			<u> </u>											
1.0		1 1	Course Out	comes	11									
After s	uccessfu	l completion of	the course, the s	tudent will be	able to									
004	Underst	and environmen	tal management	principles in	relation to									
COI	sustaina	ble developmen	t & Economic su	istainability. (	L2)									
000	Apply c	ritically theoret	cal and conceptu	al issues relat	ting to									
CO2	environ	mental.(L3)	1 .1	11	1, 1, 1, 1	1								
	Analyze	e & undertake re	search that will a	allow to articu	ilate in both oral a	nd written								
cor	form an	d for appraisal o	of contemporary	environmenta	I management dec	1810n-								
COS	making.	(L4)	·		1 1 1 1 1 1 1									
004	Analyze	e & Employ proj	ect management	processes and	d analytical tools t	0								
	achieve	a sustainable of	itcome to enviro	nmental probl	ems. (L4)									
CO4	Apply knowledge to Prepare technical papers/briefings to communicate													
<u> </u>	Apply k		11 (12)	CO5 risk/solutions to stakeholders.(L3)										

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3						2							
CO2	3						2							
CO3	3						2							
CO4	3						2							
CO5	3						2							
Average * (Rounde d to nearest	3						2	2						
integer)														

	Syllabus									
UNIT	Contents	Mapped								
NO		Cos								
Ι	The atmosphere and human activities	CO1								
	structure and composition of the atmosphere , Atmospheric pollution and causes describe and explain the causes, with reference to London smog, acid rain, ozone layer depletion, greenhouse effect, and their impact on people and environment ,Managing atmospheric pollution by people, governments and individuals to reduce the global impacts, Case study New Delhi Smog	CO2								

II	Water and its management	CO1
	Global water distribution state the distribution, Water quality and	CO2
	availability - water-rich and water-poor countries, Multipurpose	
	dam projects -Impacts -case studies- chipko movement, Narmada	
	bachavo andholan ,Water pollution and its sources ,Managing	
	pollution of fresh water -Case study-Ganga River, Water related	
	diseases and Management.	
III	Energy and the environment	CO1
	Classify energy resources as non-renewable and renewable, Fossil	CO3
	fuel formation, Energy demands, Conservation and management of	
	Non-renewable energy resources, Alternate energy sources to meet	
	the present demand.	
IV	Managing natural hazards	CO1
	Earthquakes and volcanoes Management - Case study, Earthquake	CO4
	management in California, Tropical cyclones- storms, hurricanes,	
	typhoons-Case study Managing cyclone impact in Orissa, India,	
	Flooding -Case study Flooding in Bangladesh, Drought -Case	
	study Drought in the India.	
V	Techniques for investigation and examination	CO1
	Investigation skills-EIA, Methods for local investigations – EIA	CO5
	statement ,Examination techniques-Policy framing- Odd and Even	
	rule in Delhi.( Using Software)	

#### Learning Recourses

#### **Text Books**

- 1. Agarwal, K.M., Sikdar, P.K., Deb., S.C (2005) A Text Book of Environment, Macmillan India Limited.
- 2. Sharma, R.D. (1976), Organisational Management, Light and Life Publishers, New Delhi.
- 3. Varma and Agarwal, Theory & practice of Management Forward Book Depot, New Delhi.

#### **Reference Books**

- 1. Kovntz, H and C. Danvel (1978): Essential of management, second edition, Tata Mc Graw Hill publishing company, New Delhi.
- 2. Erickson, P.A. (1977) Environmental Impact Assessment Principles an3. Erickson, P.A. (1977)

Course Code	19ES5601B	Year	III	Semester	II
Course	Open	Branch	ECE	Course Type	Theory
Category	Elective II				
Credits	3	L-T-P	3-0-0	Prerequisites	Analog
					Communications
					Digital
					Communications
Continuous	30	Semester	70	<b>Total Marks:</b>	100
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

Course	Outcome
t mirse	v mucomes

U	pon	successful completion of the course, the student will be able to
С	01	Infer the basic knowledge of telecommunication system, regulation and standards
		of telecom regulatory bodies (L2).
С	02	Able to deduce cost of different devices such as mobile. Wi-Fi and DTH operator

- CO2 Able to deduce cost of different devices such as mobile, Wi-Fi and DTH operators and carry out investigation of Frequency Management and Business on Bandwidth. (L3).
- **CO3** Make use of revolutionary changes in mobile and wireless technologies to understand recent developments (L3).
- **CO4** Examine different optical communication components. (L4).

**CO5** Justify the use of satellite orbits, different components and sub-systems in advanced communication systems (L4).

---

# Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1	l-Wea	ak co	rrelat	tion	2-N	lediu	m cor	relation	on	3-St	rong c	orrelat	ion
* - Average value indicates course correlation strength with mapped PO													
00		DO1	DOA	DOI	DO 4		DO(		DOO	DOO	DO10	DO11	DO14

COs	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2								2	2	2
CO2	3	3	2	2								2	2	2
CO3	3	3	2	2								2	2	2
CO4	3	3	2	2								2	2	2
CO5	3	3	2	2								2	2	2
Average* (Rounded to nearest integer)	3	3	2	2								2	2	2

	Syllabus	
Unit No.	Contents	Mapped CO
Ι	<b>Telecommunication Systems:</b> Telephones, Telephone System, Facsimile, Internet Telephony. Telecommunication Standards and Regulations - International telecommunication union (ITU) - TRAI and its role – Frequency management – Cost computations – Mobile and DTH operations – Role of wireless planning commission (WPC) for telecommunications in India	CO1

II	Telecom business management: Automated teller machines -	CO2
	Teleconferencing – Telecommuting –Customer oriented	
	communication aspects – Telecom billing - Concepts of data rate and	
	bandwidth requirements – Digital subscriber line – Broadband	
	technologies – Digital home – Voice enabled DSL.	
III	Cell Phone Technologies: Cellular Telephone Systems, A Cellular	CO3
	Industry Overview, 2G and 3G Digital Cell Phone Systems, Long	
	Term Evolution and 4G Cellular Systems	
	Wireless Technologies: Wireless LAN, PANs and Bluetooth,	
	ZigBee and Mesh Wireless Networks, WiMAX and Wireless Metropoli	
	tan-Area Networks	
IV	<b>Optical Communication:</b> Optical Principles, Optical Communication	CO4
	Systems, Fiber-Optic Cables, Optical Transmitters and Receivers.	
V	Satellite Communication: Satellite Orbits, Satellite Communication	CO5
	Systems, Satellite Subsystems, Ground Stations, Satellite Applications,	
	Clabel Marris et au Catallita Caratana	

	Learning Resources
Te	xt Books
1.	Louis E. Frenzel Jr., Principles of Electronic Communication Systems, 4/e, Mc
	Graw Hill Publications, McGraw-Hill Education, 2016.
2.	Willium C. Y. Lee, "Wireless & Cellular Telecommunications", McGraw-Hill
	Companies Inc, Third Edition, 2006.

# **Reference Books**

- 1. Wayne Tomasi, Electronic Communication Systems, 5/e, Pearson Education, 2009.
- 2. Wayne Tomasi, Advanced Electronic Communication Systems, 4/e, Pearson Education, 2013.

---

3. Dennis Roddy, Electronic Communications, 4/e, Pearson Education, 2003.

	G	ERMAN FOR	BEGINNERS		
Course Code	19HS5601A	Year	III	Semester	Π
Course Category	Open Elective II	Branch	Common to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

#### **Course Outcomes**

Upon	successful completion of the course, the student will be able to:
CO1	Learn basics of German Language and develop a consciousness for the cultural background of the language.
CO2	Understand authentic texts/ announcements in German
CO3	Express themselves according to the situations and to give/seek information in German

**CO**4 Read and respond to an extract from a story, an e-mail message or song or simple text

Write the spellings correctly and sentences in a grammatically correct form **CO5** 

#### Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3. M-Medium-2, L- Low-1)

Sucieu		I CIUU	ions (		sno,	TAT 1	urcur		, <b>г</b>					
	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2
CO1										2				
CO2										2				
CO3										2				
CO4										2				
CO5										2				
Average* (Rounded to nearest integer)										2				

	SYLLABUS	
UNIT	CONTENT	Mapped
NO.		СО
т	Alphabets, Numbers, Basic Vocabulary, German States & Its	CO1,CO2
1	Culture	
п	Modal Verbs, Separable and Inseparable Verbs, Transitive and	CO1,CO2
11	Intransitive Verbs, Verb Conjugation.	CO3
III	Adverbs, Prepositions, Personal Pronouns, Adjectives	CO3
W	Present Tense, Past Tense, Future Tense	CO3,CO4
1 V		CO5
V	The Nominative Case, Accusative Case, Dative Case, Genitive	CO3,CO4
v	Case, The Imperative	CO5

#### **Learning Resources**

#### **Text Book** 1. Netzwerk A1 Deutsch als Fremdsprache by Goyal Publications, New Delhi

#### E- Resources & other digital material:

- https://learngerman.dw.com/en/overview 1.
- 2. https://onlinecourses.nptel.ac.in/noc22_hs30/
- 3. https://app.memrise.com/German-1

	ANA	ALYTICAL ES	SAY WRIT	ING	
Course Code	19HS5601C	Year	III	Semester	II
Course Category	Open Elective II	Branch	Common to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes
Upon	successful completion of the course, the student will be able to:
C01	Understand the meaning of analysis and how to analyze the content of essays,
001	paragraphs, reviews, books, articles etc. (L2)
CO2	Classify various types of analytical topics according to context and make reports.
02	Organize the topic and prepare hypothesis (L3)
CO3	Construct meaningful arguments by following thematic information and suitable
COS	language.(L3)
CO4	Analyze thesis statement, topic sentences, evidence, and supporting ideas. (L4)
COS	Distinguish the general essays from analytical essays and reorganize the
05	content.(L4)

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (H-High3, M-Medium-2, L-Low-1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2										3		2		
CO3										3		2		
CO4										3		1		
CO5										3		3		
Average*										3		2		
(Rounded														
to nearest														
integer)														

	SYLLABUS	
UNIT NO.	CONTENT	Mapped CO
Ι	Identifying the topic sentences – meaning of analysis – History of essay writing – Different types of essays – Role of analytical essays	CO1, CO5
II	Fundamental prose skills – explore the content – discover various approaches in writing essays – Hypothesis of the topic or research	CO 1, CO2, CO5
III	Discussing and emulating different topics – traditional methods of essay writing – sophisticated way to present the topics	CO 1, CO3 ,CO4
IV	Analyze the essays – anthology of essays – Using analytical essays in different contexts – Competitive exams orientation – Comprehensive questions	CO1, CO4,CO5
V	Types of essays – differentiation of essays – contemporary essayists like Hazlitt, David Foster Wallace, Montaigne, Jawaharlal	CO1,CO2, CO5

Nehru, Jiddu Krishna Murthy, Iris Murdoch, Woolf Bacon, RW
Emerson, Samuel Johnson, George Orwell, James Baldwin, Agatha
Christie, Jane Austen etc.

#### **Learning Resources**

#### **Reference Books**

- 1. Ariel Levy, ed., The Best American Essays 2015, Houghton Mifflin, 2015
- 2. Philip Lopate, ed., The Art of the Personal Essay (Anchor Books 1997)
- 3. David Foster Wallace, Consider the Lobster and Other Essays, Back Bay Books, 2007
- 4. Revising Prose by Richard Lanham
- 5. 100 ways to improve your writing by Gary Provost
- 6. Bird by Bird by Anne Lamott
- 7. The Sense of Style by Steven Pinker

#### e- Resources & other digital material:

- 1. https://canvas.harvard.edu/courses/8124
- 2. <u>https://boomessays.com/blog/how-write-analytical-essay#definition</u>
- 3. https://www.ranker.com/list/best-essayists/ranker-books

INDIAN ECONOMY						
Course Code	19HS5601D	Year	III	Semester	II	
Course Category	Open Elective II	Branch	Common to all	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	NIL	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

	Course Outcomes						
Upon s	successful completion of the course, the student will be able to:						
CO1	To understanding of the fundamental concepts Indian economy and theoretical						
001	background.						
CO2	The ability to apply knowledge to evaluate the impact of the population,						
	unemployment and poverty on the economic development.						
CO3	To understanding of the role of public and private sector in the Indian economy.						
	To awareness on structure and growth of capital market in India industrial						
CO4	growth, how to align the management of a supply chain with corporate goals						
	and strategies.						
COS	The capability in the analyse Public expenditure trends, issues and Assessment						
005	of Indian planning.						

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes &													
		St	reng	th of	corre	latior	ns (H	-High	<b>13,</b> ]	M-Med	lium-2	2, L-I	Low-1)	
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		2								3	3	
CO2	3	3		2								3	3	
CO3	3	3		2								3	3	
CO4	3	3		2								3	3	
CO5	3	3		2								3	3	
Average* (Rounded to nearest integer)	3	3		2								3	3	

UNIT NO.	CONTENT	Mapped CO
Ι	<b>Economic Development: A theoretical back ground:</b> Economic growth, development and underdevelopment, characteristics of under developed and developing countries. Nature of the Indian economy, role of natural resources in economic development. Environmental protection and sustainable development.	CO1
II	<b>Population and Human Development:</b> Indian population size and growth trends, reasons of the rapid growth of population, population and economic development. Employment and unemployment in India, the concept of poverty and rural poverty, income distribution in India	CO2

III	<b>Industrial sector and services in Indian economy:</b> various industrial policies, role of public and private sector in the Indian economy, LPG policy 1991, Industrial sickness in India, foreign trade and foreign capitals, Balance of payments, WTO and India.	CO3
IV	<b>Money and banking:</b> characteristics of the Indian money market, price trends and inflation, commercial banking in India. Capital market in India, structure and growth of capital market in India industrial growth, RBI, Evolutional of institutional financing in India.	CO4
v	<ul> <li>Public finance, Economic planning and policy: fiscal policy and monetary policy, Indian tax structure. Public expenditure trends and issues.</li> <li>Economic planning and policy: Evaluation of the objectives of economic planning, important features of Indian plans, Assessment of Indian planning.</li> </ul>	CO5

#### LEARNING RESOURCES

#### Text Books

- 1. Misra and Puri Indian economy Himalaya Publishing House twenty eight revised and updated edition 2010
- T. Dyson, 2008,-India's Demographic Transition and its Consequences for Development in Uma Kapila, editor, Indian Economy Since Independence, 19th edition, Academic Foundation
- 3. Dr. S.K. Singh/Prof. T.N. Jha / Dr. Vinita Singh Economic Development 21st Century Edition
- 4. A. Musgrave and P.B. Musgrave, Public Finance in Theory &Practice, McGraw Hill Publications, 5th edition, 1989.

	PU	BLIC ADMIN	ISTRATIO	)N	
Course Code	19HS5601E	Year	III	Semester	II
Course Category	Open Elective-II	Branch	Common to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes	Level
Upon	successful completion of the course, the student will be able to:	
CO1	Describe the scope and significance of public administration	L2
CO2	Explain different administrative thoughts.	L2
CO3	Illustrate accountability and control over administration by different	L2
005	groups in society	
<b>CO4</b>	Explain the concepts of union and state government administration	L2
CO5	Summarize the administration process in civil services	L2

Con	tribu	ition	of C	ourse	Outco	omes	towar	ds acl	hieven	nent of	f Prog	ram (	<b>)</b> utcon	1es &
			Stre	ngth o	of corr	elatio	ns (H·	High	3, M	[-Medi	ium-2	, L- L	ow-1)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2		3	3		1			2
CO2						2		3	3		1			2
CO3						2		3	3		1			2
CO4						2		3	3		1			2
CO5						2		3	3		1			2
Average*														
(Rounded						2		2	2		1			2
to nearest						2		5	5		1			2
integer)														

	Syllabus					
UNIT NO.	Course Content	Mapped COs				
I	<b>Introduction:</b> Meaning scope and significance of public administration, evolution of discipline and its present status, challenges of liberalization, privatization and globalization, good governance, electronics governance and applications, New Public Management(NPM)	CO1				
П	Administrative Thought: Scientific management theory, classical theory, bureaucratic theory, human relation theory, system theory	CO2				
III	Accountability and Control: Legislative, executive and judicial control over administration, role of media, interest groups, NGOs, civil society, Right to Information ACT(RTI), social audit, citizen chapters.	CO3				
IV	Union and State Government Administration: President, prime minister, council of ministers, cabinet, central and state secretariats, boards and commissions, governor, chief minister and council of ministers, central state relations, finance commission, Neeti ayog	CO4				

V	Civil Services: Recruitment, training and other condition of services, district administration, role of collector, local self-governing institutes – 73 rd and 74 th constitutional amendments act.	CO5
	Learning Resources	
Te	xt Books	
1.	Avasti, Maheswari , Public Administration,31/e, Lakshmi Narain Agarwa	al books,
	india	
2.	B.L.Fadia, Kuldeep faida, Indian administration, 8/e Sahitya Bhawan, Indi	a, 2014.
Re	ference Books	
1.	Nicholas Henry, Public Administration and public affairs, 21/e Prentice	e Hall of
	India, 2012.	
2.	D. Ravindra Prasad, V.Sivalinga Prasad, P. Satyanarayana, Admin	nistrative
	Thinkers, 2/e, Sterling Publishers, 1991	
3.	D.D Basu, Introduction to the Indian Constitution, 21/e, Lexis Nexis Butte	rworth's,
	Wadhwa Nagpur, 2013.	

 Ramesh K Arora , Rajini Goyal Indian Public Administration, 3/e New Age International publishers India, 1995

NATIONAL SERVICE SCHEME							
Course Code	19HS5601F	Year	III	Semester	Π		
Course Category	Open Elective-II	Branch	Common to all	<b>Course Type</b>	Theory		
Credits	3	L-T-P	3-0-0	Prerequisites	NIL		
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100		

	Course Outcomes					
Upor	n successful completion of the course, the student will be able to:					
CO1	Understand the community in which they work and their relation. (L2)					
CO2	Identify the needs and problems of the community and involve them in problem-					
02	solving. (L3)					
CO3	Develop capacity to meet emergencies and natural disasters. (L3)					
CO4	Take part in national integration and social harmony. (L4)					
CO5	Apply their knowledge in finding practical solutions to individual and community					
	problems. (L4)					

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L- Low-1)

	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2
CO1						3	2					1	1	
CO2						3	2					1	1	
CO3						3	2					1	1	
CO4						3	2					1	1	
CO5						3	2					1	1	
Average* (Rounded						3	2					1	1	
integer)														

	SYLLABUS						
UNI T NO.	CONTENT	Mapped CO					
I	<ul> <li>National Service Scheme <ul> <li>A) History and its Objectives</li> <li>B) Organizational structure of N.S.S. at National, State, University and College Levels</li> <li>C) Advisory committee and their functions with special reference to college principal, Programme officer, N.S.S. group leader and N.S.S. volunteers in the implementation.</li> </ul> </li> </ul>	CO1, CO2, CO5					
II	<ul> <li>National Integration</li> <li>A) Need of National integration</li> <li>B) Various obstacles in the way of National Integration; such as caste, religion, language and provisional problems etc.</li> </ul>	CO1 CO2, CO4					

	N.S.S. Regular Activities							
	A) Traffic regulation							
тт	B) Working with Police Commissioner's Office							
	C) Working with Municipal Corporation of Vijayawada							
	D) Working with Health Department	CO1,						
111	E) Blind assistance							
	F) Garments collection							
	G) Non-formal education							
	H) 'Environmental Education, Awareness and Training (EEAT)'							
	I) Blood donation							
	Special Camping programme							
	A) Nature and its objectives	CO1						
	B) Selection of camp site and physical arrangement	CO1,						
IV	C) Organization of N.S.S. camp through various committees and	CO5,						
	discipline in the camp.	COJ						
	D) Activities to be undertaken during the N.S.S. camp.							
	E) Use of the mass media in the N.S.S. activities.							
	Special Programme							
	A) Legal awareness							
	B) Health awareness	CO1,						
V	C) First-aid	CO2,						
	D) Career guidance	CO5						
	E) Leadership training - cum - Cultural Programme							
	F) Globalization and its Economic Social Political and Cultural							
	impacts.							

Learning Resources	
Text Book	
1. National Service Scheme Manual, Government of India.	
Reference Books	
1. Training Programme on National Programme scheme, TISS.	

- 2. Orientation Courses for N.S.S. Programme officers, TISS.
- 3. Case material as Training Aid for field workers, Gurmeet Hans.
- 4. Social service opportunities in Hospitals, Kapil K.Krishan, TISS.
- 5. Social Problems in India, Ram Ahuja.

Course Code	19HS5601G	Year	III	Semester	II
Course Category	Open Elective II	Branch	Common to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to:							
<b>CO1</b>	Communicate proficiently in interviews and all social situations. (L2)							
CO2	Demonstrate an ability to use effective verbal and non-verbal communication							
02	skills. (L3)							
CO3	Use the formats, strategies and possible content of business communication at							
005	work place.(L3)							
COA	Prepare professional documents including web related (On-line) communication.							
004	(L4)							
COF	Analyze texts, diagrams and improve both reading and writing skills which							
05	would help in academics as well as professional career.(L4)							

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L- Low-1)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2									3	3		3		
CO3									3	3		3		
CO4									3	3		3		
CO5									3	3		3		
Average*									3	3		3		
(Rounded to nearest integer)														

SYLLABUS							
UNIT	CONTENT	Mapped					
NO.		CO					
	A) Verbal communication – conciseness, clarity, correctness						
	B) Non-verbal communication – body language	CO1, CO2					
Ι	C) Barriers to communication						
	D) Reading Short Passages, News Articles, Technical Papers and						
	Short Stories - Note making and note taking.						
	A) Professional Letters – Purpose, Style and format.	CO1,					
ΙΙ	B) E- mail – format and etiquette.	СОЗ,					
	C) Presentation skills	CO4					
	D) Group discussion						

III	<ul> <li>A) Technical Report writing – Types: Business/Technical, Components, Style and Formats – Writing a Technical Proposal.</li> <li>B) Administrative drafting and correspondence - Memos, Minutes and Web notes.</li> </ul>	CO1, CO3, CO4
IV	<ul><li>A) Information transfer.</li><li>B) Meeting skills</li><li>C) Team dynamics</li></ul>	CO1,CO 2, CO5
V	<ul> <li>A) Job application - Resume - Structure of Resume/CV - covering letter - writing SOPs.</li> <li>B) Interview Skills: types of interviews, successful interviews, interview etiquette, dress code, body language, telephone/online interviews, one-to-one interview &amp; panel interview, FAQs related to job interviews, answering strategies.</li> </ul>	CO1,CO 2, CO4

LEARNING RESOURCES					
Reference Books:					
1. Basu B.N. Technical Writing, 2011 Kindle edition					
2. C Muralikrishna & Sunitha Mishra, Communication Skills for Engineers, 2 nd					
edition, NY: Pearson, 2011.					
3. Bailey, Stephen. Academic writing: A handbook for international students.					
Routledge, 2014.					
4. Skilful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan					
Educational.					
e- Resources & other digital material:					
1. <u>https://www.britishcouncil.org/english</u>					
2. 2 <u>http://www.5minuteenglish.com/</u>					
3. <u>http://www.bbc.co.uk/learningenglish/</u>					
4. <u>http://www.better-english.com/</u>					
5. <u>http://www.nonstopenglish.com/</u>					
6. <u>https://www.usingenglish.com/comprehension/</u>					
7. https://www.englishclub.com/reading/short-stories.htm					
8. <u>https://www.english-online.at/</u>					
9. <u>https://www.englishclub.com/</u>					
10. http://www.world-english.org/http://learnenglish.britishcouncil.org/					
Online Dictionaries:					
Cambridge dictionary online; MacMillan dictionary; Oxford learner's dictionaries					

BASICS OF FINANCE									
Course Code	19HS5601H	Year	III	Semester	П				
Course Category	Open Elective II	Branch	Common to all	Course Type	Theory				
Credits	3	L-T-P	3-0-0	Prerequisites	NIL				
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100				

Course Outcomes								
Upon successful completion of the course, the student will be able to:								
CO1	To understanding of the basics of finance and objective of finical management							
CO2	The ability knowledge in financial planning and implementation of financial							
	plans							
CO3	To understanding problems of over-capitalisation and under-capitalisation							
CO4	To know about time value of money and financial forecast							
CO5	The capability to analyse various sources of loans and identify the best source of							
	loan for finance.							

Contribution of Course Outcomes towards achievement of Program Outcomes &														
Strength of correlations (H-High3, M-Medium-2, L-Low-1)														
	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		2								3	3	
CO2	3	3		2								3	3	
CO3	3	3		2								3	3	
CO4	3	3		2								3	3	
CO5	3	3		2								3	3	
Average* (Rounded to nearest integer)	3	3		2								3	3	

SYLLABUS							
UNIT	CONTENT	Mapped					
NO.		CO					
Ι	Introduction: Business Finance Defined-Traditional and Modern						
	Views; Scope and Functions of Finance; Finance Function vs.	CO1					
	Accounting Function; Objectives of Financial Management-Profit	ectives of Financial Management-Profit					
	Maximization vs. Wealth Maximization.						
	Financial Planning: Concept of Financial Planning; Process of						
II	Financial Planning; Characteristics of Sound Financial Plans; Factors						
	ecting Financial Plan.						
Ш	Capitalisation and Capital Structure: Concept, Nature and Scope						
	f Capitalisation; Earnings Theory and Cost Theory of						
	Capitalisation; Over-Capitalisation; Under-Capitalisation; Capital						
	Structure Theories and Factors Determining Capital Structure						
	Surveure Theories and Factors Determining Capital Surveure						

Financial Forecasting and Time Value of Money: Concept of	
Financial Forecasting; Sales Forecast; Income Forecast; Financial	
IV Position Forecast; Forecasting for Growth and External Funds	CO4
Requirements; Time Value of Money-Discounting and	
Compounding.	
Pattern of Capital Requirements: Long-Term and Medium-Term	
V Financing – Purpose, Sources and Instruments; Short-Term	CO5
Financing-Purpose, Sources and Instruments.	

#### Learning Resources

#### **Text Books**

- 1. Brealey, Richard A and Steward C. Myers: Corporate Finance, McGraw Hill, Int. Ed., New York.
- 2. Chandra, Prasanna: Financial management, Tata Mc Graw Hill, Delhi.
- 3. Hampton, John: Financial Decision Making, Prentice Hall, Delhi.
- 4. Pandey, I.M.: Financial Management, Vikas Publishing House, Delhi.
- 5. Van Horne, J.C. and J.M. Wachowicz Jr. : Fundamentals of Financial Management, Prentice-Hall, Delhi

#### **Reference Books**

- 1. Van Horne, James C Financial Management; Harper and Row, New York.
- 2. Pinches, George E: Essentials of Financial Management; Harper and Row, New York.
- 3. Khan MY, Jain PK: Financial Management; Tata McGraw Hill, New Delhi.
- 4. Archer, Stephen, H., Chate G Marc, Racette, George; Financial management; John Wiley, New York
- 5. Block, Stanley B, Geoffrey A Hilt: Foundations of Financial Management; Richard D. Irwin, Homewood
| BASICS OF MARKETING                  |                     |                            |                  |                |        |  |
|--------------------------------------|---------------------|----------------------------|------------------|----------------|--------|--|
| Course<br>Code                       | 19HS5601I           | Year                       | III              | Semester       | II     |  |
| Course<br>Category                   | Open<br>Elective II | Branch                     | Common<br>to all | Course Type    | Theory |  |
| Credits                              | 3                   | L-T-P                      | 3-0-0            | Prerequisites  | NIL    |  |
| Continuous<br>Internal<br>Evaluation | 30                  | Semester End<br>Evaluation | 70               | Total<br>Marks | 100    |  |

	Course Outcomes							
Upon	successful completion of the course, the student will be able to:							
CO1	Understand issues of marketing with an emphasis on learning to develop							
COI	responsive marketing strategies that meet customer needs							
CO2	Make use of the key analytical frameworks and tools used in marketing in relation							
02	to segmenting and targeting of products							
CO3	Get acquainted with the components of marketing mix, stages in new product							
005	development							
CO4	Analyse the objectives and methods for pricing products and selecting channel							
	members							
CO5	Evaluate the techniques of promotion mix							

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes &													
		St	rengt	h of c	corre	lation	s (H-	High	3, N	<b>1-Med</b>	ium-2	, L- L	ow-1)	
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1							3	3	2			3		3
CO2							3	3	2			3		3
CO3							3	3	2			3		3
CO4							3	3	2			3		3
CO5							3	3	2			3		3
Average* (Rounded to nearest integer)							3	3	2			3		3

	SYLLABUS	
UNIT NO.	CONTENT	Mapped CO
Ι	Introduction to Marketing: Definition, Nature, Scope, Importance of Marketing, Core Concepts of Marketing, Philosophies of Marketing.	CO1
II	Market Segmentation, Targeting and Positioning: Definition, Levels of Segmentation, Bases of Segmentation, Target Market, Positioning Strategies.	CO2
III	Marketing Mix:4P's, Classification of Products, Product Life Cycle (PLC)-Stages, New Product Development(NPD)- Types, Process	CO3
IV	Pricing: Definition, Objectives, Pricing Strategies- Channels of Distribution: Definition, Functions, Levels	CO4
V	Promotion Mix: Definition, Objectives, Importance, Elements, Integrated Marketing Communication(IMC)	CO5

Learning Resources
Text Books
1. Philip Kotler, Gary Armstrong and Prafulla Agnihotri, Principles of Marketing,
Pearson India, 17th Edition. New Delhi: 2018
2. Rajan Saxena, Marketing Management, Tata-McGraw Hill, Fifth Edition New Delhi
:2015
Reference Books
1. Etzel, Walker, Stanton & Pandit, "Marketing Concepts & Cases", Tata McGraw Hill,
New Delhi.
2. Govindarajan M., "Marketing Management, Concepts, Cases, Challenges and
Trends", PHI Private Limited, New Delhi, 2007.
3. Karunakaran, "Marketing Management", Himalaya Publishing House, Mumbai.
4. Charles W. Lamb, Joseph F. Hair, Carl McDaniel, Harish Kapoor, Henry Klaise
"MKTG", Cengage Learning, New Delhi, 2012.
e- Resources & other digital material
1. <u>https://nptel.ac.in/courses/110/104/110104068/</u>
2. <u>https://nptel.ac.in/courses/110/107/110107147/</u>
3. <u>https://nptel.ac.in/courses/110/104/110104070/</u>

Μ	ICROPROCE	SSORS AND N	<b>IICROC</b>	ONTROLLER	S LAB
Course Code	19EC3651	Year	III	Semester	II
Course	Program	Branch	ECE	Course Type	Lab
Category	Core				
Credits	1.5	L-T-P	0-0-3	Prerequisites	Computer
					Architecture and
					Organization
Continuous	25	Semester	50	Total	75
Internal		End		Marks:	
Evaluation:		Evaluation:			

Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to					
CO1	<b>Develop</b> programs using different class of instructions for 8086	L3				
	microprocessor and ARM processor.					
CO2	Analyse assembly language programs; select appropriate IDE and	L4				
	assemble into machine of a microprocessor and microcontroller.					
CO3	<b>Design</b> electrical circuitry to the Microcontroller I/O ports in order to	L6				
	interface with the external devices.					
CO4	Make an effective lab report.	L6				

---

___

Mapping	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1-	Weak	corre	lation	2-	Mediu	ım coı	rrelati	on	3-Sti	ong co	rrelati	on		
* - Avera	ge val	ue ind	licates	cours	se cori	relatio	n stre	ength	with n	napped	<b>PO</b>			
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2				1	1			2	2
CO2	3	3	2	2	2				1	1			2	2
CO3	3	3	2	2	2				1	1			2	2
CO4	3	3	2	2	2				1	1			2	2
CO5	3	3	2	2	2				1	1			2	2
Average* (Rounded to nearest integer)	3	3	2	2	2				1	1			2	2

	Syllabus						
Unit No.	Contents	Mapped CO					
	Experiments with microprocessor 8086 using Assembler:						
1	Arithmetic operations on 8 bit and 16 bit operands	CO1, CO2, CO4					
2	Transfer block of data from one memory location to another memory location.	CO1, CO2, CO4					
3	Programs using monitor routines.	CO1, CO2, CO4					
4	Compute maximum, minimum and sorting (ascending and descending).	CO1, CO2, CO4					
5	Generate Fibonacci series, average of N numbers, factorial of N.	CO1, CO2, CO4					
	Experiments with ARM CORTEX M3 Processor using KEIL MDK ARM						

6	A program to toggle LED every second using timer interrupt	CO1, CO2,
		CO3,CO4
7	A program to interface stepper motor and rotate it in	CO1, CO2,
	clockwise and anti-clockwise direction.	CO3,CO4
8	Display the Hex digits 0 to F on a 7-segment LED interface	CO1, CO2,
	with an appropriate delay in between	CO3,CO4
9	Interface a 4x4 keyboard and display the key code on an	CO1, CO2,
	LCD	CO3,CO4
10	Write a program to utilize internal PWM module and	CO1, CO2,
	generate PWM and vary its duty cycle	CO3,CO4

#### Learning Resources

# Text Books 1. Microprocessors and Interfacing – Programming and Hardware by Douglas V Hall, SSSP Rao, Tata McGraw Hill Education Private Limited, 3rd Edition.

- 2. ARM Microprocessor Systems Cortex M Architecture, Programming, and Interfacing by Muhammad Tahir and Kashif Javed, CRC Press.
- 3. The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors by Joseph You **Reference Books**
- 1. Embedded Systems Fundamentals with ARM Cortex-M based Microcontrollers: A Practical Approach in English, by Dr. Alexander G. Dean, Published by Arm Education Media
- 2. Cortex -M3 Technical Reference Manual

VLSI DESIGN LAB						
<b>Course Code</b>	19EC3652	Year	III	Semester	II	
Course	Program	Branch	ECE	Course Type	LAB	
Category	Core					
Credits	1.5	L-T-P	0-0-3	Prerequisites	Digital	
					Circuits	
Continuous	25	Semester	50	<b>Total Marks:</b>	75	
Internal		End				
<b>Evaluation:</b>		<b>Evaluation:</b>				

#### **Course Outcomes**

Upon	successful completion of the course, the student will be able to
CO1	Design, Simulate & test the various Combinational logic circuits using Verilog (L6)
CO2	Design, Simulate & test the various Sequential logic circuits using Verilog (L6)
CO3	Design, Simulate & test arithmetic logic circuits using Verilog (L6)
<b>CO4</b>	Design, Simulate & test memories using Verilog (L6)

# Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS0											PSO2		
CO1	2	2	2	2	3								3	
CO2	3	2	3	2	3								3	
CO3	3	2	3	2	3								3	
CO4	3	2	3	2	3								3	
Average* (Rounded to nearest integer)	3	2	3	2	3								3	

Syllabus										
Expt.	Contents	Mapped								
No.		CO								
Simula	Simulate the internal structure of the following Digital IC's using VERILOG and									
	verify the operations of the Digital IC's (Hardware) in the Laboratory									
Ι	Realization of Logic Gates	CO1								
II	3 to 8 Decoder -74x138	CO1								
III	8 x 1 Multiplexer-74x151 and 2x 4 De-multiplexer-74x155	CO1								
IV	BCD to 7-segment Decoder 74x49	CO1								
V	4- Bit comparator-74x85	CO1								
VI	4-Bit Binary Adder 74x83	CO3								
VII	D Flip-Flop-74x74	CO2								
VIII	Decade counter -74x90	CO2								
IX	4 Bit counter-74x93	CO2								
Х	Shift registers-74x95	CO2								
XI	Universal shift registers-74x194/195	CO2								
XII	RAM (16 x 4)-74x189 (Read and Write operations)	CO4								
XIII	4-Bit ALU Design – 74x181	CO3								

#### Learning Resources

#### **Text Books**

1. Charles H. Roth, Lizy Kurian John, Byeong Kil Lee, Digital Systems Design using Verilog, 1/e, Cengage Learning, 2016.

# **Reference Books**

1. Kang, Leblibici, CMOS Digital Integrated Circuits, 3/e, Tata McGraw Hill, 2001.

- 2. Jan M. Rabaey, Digital Integrated Circuits, 2/e, Pearson Education, 2002.
- 3. Jackson, Hodges, Analysis and Design of Digital Integrated Circuits, 3/e, Tata McGraw Hill, 2010.

#### e-Resources

1. https://nptel.ac.in/courses/106/105/106105165/

<b>Course Code</b>	19EC3653	Year	III	Semester	II
Course	Program	Branch	ECE	<b>Course Type</b>	Lab
Category	Core				
Credits	1	L-T-P	0-0-2	Prerequisites	Nil
Continuous	25	Semester	50	<b>Total Marks:</b>	75
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

#### **Course Outcomes**

Upon successful completion of the course, the student will be able to

CO1 Demonstrate USRP Concepts (L2)

CO2 Develop and Implement Analog Communication Concepts using USRP (L3)

CO3 Develop and Implement Digital Communication Concepts using USRP (L3)CO4 Build FM Radio Receiver. (L3)

____

# Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1-	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
* - Avera	* - Average value indicates course correlation strength with mapped PO													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2					1		1	2	1
CO2	3	3	2	2	2					1		1	2	1
CO3	3	3	2	2	2					1		1	2	1
CO4	3	3	2	2	2					1		1	2	1
Average* (Rounded to nearest integer)	3	3	2	2	2					1		1	2	1

	Syllabus									
Expt. No.	Contents	Mapped CO								
Ι	Introduction to the USRP	CO1								
II	Develop and Implement AM Transmitter/Receiver using USRP	CO2								
III	Implementation of Frequency Division Multiplexing using USRP	CO2								
IV	Image Rejection with complex filtering using USRP Modules	CO2								
V	Develop and Implement DSBSC modulator/demodulator	CO2								
VI	Implementation of FM Transceiver using USRP Modules	CO2								
VII	Implementation of ASK Transceiver using USRP Modules	CO3								
VIII	Implementation of FSK Transceiver using USRP Modules	CO3								
IX	Implementation of PSK Transceiver using USRP Modules	CO3								
X	Examine the Impact of Inter Symbol Interference on Eye Diagram	CO3								
XI	Implementation of adaptive Equalizers using USRP Modules	CO3								
XII	Implementation of QPSK Transceiver using USRP Modules	CO3								

#### Learning Resources

___

#### **Text Books**

- 1. Introduction to Analog and Digital Communication System-Simon Haykin, John Wiley and Sons, 3rd Ed., 2009.
- 2. Fundamentals of Communication Systems John G. Proakis, Masoud Salehi, PEARSON, 2nd Ed., 2013

#### **Reference Books**

- 1. Principles of Communication Systems H Taub & D. Schilling, Gautam Sahe, TMH, 3rd Ed.,2007
- 2. Analog and Digital Communication System-Sam Shanmugam, John Wiley and Sons,3rd Edition,2009

---

# IV YEAR

<b>Course Code</b>	19HS1701	Year	IV	Semester	Ι
Course	Humanities	Branch	ECE	Course Type	Theory
Category					
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	<b>Total Marks:</b>	100
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

#### ---

	Course Outcomes											
Upon	Upon successful completion of the course, the student will be able to											
CO1	Demonstrate the applicability of the concept of organizational behaviour to											
	understand the behaviour and culture of people in the organization. L2											
CO2 Demonstrate the applicability of analysing the complexities associated and the complexities associated and the complexities associated analysing the complexities associated anal												
001	management of individual behaviour in the organization. L2											
<b>CO1</b>	Analyse the complexities associated with management of the group behaviours											
COS	(Group Dynamics) in the organization and role of leadership. L4											
CO4	Demonstrate how the organizational behaviour can integrate in understanding the											
004	motivation for creating positive work culture. L2											
<b>GO -</b>	Demonstrate how the organizational behaviour can influence in understanding the											
CO5	importance of learning and leadership for an organization to create positive impact.											
	L2											

# Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								3	3		2			3
CO2								3	3		2			3
CO3								3	3		2			3
CO4								3	3		2			3
CO5								3	3		2			3
Average*														
(Rounded								3	3		2			3
to nearest								5	5		2			5
integer)														

---

Syllabus							
Unit	Contents	Mapped					
No.		CO					
Ι	Introduction to Organizational Behaviour: Definition of						
	Organizational Behaviour-Nature and Scope of Organizational	001					
	Behaviour-Opportunities of Organizational Behaviour-Linkage of	COI					
	Organizational Behaviour with other disciplines-Organizational						
	Behaviour Models						
Π	Foundations of Individual Behaviour: Perception: Definition of						
	Perception-Factors of Perception- The Perception Process-Motivation:	CO2					
	Definition of Motivation-Theories of Motivation: Maslow's Hierarchy						
	Theory of Needs-Herzberg's Two-Factor Theory-Mc Gregor's Theory						

	of Motivation-Learning: Definition Learning- Objectives of Learning-	
	Process of Learning. Theories of Learning-Classical conditioning	
	theory. Operant conditioning theory	
ш	Personality Development and Leadershin: Personality	
111	<b>Development</b> Definition of Personality Objectives of Personality	
	Dimensions of Dersonality Stages of Dersonality Development	CO3
	Landarghin Definition of Landarghin Objectives of Landarghin	
	Leadership - Definition of Leadership - Objectives of Leadership -	
TV.	Styles of Leadership in Organization	
11	Formation of Teams and Group Dynamics: Formation of Teams-	
	Definition of Team- Objectives of Teams - Types of Teams- Team	
	Building-Creating Effective teams-Group Dynamics: Definition of	CO4
	Group-Formal Vs Informal Groups- Stages of Group Development-	
	Jonari Window- Transactional Analysis- Conflict -Definition, Conflict	
<b>X</b> 7	Resolution Mechanisms in Groups	
V	Organizational Change and Culture: Organizational Change-	
	Definition- Change Models- Organizational resistance to change	CO5
	Management of Change Process- Organizational Culture- Definition-	000
	Objectives-Distinction between Organizational Culture and	
	Organisational Climate	
	Learning Resources	
Tex	xt Books	
1.	Fred Luthans, Organizational Behaviour, McGraw Hill, 11th Edition, 2001.	
2.	Stephen P. Robins, Organisational Behaviour, PHI Learning / Pearson H	Education,
	11 th edition, 2008.	
Ref	ference Books	
1.	Hellrigal, Slocum and Woodman, Organizational Behaviour, Cengage	Learning,
	11 th Edition 2007.	U,
2.	Aswathappa K., "Organizational Behaviour-Text, Cases and Games",	Himalaya
	Publishing House, New Delhi, 2008.	5
3.	Schermerhorn, Hunt and Osborn, Organizational Behaviour, John Wiley, 9t	h Edition,
	2008.	,
4.	Udai Pareek, Understanding Organizational Behaviour, 2nd Edition, Oxfo	rd Higher
	Education. 2004.	8
5.	Ivancevich, Konopaske & Maheson, Organizational Behaviour & Mar	nagement.
	7th edition. Tata McGraw Hill. 2008.	
6.	Hitt, Michael A., Organizational Behaviour- A Strategic Approach	n. Wiley.
	India,2008.	, <b>,</b> ,

# **COMMUNICATION NETWORKS**

<b>Course Code</b>	19EC3701	Year	IV	Semester	Ι
Course	Program	Branch	ECE	<b>Course Type</b>	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

#### **Course Outcomes**

Upon	successful completion of the course, the student will be able to
CO1	Identify the components required to build various networks. (L2)
CO2	Choose the required functionality at each layer for a given application (L3)
CO3	Trace & detect errors in the flow of information in a network (L4)
<b>CO4</b>	Build the skills of sub netting and routing mechanisms (L3)

# Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

* - Average	e value	e indic	cates c	ourse	correl	ation	streng	th wit	h map	ped PC	)			
COs	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2
CO1	2		2	2	2							1	2	1
CO2	2	3	2	2	2							1	2	1
CO3	2		2	2	2							1	2	1
CO4	3	3	3	2	3							1	2	1
Average* (Rounded to nearest integer)	3	3	3	2	3							1	2	1

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	Computer Networks and the Internet: Services description and	CO1
	definition of protocol, Network Edge and Network Core. Delay,	
	Loss, and Throughput in Packet-Switched Networks, Protocols	
	layers and their service models.	
II	Application Layer: Principles of Network Applications, The Web	CO2
	and the HTTP, Electronic Mail, Domain Naming Systems, Socket	
	Programming.	
III	Transport Layer: Introduction to transport layer services,	CO1,
	multiplexing and demultiplexing, connectionless transport: UDP,	CO3
	principles of reliable data transfer, connection-oriented transport:	
	TCP	
IV	Network Layer (Data Plane): Overview of network layer, Internals	CO1,
	of a Router, Internet Protocol: IPv4, Addressing, IPv6. Network	CO4
	Layer (Control Plane): Routing algorithms, IntraAS routing (OSPF),	
	Routing among ISPs (BGP), Internet control message protocol	
	(ICMP).	
		1

V Link Layer and LANs: Introduction to the link layer, error detection	CO1,CO3,
and correction techniques, multiple access links and protocols,	CO4
switched local area networks. Wireless links and network	
characteristics, 802.11 Wireless LANs, Cellular Internet Access.	
Learning Resources	
Text Books	
1. J.F. Kurose and K. W. Ross, "Computer Networking – A top do	own approach
featuring the Internet", 5/e, Pearson Education, 2017.	
Reference Books	
1. L. Peterson and B. Davie, "Computer Networks – A Systems Ap	pproach", 5/e
Elsevier India, 2011.	
2. A. Forouzan, "Data Communications and Networking", 4/e, Tata	McGraw Hill
2013.	
3. Andrew Tanenbaum, "Computer networks", 7/e, Prentice Hall, 201	5
4. D. Comer, "Computer Networks and Internet/TCP-IP", Prentice	Hall of India
2007.	
5. William Stallings, "Data and computer communications", 4/e, Pro	entice Hall of
India, 2010.	
e- Resources & other digital material	
1. <u>http://home.iitk.ac.in/~navi/sidbinetworkcourse/lecture1.ppt</u>	
2. <u>http://nptel.iitm.ac.in/courses/IIT-MADRAS/Computer_Networks/inde</u>	ex.php

	0 1	100	74701	A <b>X</b>	7		т	7	G	4		т			
Course	Code	19E0	<u>_</u> 4/01/		ear	1.			Sen	iester		Theor			
Course Cotogo	<b>PX</b> 7	Floor	ram	1 ,	sranc	n	E	CE	Cot	Irse 1	ype	Theor	У		
Calego	1 y	2	lveiv	T	ТР		3	0.0	Dro	roquis	itos	Analo	a and	Digital	
CIEUIIS	)	3		I	<b>7-1-L</b>		5	-0-0	rie	equis	nes	Analog and Digital			
Contin	110115	30		5	lemes	ter	7	0	Tot	al Mai	rks•	100	umea	.10115	
Interna	l	50		Ē	End	UUI		0	100	ui iviu		100			
Evalua	tion:			H	Evalua	ation:									
					(	Course	e Out	come	S						
Upon	succes	sful co	mpletic	on of t	he co	urse, tl	he stı	ident	will b	e able	to				
CO1	Dem	onstrat	e an un	nderst	andin	g on o	orbita	l and	funct	ional p	princip	ples of	satelli	te	
	Com	munica	tion ar	nd Sat	ellite	sub s	ysten	n (L2)	)						
CO2	Inter	oret and	l select	appro	opriate	e techr	lolog	ies foi	impl	ementa	ation c	of speci	ified		
CO2	Satel	inte con	imunic	ation	syster	ns (L5	)) mhor	000000	ate to	immere	to the	lint			
CUS	Anal Perfe	yse a sa	$(I \Delta)$	iiik al	na sug	ggest e	man	cemei	its to	mprov	ve me	IIIIK			
CO4	Cho	se ann	ropriat	e mul	tinle	access	tech	nique	for a	oiven	satell	ite cor	nmuni	cation	
004	appli	cation	(L3)	e mu	upie			inque	101 u	Siven	Sucen		minum	cution	
	"pp:		(20)												
Mapr	oing of	course	outco	mes v	with F	roara		tcome				A	\ \		
	<u> </u>					TUgrai	m ou	wonne		JIU	P30 I	vlatrix	)		
Note:	1- W	eak co	rrelatio	on	2-Me	dium	m ou corre	lation	1 3	3-Stroi	rs01 1g cor	relatio	) n		
Note: * - Av	1-W verage	'eak co value ir	rrelation dicates	on cours	2-Me	dium elation	corre	lation	$\frac{1}{1}$	3-Stroi	rso i ng cor PO	relatio	) n		
Note: * - Av	1-W verage	Veak co value ir 01 PO2	rrelation dicates	on cours PO4	2-Me e corr PO5	dium elation PO6	corre stren <u>PO7</u>	ation agth w	ith ma	B-Stron apped I PO10	PSO I ng cor PO PO11	relatio	) n PSO1	PSO2	
Note: * - Av COs CO1 CO2	1-W verage P	Veak covalue ir $01$ $22$ $2$ $1$ $3$	rrelation dicates PO3	On cours PO4 - -	2-Me e corr PO5	dium elation PO6 2 2	n ou corre <u>n strer</u> <u>P07</u> 2 2	elation ngth w PO8	ith ma 	3-Stron apped I PO10	PSO 1 ng cor PO PO11 -	PO12	) n <u>PSO1</u> -	PSO2 - -	
Note: * - Av Cos Co1 Co2 Co3	1 - W verage P	$\begin{array}{c c} \text{value ir} \\ \hline \text{value ir} \\ \hline \text{01} & \text{PO2} \\ \hline 2 & 2 \\ \hline 1 & 3 \\ \hline 2 & 3 \\ \hline 1 & 2 \end{array}$	rrelation dicates PO3 - - 2 2	Dn cours PO4 - - -	2-Me e corr PO5 - -	dium elation 2 2 1 2	rn ou corre strer <u>P07</u> 2 2 1 2	elation ngth w PO8 - -	ith ma - - -	3-Stroi apped I P010 - -	PSO 1 1g cor PO PO11 - -	PO12 2 2 1 2	) n 	<b>PSO2</b> - 2 2	
Note: * - Av Cos Co1 Co2 Co3 Co4 Averag	1 - W verage P 2	Yeak co value ir $01$ $P02$ $2$ $2$ $1$ $3$ $2$ $3$ $1$ $2$	rrelation dicates PO3 - - 2 2	Dn cours PO4 - - - -	2-Me se corr PO5 - - -	dium elation 2 2 1 2	n ou corre <u>n strer</u> <u>PO7</u> 2 2 1 2	elation ngth w PO8 - - -	ith ma PO9	3-Stroi apped I PO10 - - -	PSO 1 ng cor PO PO11 - - -	PO12 2 2 1 2	) n - - - -	<b>PSO2</b> - 2 2	
Note: * - Av COS CO1 CO2 CO3 CO4 Averag (Round to near	1 - W verage <u>P</u> 2 3 4 ge* led rest	Yeak co           value in           01         PO2           2         2           1         3           2         3           1         2           2         3           2         3           2         3	rrelatic dicates PO3 - - 2 2 2 2	Dn cours PO4 - - - -	2-Me e corr PO5 - - -	PO6         2           2         2           1         2           2         2           1         2           2         2	n ou corre stren PO7 2 2 1 2 2 2 2 2 2 2 2 2 2 2	lation ngth w PO8 - - -	PO9 - - -	3-Stroi apped I P010 - - -	PSO 1 ng cor PO PO11 - - -	PO12 2 2 1 2 2 2	) n 	PSO2           -           -           2           2           2           2	
Note: * - Av COS CO1 CO2 CO3 CO4 Averag (Round to near intege	1-W           y/erage           9           1           2           3           4           ge*           1ed           rest           rr)	Yeak covalue in           D1         PO2           2         2           1         3           2         3           1         2           2         3	PO3 PO3 2 2 2 2 2	on cours PO4 - - - -	2-Me e corr PO5 - - -	dium elation 2 2 1 2 2 2 2 2 2 2	n ou corre n stren <u>PO7</u> 2 2 1 2 2 2 2	elation ngth w PO8 - - -	ith ma PO9 - - -	3-Stroi apped I POI0 - - -	PSO I ng cor PO POII - - -	PO12 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	) n 	<b>PSO2</b> - - 2 2 2	
Note: * - Av COS CO2 CO3 CO4 Averag (Round to near intege	1-W       y/erage       9       9       1       2       3       4       ge*       led       rest       rr)	Yeak covalue in           D1         PO2           2         2           1         3           2         3           1         2           2         3	rrelatic dicates PO3 - - 2 2 2 2 2 2	on cours PO4 - - - -	2-Me e corr PO5 - - -	dium elation <u>PO6</u> 2 2 1 2 2 2	n ou corre strer 2 2 1 2 2 2 1 2 2	PO8 - - -		3-Stroi apped I PO10 - - -	PSO 1 ng cor PO 	PO12 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	) n 	<b>PSO2</b> 2 2 2	
Note: * - Av COS CO1 CO2 CO3 CO4 Averag (Round to near intege	Continues	Yeak co         value ir         01       PO2         2       2         1       3         2       3         1       2         2       3	rrelatic dicates PO3 - - 2 2 2 2 2	on cours PO4 - - - -	2-Me e corr PO5 - - -	logral dium elation 2 2 1 2 2 2 2 2 5 y	rn ou corre stren PO7 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	elation ngth w PO8 - - - - - - - - - - - - - - - - - - -		3-Stroi apped I P010 - - - -	PSO 1 ng cor PO - - - -	PO12 2 2 1 2 2 2 2 2	) n 	<b>PSO2</b> 2 2 2 2	
Note: * - Av COS CO2 CO2 CO3 CO4 Averag (Round to near intege	1- W       yerage       P       2       3       4       ge*       led       rest       or)	Yeak co         value ir         01       PO2         2       2         1       3         2       3         1       2         2       3         2       3	rrelatic dicates 2 PO3 - - 2 2 2 2 2 2	Dn s cours PO4 - - - -	2-Me e corr - - -	dium elation 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2	rn ou corre <u>po7</u> 2 1 2 2 2 2 2 2 2 2 2	POS POS - - - - - - - - - - - - - - - - - - -	PO9	3-Stroi apped I PO10 - - - -	PSO 1 ng cor PO 	PO12 2 2 1 2 2 2 2 2 2 2 2	) n 	<b>PSO2</b> 2 2 2 2	
Note: * - Av COS CO1 CO2 CO3 CO4 Averag (Round to near intege	i 1- W verage b P t 2 2 3 4 4 2 2 3 4 4 2 2 3 4 2 2 3 4 4 2 2 3 4 4 2 2 3 4 4 2 2 5 7 7 4 2 2 3 4 4 2 2 5 7 7 4 4 2 2 5 7 7 7 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7	Veak co value ir 01 PO2 2 2 1 3 2 3 1 2 2 3 2 3 1 2 2 3 ents	rrelatic dicates PO3 - - 2 2 2 2 2	n cours PO4 - - - - - N: In	2-Me e corr PO5 - - -	dium elation PO6 2 2 1 2 2 2 2 2 Sy	rn ou corre <u>n stren</u> <u>PO7 2 2 1 2 2 2 2 2  v<b>llab</b></u>	elation ngth w PO8 - - - - - - - - - - - - - - - - - - -	ry all	3-Stroi apped I POI0 - - - -	n to	PO12 2 2 1 2 2 2 2 satelli	) n 	<b>PSO2</b> 2 2 2 2 <b>2 2 2 2 2 2 2 2</b>	
Note: * - Av COS CO1 CO2 CO3 CO4 Averag (Round to near intege Unit No. I	i 1- W verage <u>P</u> 2 2 3 4 4 2 2 3 4 1 2 2 3 4 2 2 3 4 1 2 2 3 4 1 2 2 3 1 2 2 3 4 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 1 2	Yeak co         value ir         01       P02         2       2         1       3         2       3         1       2         2       3         ents       RODU         ces, IN	rrelatic dicates PO3 - - 2 2 2 2 2 2 2 2 2 2 2 CTIOI	n cours PO4 - - - - - N: In AT	2-Me e corr PO5 - - - -	dium elation 2 2 1 2 2 2 2 2 Sy	rn ou corre <u>n stren</u> <u>2</u> <u>1</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u>	elation ngth w PO8 - - - - - - - - - - - - - - - - - - -	rith ma PO9 - - - - - - -	3-Stroi apped I PO10 - - - - - - - - - - -	n to	PO12 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	) n PSO1 - - - - - - - - - - - - - - - - - - -	PSO2           -           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           1	
Note: * - Av COS CO1 CO2 CO3 CO4 Averag (Round to near intege Unit No. I II	i 1- W verage p 2 2 3 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 4 2 2 5 4 4 2 2 5 4 5 5 7 7 4 2 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Yeak co         value ir         01       PO2         2       2         1       3         2       3         1       2         2       3         ents       RODU         ces, IN       ITAL	rrelatic dicates PO3 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	on cours PO4 - - - - - N: In AT HAN	2-Me e corr PO5 - - - - - - - - - - - - - - - - - - -	dium elation PO6 2 2 1 2 2 2 2 2 5 y	rn ou corre <u>PO7</u> 2 2 1 2 2 2 2 7 1 2 2 7 7 1 2 7 7 1 2 7 7 7 7	us	ry all	3-Stron apped I POI0 - - - - - - - - - - - - - - - - - - -	n to	PO12 2 1 2 2 2 2 satelli	) n PSO1 - - - - - - - - - - - - - - - - - - -	PSO2           -           2           2           2           2           2           1           0           01	
Note: * - Av COS CO1 CO2 CO3 CO4 Averag (Round to near intege	i 1- W verage <u>P</u> 2 3 4 4 2 3 4 4 2 3 4 4 2 3 4 4 2 3 4 4 2 3 4 4 2 3 4 4 2 3 4 4 2 3 4 4 2 3 4 4 4 2 5 7 7 4 2 9 8 * * * * * * * * * * * * * * * * * *	Veak co value ir 01 PO2 2 2 1 3 2 3 1 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	CTIO CTIO CTIO CTIO CELSA MEC deterr	on s cours PO4 - - - - - - - - - - - - - - - - - - -	2-Me e corr PO5	dium elation PO6 2 2 1 2 2 2 2 2 2 5 y ction,	rin ou corre <u>por</u> 2 1 2 2 2 2 2 2 2 2 7 2 2 2 2 2 2 2 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	quence	ey all	3-Stron apped I POI0 - - - - - - - - - - - - - - - - - - -	n to al Me	PO12 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	) n PSO1 - - - - - - - - - - - - - - - - - - -	PSO2           -           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           1           0           01           01,           02	
Note: * - Av CO3 CO2 CO2 CO4 Averag (Round to near intege Unit No. I II	i 1- W verage P 2 3 4 ge* led est rr) Cont INT servi ORE Look laund	Veak co value ir DI PO2 2 2 1 3 2 3 1 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	CTION FELSA MECI deterr d lau	N: In AT HAN Inch	2-Me e corr PO5	dium elation PO6 2 2 1 2 2 2 Sy ction, ND I	rn ou corre <u>PO7</u> 2 2 1 2 2 2 2 2 7 <b>/Ilabu</b> Fre LAU pert Orbit	urbatia al ef	y all ERS: ons, fects	3-Stron apped I PO10 - - - - - - - - - - - - - - - - - - -	n to al Mee	PO12 2 2 1 2 2 2 2 2 satelli chanico micatio	) n PSO1 - - - - - - - - - - - - - - - - - - -	PSO2           -           2           2           2           2           2           2           1           0           01           02	
Note: * - Av COS CO1 CO2 CO3 CO4 Averag (Round to near intege	i 1- W verage <u>P</u> <u>1</u> 2 3 4 4 2 3 4 4 2 3 4 4 2 3 4 4 2 2 3 4 4 9 est r) P 1 2 2 3 4 4 9 est r) P 1 2 2 3 4 4 9 est r) P 1 2 9 est r) P 1 9 est r) P 1 2 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est r) P 1 9 est P 1 9 est P 1 9 est P 1 9 est P 1 9 est P 1 9 est P 1 9 est P 1 9 est P 1 9 e P 1 9 est P 1 9 est P 1 9 e P P 1 9 e P P P P P P P P P P P P P P P P P P	Veak co value ir 01 PO2 2 2 1 3 2 3 1 2 2 3 2 3 2 3 ents RODU ces, IN ITAL Angle thes an ms per	CTIO TELS MECI deterr deterr Crman	N: In AT HAN ninati	2-Me e corr PO5 	dium elation PO6 2 2 1 2 2 2 Sy ction, Orbital les, (	rn ou corre <u>strer</u> <u>PO7</u> 2 2 1 2 2 2 2 v <b>llab</b> Fre LAU pert Orbit	us PO8 PO8 - - - - - - - - - - - - -	ey all ERS: ons, f	ocatio Orbit Orbit of in co	n to al Me betern al me	viatrix relatio 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	) n PSO1 - - - - - - - - - - - - - - - - - - -	PSO2           -           2           2           2           2           2           2           3           5           0           01           02	
Note: * - Av COS CO2 CO2 CO3 CO4 Averag (Round to near intege Unit No. I II III	i 1- W verage P 2 3 4 verage i d verage i d verage i c ont i ont i ont i ont ont ont ont ont ont ont ont	Yeak co value ir DI PO2 2 2 1 3 2 3 1 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	CTION TELSA MECI deterr deterr nd lau	N: In AT HAN BSY	2-Me e corr PO5 	dium elation PO6 2 2 1 2 2 2 Sy ction, Vrbital les, ( AS: A	rn ou corre <u>PO7</u> 2 2 1 2 2 2 2 2 7 <b>/Ilabu</b> Fre LAU pert Orbit	us quence NCH al ef de an	ry all ERS: ons, fects	3-Stron apped I PO10 - - - - - - - - - - - - -	n to al Me bontrol	PO12 2 2 1 2 2 2 2 2 satelli chanic ninatio syster	) n PSO1 - - - - - - - - - - - - - - - - - - -	PSO2           -           2           2           2           2           2           2           1           0           01,           02           01,           02	
Note: * - Av COS COI CO2 CO3 CO4 Averag (Round to near intege	i 1- W verage p 2 2 3 4 2 2 3 4 2 3 4 2 3 4 3 4 2 3 3 4 3 3 4 2 3 3 4 2 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 5 3 3 4 4 5 3 5 4 5 4	Yeak co value ir $01$ $PO2$ $2$ $2$ $2$ $3$ $1$ $2$ $2$ $3$ $2$ $3$ $2$ $3$ entsRODUCes, INITALAngleches an ms pertectionELLITnetry,	CTIO TELSA MECI deterr deterr TE SU trackin	N: In AT HAN BSYS	2-Me e corr PO5 	rograf dium elation PO6 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	rin ou corre <u>n stren</u> 2 2 1 2 2 2 2 2 7 7 1 2 2 7 7 1 2 2 7 7 1 2 2 7 7 7 7	quence ngth w PO8 - - - - - - - - - - - - - - - - - - -	ey all ERS: ons, of fects	ocatio Orbit Difficult Orbit Orbit of g, po	n to al Me determ	viatrix relatio	) n PSO1 - - - - - - - - - - - - - - - - - - -	PSO2           -           2           2           2           2           2           1           0           01           01,           02           01,           02	
Note: * - Av COS CO1 CO2 CO4 Averag (Round to near intege Unit No. I II III	i 1- W verage P 2 3 i ed rest rr) Cont INT servi ORE Look laund syste SAT telen com	Yeak co value ir $O1$ $PO2$ $2$ $2$ $2$ $3$ $1$ $2$ $2$ $3$ $2$ $3$ $2$ $3$ entsRODU ces, INITAL Angle thes an ms peri ELLIT netry, nunicat	CTIO CTIO CTIO CTIO CTIO CTIO CTIO CTIO	N: In AT HAN BSY: ng, C ubsyst	2-Me e corr PO5 	Image: System       Image: System       System       System       System       Image: System	rren stren PO7 2 1 2 1 2 2 villabut Free LAU pert Orbitt Attituu and lite	quence ngth w PO8 - - - - - - - - - - - - - - - - - - -	ey all ERS: ons, 0 fects nd or toring na E	ocatio Orbit Orbit Orbit Orbit Orbit Orbit Orbit Orbit Orbit Orbit Orbit Orbit Orbit Orbit Orbit	n to al Me determ ontrol wer sent re	viatrix relatio	) n PSO1 - - - - - - - - - - - - - - - - - - -	PSO2           -           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           2           3           3           3           3           3           3           3           3           3           3           3           3           3           3           3           3	

IV	SATELLITE LINK DESIGN: Basic transmission theory, system	CO1,
	noise temperature and G/T ratio, Design of down links, up link design,	CO3
	Design of satellite links for specified C/N, System design example.	
V	<b>MULTIPLE ACCESS:</b> Frequency division multiple access (FDMA).	CO1,
	Time division Multiple Access (TDMA), TDMA Frame Structure,	CO4
	Transmitter Power in TDMA Networks, Satellite Switched TDMA,	
	Onboard Processing, Baseband Processing Transponders, Satellite	
	Switched TDMA with Onboard Processing, Demand Access Multiple	
	Access (DAMA), Code Division Multiple access (CDMA).	

#### Learning Resources

#### **Text Books**

1. Satellite Communications – Timothy Pratt, Charles Bostian and Jeremy Allnutt, WSE, Wiley Publications, 2nd Edition, 2003.

2. Satellite Communications – Dennis Roddy, McGraw Hill, 2nd Edition, 1996.

#### **Reference Books**

1. Satellite Communications: Design Principles – M. Richharia, BS Publications, 2nd Edition, 2003.

2. Satellite Communication - D.C Agarwal, Khanna Publications, 5th Ed.

3. Fundamentals of Satellite Communications - K.N. Raja Rao, PHI, 2004

#### e- Resources & other digital material

1. https://nptel.ac.in/courses/117/105/117105131/3.https://nptel.ac.in/courses/108/105/1 08105159/

---

	DIGI	FAL SIGNAL (	COMPR	ESSION	
Course Code	19EC4701B	Year	IV	Semester	Ι
Course Category	Program Elective IV	Branch	ECE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Digital Signal
					Processing
Continuous	30	Semester	70	<b>Total Marks:</b>	
Internal		End			100
<b>Evaluation:</b>		<b>Evaluation:</b>			

#### ---Course Outcomes

Upon	successful completion of the course, the student will be able to
CO1	Analyse various coding techniques used for signal compression (L4)
CO2	Calculate rate distortion for different sources (L2).
CO3	Compare different quantization techniques used for compression (L4)

- **CO4** Examine the compression standards of audio, image and video signals. (L2).
- **CO5** Apply various signal compression techniques and evaluate their performance (L3).

#### Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

* - Average value indicates course correlation strength with mapped PO

<u> </u>	DO1	DO1	<b>DO</b> 2	<b>DO</b> 4	DO5	DO(	D07	DOP	DOD	<b>DO10</b>	<b>DO11</b>	DO12	DCO1	DEON
COs	PUI	POZ	PUS	P04	P05	PU0	P0/	PUð	P09	POID	POII	POIZ	P501	PS02
CO1	3	3	2	2	2							1	2	1
CO2	3	3	2	2	2							1	2	1
CO3	3	3	2	2	2							1	2	1
CO4	3	3	2	2	2							1	2	1
CO5	3	3	2	2	2							1	2	1
Average* (Rounded to nearest integer)	3	3	2	2	2							1	2	1

---

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	MathematicalPreliminariesforLosslessCompression:Overview, a brief introduction to information theory, derivation of average information, models, coding.Huffman Coding:Overview, the Huffman coding algorithm.Arithmetic Coding:Introduction, coding a sequence, generating a binary code, comparison of Huffman and Arithmetic coding.	CO1
Π	Mathematical Preliminaries for Lossy Coding:Introduction,distortion criteria, information theory revisited models.Scalar Quantization:Introduction, the quantization problem,uniform quantizer, adaptive quantization, non-uniform quantization.	CO2, CO3

III	Vector Quantization: Introduction, advantages of vector	
	quantization over scalar quantization, the Linde-Buzo-Gray	CO3
	algorithm.	
	Differential Encoding: Introduction, the basic algorithm, prediction	
	in DPCM, Adaptive DPCM, delta modulation, speech coding.	
IV	Transform Coding: Transforms of interest, quantization and coding	
	of transform coefficients, application to image compression—JPEG,	CO3,
	application to audio compression-the MDCT.	CO4
	Subband Coding: Introduction, filters, some filters used in subband	
	coding, the basic subband coding algorithm.	
V	Audio Coding: Introduction, MPEG audio coding.	
	Video compression: Introduction, motion compensation, video	CO5
	signal representation ITU-T recommendation H 261	

---

Text Books
1. Khalid Sayood, Introduction to Data Compression, 4/e, Elsevier, India, 2012.
Reference Books
1. Jayant, Noll, Digital Coding of Waveforms-Principles and Applications to Speech
and Video Prentice Hall, New York, 1984.
2. David Salomon, Data Compression: The Complete Reference, Springer, 2000.
2 ZiNian Li Eundementals of Multimedia Deerson Education 2002

3. ZiNian Li, Fundamentals of Multimedia, Pearson Education, 2003.

e- Resources & other digital material

1. http://www.nptel.iitm.ac.in/

DIGITAL INTEGRATED CIRCUITS DESIGN											
Course Code	19EC4701C	Year	IV	Semester	Ι						
Course	Program	Branch	ECE	Course Type	Theory						
Category	Elective-IV										
Credits	3	L-T-P	3-0-0	Prerequisites	Digital						
					Logic						
					Design						
Continuous	30	Semester	70	<b>Total Marks:</b>	100						
Internal		End									
<b>Evaluation:</b>		<b>Evaluation:</b>									

Course	Outcomes

Upon	Upon successful completion of the course, the student will be able to							
<b>CO1</b>	Design CMOS inverters (L5)							
CO2	Analyze different scaling methods for MOS logical circuits (L4)							
<b>CO3</b>	Implement different techniques to improve Area, power and speed of MOS logical							
	circuits (L3).							
CO4	Analyze timing issues and arithmetic building blocks . (L4)							
<b>CO4</b>	Analyze timing issues and arithmetic building blocks . (L4)							

---

Mapping	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		3		3					3			3	
CO2	3		3		3					3			3	
CO3	3	3								3			3	
CO4	3	3								3			3	
Average*														
(Rounded	3	3	3	3	3					3			3	
to nearest	5	5	5	5	5					5			5	
integer)														

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	CMOS INVERTER: Introduction, The static CMOS inverter,	CO-1
	Evaluating the robustness of CMOS inverter, Performance of CMOS	
	inverter, Dynamic behaviour of CMOS inverter, and Power delay	
	product	
II	Technology scaling in VLSI, Full Scaling, Constant Voltage scaling,	CO-2
	combined(mixed) scaling methods ,scaling factors for MOS circuits:	
	Logic gate Area, gate capacitance, carrier density,, channel	
	resistance, gate delay, maximum operating frequency, saturation	
	current, current density, power dissipation and power –delay product.	
III	DESIGNING COMBINATIONAL LOGIC GATES IN CMOS:	CO-3
	Ratioed Logic, Pass transistor Logic, Static CMOS design, Dynamic	
	Domino CMOS logic design, performance of Dynamic logic, switching	
	activity of logic gate, short circuit currents in CMOS logic gates, Power	
	Consumption in CMOS Gates, Designing BICMOS logic gates	

IV	TIMING ISSUES IN DIGITAL CIRCUITS: Introduction, Timing	CO-4
	classification of digital systems, Synchronous design, Clock Skew	
	and Clock Generation. Synchronization at the system level,	
	synchronous verses asynchronous design	
V	<b>DESIGNING ARITHMETIC BUILDING BLOCKS</b> : Data paths	CO-4
	in Digital processor architectures, carry select adder, Carry	
	Skip Adder, Carry Look Ahead Adder, Carry Save Adder, multiplier,	
	shifter, Power and speed trade-offs in data path structures	

#### ---Learning Resources

#### **Text Books**

1. Digital Integrated Circuits- Jan M Rabaey, Anantha Chandrakasan, Borivoje Nikolic, Second Edition, PHI.

#### **Reference Books**

1. CMOS VLSI Design- Neil H.E.Weste, David Money Harris, Fourth Edition

<b>MICROWAVE ANTEN</b>
------------------------

Course Code	19EC4701D	Year	IV	Semester	Ι
Course	Program	Branch	ECE	<b>Course Type</b>	Theory
Category	Elective IV				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	<b>Total Marks:</b>	100
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

#### Course Outcomes

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	Infer microwaves and radio waves and identify the applications of microwaves							
	(L2).							
CO2	Explain different types of antennas designed for microwave frequency ranges							
	(L2).							
<b>CO3</b>	Develop Microwave antennas for various applications(L3)							
<b>CO4</b>	Take part in the measurement of antenna parameters in the laboratory $(IA)$							

---

# Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

Γ

* - Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2									3	
CO2	3	3	3	3									3	
CO3	3	3	3	3	3								3	
CO4	3	3	3	3	3				2	2			3	
Average* (Rounded to nearest integer)	3	3	3	3	3				2	2			3	

Syllabus								
Unit No.	Contents	Mapped CO						
Ι	<b>Introduction to microwave antennas:</b> Introduction, Microwave frequency bands, Applications of microwave antennas and advantages of microwaves. <b>Broadband antennas</b> : Biconical antenna, bow-tie and cylindrical dipole.	CO1 , CO2, CO3						
II	Frequency independent antennas, antenna miniaturization: Introduction, theory, equiangular spiral antennas, log-periodic antennas, Aperture antennas-Rectangular apertures, circular apertures, Horn antennas-E-Plane, H-Plane, Pyramidal and conical horn antennas and lens antennas-Introduction ,Geometry of Non- metallic Dielectric lenses. Zoning, Applications.	CO1 , CO2, CO3						
III	<b>Reflector antennas</b> : Introduction, Flat Sheet and Corner Reflectors, Paraboloid Reflectors – Geometry, Pattern Characteristics, Feed Methods, Reflector Types	CO1 , CO2, CO3						

IV	Micro strip antennas: Introduction, Features, Advantages and	CO1 ,									
	Limitations, Rectangular Patch Antennas – Geometry and	CO2,									
	Parameters, Characteristics of Micro strip Antennas. Rectangular										
	patch, circular patch antennas-Geometry and parameters										
V	Antenna Measurements: Introduction, Antenna ranges, radiation	CO4									
	patterns, gain measurements, directivity measurements, radiation										
	efficiency, impedance measurements, current and polarization										
	measurements.										

#### Learning Resources

#### **Text Books**

1. Contantine A. Balanis, Antenna Analysis and Design, 3/e, Wiley Publications, 2009. 2. A.R. Harish, M. Sachidananda, Antennas and Wave Propagation, 1/e, Oxford University Press, 2007.

#### **Reference Books**

1. E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiation Systems, Prentice Hall of India, 2012

2. Rajeswari Chatterjee, Antenna Theory and Practice, 2/e, New Age International Publishers, 2004. 3. F. E. Terman, Electronic and Radio Engineering, McGraw Hill, 1947

---

					Ц	<b>) I</b> 11	INCI			UNL						
Cours	se Cod	e		19	EC47(	)1E	Ye	ar		Г	V	Sem	ester		Ι	
Cours	se Cate	egory	7	Pro	ogram	W	Br	anch		E	CE	Cou	rse Ty	ре	T	heory
Credi	ts			3		1 V	L-'	Т-Р		3	-0-0	Prer	eanisi	tes	es Nil	
Conti	nuous	Inter	rnal	30			Se	mester	• End	7	0	Tota	l Mar	ks:	1(	00
Evalu	ation:						Ēv	aluati	on:		- -					
					Co	urse	Outco	mes						BT	L	evel
Upon successful completion of the course, the student will be able to																
CO1	Desc	cribe	the j	progra	ammer	's mo	del.								L2	2
CO2	Cho	ose t	he app	oropria	ate pro	otocol	for co	ommun	icatio	n betv	ween Io	T			L3	3
<b>CO3</b>	Ana	lysis	and e	evalua	te the	data 1	receive	ed thro	ough s	ensors	s in IO	Τ.			L4	l I
CO4	Dete	ermiı	ne the	e right	t sense	ors ar	nd con	mmuni	catior	1 prot	ocols	to use	in a		L5	5
	parti	cular	loT s	ystem	1.											
-			0				• • • •				1~-		DCC		• •	1
N	Mappi	ng o	f cou	rse o	utcon	nes w	ith P	rogra	m ou	tcom	es (C(	)/PO/	PSO .	Mati	rix)	)
	Note:	: 1-	Weak	corre	elation	n 2	2-Mec	dium c	orrel	ation	3-	Strong	g corre	elatio	n	
C0	)e	* - A	verag	ge valu	10  Ind	cates	COURSE	e corre	lation	streng	gth wit	h map	ped PC		11	PSO2
	)1	3	3	3	3	105	100	10/	100	109	1010	1011	1012	2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2
CO	)2	3	3	3	3									2		2
	)4	3	3	3	3									2		2
Avera	age*															
(Kound near	est	3	3	3	3									2		2
integ	ger)				integer)											
							Sv	 Ilahu	2		1	•				
∐nit	Cont	ents					Sy	 llabu	5			•	·		M	anned
Unit No	Cont	tents					Sy	 Ilabu	5				·		Ma	apped
Unit No.	Cont	tents	of TI	hings	• An	Over	Sy	 vllabus	S	f Thi	ngs I			19	Ma CC	apped )
Unit No.	Cont Inter	tents	of TI	hings	: An	Over ural y	Sy view,	 llabus Inter	s net of	f Thi	ngs, Io	oT coi	nceptu	ial	Ma CC	apped )
Unit No. I	Cont Inter frame	tents rnet ewor M2N	of Tl k, Io I corr	hings Tarcl	: An	Over ural v	Sy view, view,	Intern Techr	net of nology	f Thi y beh	ngs, Io ind Io	oT coi T, So	nceptu urces	ial of	Ma CC	apped ) CO1
Unit No. I	Cont Inter frame IoT, I Desig	tents rnet ewor M2N pn F	of Tl k, Io 1 com	hings Γ arcl	: An hitectuication	Over ural v n, Exa	Sy view, view, ample	Inter Techr s of I	net of nolog	f Thir y beh	ngs, Io ind Io	oT cor T, So	nceptu urces T/M2	ial of M	Ma CC	apped ) CO1
Unit No. I	Cont Inter frame IoT, I Desig	tents rnet ewor M2N gn F ms	of Tl k, Io' 1 com Princi Jave	hings Γ arcl nmuni iples ers	: An hitectrication for (	Over ural v n, Exa <b>Conn</b> desi	Sy view, view, ample ected gns	Inter Techr s of I Dev	net of nology oT. <b>ices:</b>	f Thir y beh Intro	ngs, Io ind Io oductio	oT con T, So on, Io	nceptu urces T/M2 nicati	nal of M on	Ma CC	apped ) CO1
Unit No. I II	Cont Inter frame IoT, J Desig system technic	tents rnet ewor M2N gn I ms nolog	of Tl k, Io' <u>I com</u> Princi laye ies.	hings Γ arcl imuni iples ers Data	: An hitectricition for ( and and	Over ural v n, Exa Conn desi cichm	Sy view, view, ample ected gns ent.	Inter Techr es of I Dev stand Data	net of nology oT. ices: dardis	f Thir y beh Intro sation	ngs, Id ind Io oductio , Co ation	oT con T, So on, Io ommu and	nceptu urces T/M2 nicati devi	ial of M on ce	Ma CC (	apped ) CO1
Unit No. I II	Cont Inter frame IoT, I Desig syste techn mana	tents met ewor M2N gn F ms nolog	of Tl k, Io' I com Princi laye ties, ent at	hings Γ arcl imuni iples ers Data t gate	: An hitectricition for ( and enn way, 1	Over ural v n, Exa Conn desi richm Ease o	Sy view, view, ample ected gns ent, of De	Inter Techr es of I Dev stand Data signin	net of nology oT. ices: dardis con g and	f Thin y beh Intro sation asolid	ngs, Id ind Io oductio , Co ation ordabil	oT con T, So on, Io ommu and ity.	nceptu urces T/M2 nicati devi	nal of M on ce	Ma CC (	apped ) CO1
Unit No. I II	Cont Inter frame IoT, J Desig syste techn mana Web	tents rnet ewor M2M gn H ms nolog agem co	of Tl k, Io' <u>I com</u> Princi laye ties, ent at mmu	hings T arcl imuni iples ers Data t gate nicati	: An hitectricition for ( and and way, 1 on p	Over ural v n, Exa Conn desi richm Ease o rotoc	Sy view, view, ample ected gns ent, of De ols	Inter Inter Techr es of I Dev stand Data signin for c	net of nology oT. ices: dardis con g and	f Thir y beh Intro sation solid l Affe cted	ngs, Id ind Io oductio , Co ation ordabil devic	oT con T, So on, Io ommu and ity. ees. M	nceptu urces T/M2 nicati devi	all of M on ce ge	Ma CC C	CO1
Unit No. I II	Cont Inter frame IoT, I Desig syste techn mana Web comr	tents rnet ewor M2N gn I ms nolog ngem con nuni	of Tl k, Io' <u>A com</u> <b>Princi</b> laye jies, ent at mmu catior	hings T arch iples ers Data gate nication proj	: An hitectrication for ( and and and and and and and and and and	Over ural v n, Exa Conn desi richm Ease o protoc	Sy view, view, ample ected gns ent, of De ols conne	Inter Techr Es of I Dev stand Data signin for cected	net of nolog: oT. ices: dardis con g and connec devic	f Thir y beh Intro sation solid l Affo cted es, w	ngs, Id ind Io oductio , Co ation ordabil devic veb co	oT con T, So on, Io ommu and ity. es, N nnecti	nceptu urces T/M2 nicati devi Messa vity f	al of M on ce ge for	Ма СС (	apped ) CO1 CO2
Unit No. I II	Cont Inter frame IoT, J Desig syste techn mana Web comr conne	tents rnet ewor M2N gn H ms nolog agem com nuni ected	of Tl k, Io' <u>I com</u> <b>Princi</b> laye ties, <u>ent at</u> mmun catior I-devi	hings T arcl muni- iples T ata t gate nication n pro- ices	: An hitectuication for ( and and and and and and and and and and	Over ural v n, Exa Conn desi ichm Ease o rotoc	Sy view, view, ample ected gns ent, of De ols conne using	Inter Techr es of I Dev Stand Data signin for c ected	net of nology oT. ices: dardis con g and devic eway	f Thin y beh Intro sation solid l Affo cted es, w	ngs, Id ind Io oductio , Co ation ordabil devic veb co ternet	oT con T, So on, Io ommu and ity. ees, M nnecti conr	T/M2 nicati devi Messa vity f	al of M on ce ge cor	Με <u>CC</u> () ()	<b>apped</b> ) CO1 CO2
Unit No. I II	Cont Inter frame IoT, 1 Desig syste techn mana Web comr conne princ	tents rnet ewor M2N gn F ms nolog agem com nuni ecteo iples	of Tl k, Io' <u>1 com</u> Princi laye ties, ent at mmun catior 1-devi 5, IP	hings T arcl imuni iples ers Data t gate nicati n prot ices addre	: An hitectricition for ( and way, 1 on p tocols netw essing	Over ural v n, Exa Conn desi richm Ease o rotoc for ork in Io	Sy view, view, ample ent, of De ols conne using oT, P	Inter Techr es of I Data signin for c ected g gat	net of nology oT. ices: dardis com g and connet devic eway authe	f Thin y beh Intro sation solid l Affe cted es, w , Internica	ngs, Id ind Io oductio , Co ation ordabil devic veb co ternet tion, I	oT con T, So on, Io ommu and ity. xes, N nnecti conr Vedia	T/M2 nicati devi Messa vity f nectivi	ial of M on ce ge for ity ess	Ma CC () ()	<b>apped</b> CO1 CO2
Unit No. I II	Cont Inter frame IoT, I Desig syste techn mana Web comr conne princ contr	tents rnet ewor M2N gn I ms nolog gem con nuni ectec iples rol, A	of Tl k, Io' <u>A com</u> <b>Princi</b> laye ties, ent at mmu catior l-devi s, IP	hings T arch iples trs Data gate nication ices addre cation	: An hitectric for ( and and on p tocols netwo essing Lave	Over ural v n, Exa Conn desi richm Ease o rotoc for ork in Io r Prot	Sy view, view, ample ected gns ent, of De ols conne using oT, P tocols	Inter Techr Stand Data Signin for c ected g gat Proxy	net of nolog: oT. <b>ices:</b> dardis con g and connec devic eway: authe	f Thir y beh Intro sation solid l Affo cted es, w , Int entica	ngs, Id ind Io oductio , Co ation ordabil devic veb co ternet tion, I	oT con T, So on, Io ommu and ity. ees, N nnecti conr Media	nceptu urces T/M2 nicati devi Messa vity f nectivi Acce	al of M on ce ge for ity ess		<b>apped</b> CO1 CO2
Unit No. I II	Cont Inter frame IoT, I Desig syste techn mana Web comr contr princ contr Data	tents ewor M2N gn H ms nolog agem coi nuni ectec iples ol, A acqu	of Tl k, Io' <u>I com</u> <b>Princi</b> laye ies, <u>ent at</u> mmun cation l-devi s, IP	hings F arcl muni- ples rs Data gate nication ices addre ation and	: An hitection for ( and way, 1 on p tocols netwo essing Laye storage	Over ural v n, Exa Conn desi richm Ease o rotoc for ork in Io r Prot ge, Or	Sy view, view, ample ent, of De ols conne using oT, P tocols rganiz	Inter Techr Stand Data Signin for c ected g gat Proxy s. zing th	net of nolog oT. ices: dardis con g and connet devic eway authe	f Thin y beh Intro sation solid l Affo cted es, w , Int entica ta, Ar	ngs, Id ind Io oductio ation ordabil devic veb co ternet tion, I	oT con T, So on, Io ommu and ity. conr Media s, Kno	T/M2 nicati devi Messa vity f nectiv Acce	al of on ce ge for ity ess	Ma CC C C	<b>apped</b> CO1 CO2
Unit No. I II III	Cont Inter frame IoT, I Desig syste techn mana Web comr contr Data acqui	tents rnet ewor M2N gn I ms nolog agem con nuni ectec iples rol, A acquiring	of TI k, Io' I com Princi laye jies, ent at mmu catior I-devi s, IP Applic uiring , man	hings T arcl muni- iples Ts Data gate nication ices addre addre ation and naging	: An hitectricition for ( and way, 1 on p tocols netw essing Laye storage g and	Over ural v n, Exa Conn desi richm Ease o orotoc for ork in Io r Prot ge, Or storin	Sy view, view, ample ent, of De ols conne using oT, P tocols rganiz ng pr	Inter Techr Techr es of I Data signin for c ected g gat Proxy s. zing th occesso	net of nology oT. ices: dardis conne devic eway authe ne dat es, clo	f Thir y beh Intro sation solid l Affe cted es, w , Int entica ta, Ar oud c	ngs, Id ind Io oductio ation ordabil devic veb co ternet tion, I nalytic	oT con T, So on, Io ommu and ity. conr ves, N nnecti conr Media s, Kno ting p	T/M2 nicati devi Messa vity f nectiv Acce	all of M on ce ge for ity ess ge ge	Ma CC C C C	<b>apped</b> CO1 CO2 CO2
Unit No. I II III IV	Cont Inter frame IoT, I Desig syste techn mana Web comr conne princ contr Data acqui for da	rnet ewor M2N gn I ms nolog gem con nuni ectec iples rol, A acqu iring ata c	of Tl k, Io' <u>A com</u> <b>Princi</b> laye ties, ent at mmu catior l-devi s, IP <u>Applic</u> uiring , man ollect	hings T arch iples T arch iples T arch iples T arch iples T arch iples t gate incation ices addres addres addres ation i and i aging ion st	: An hitectricition for ( and and and and and and and and and and	Over ural v n, Exa Conn desi ichm Ease o rotoc for ork in Io rotoc ork in Io ge, Or storin and	Sy view, view, ample ected gns ent, of De ols conne using oT, P tocols rganiz ng pr comp	Inter Techr es of I Data signin for c ected g gat Proxy zing th occesso uting.	net of nology oT. ices: dardis connet devic eways authe ne dat es, clo IoT c	f Thin y beh Intro sation solid <u>I Affo</u> cted es, w , Int entica ta, An oud c	ngs, Id ind Io oductio ation ordabil devic veb co ternet tion, I nalytic ompu-	oT con T, So on, Io ommu and ity. ees, N nnecti conr Vedia s, Kno ting p servio	T/M2 nicati devi Messa vity f nectiv Acce	al of M on ce ge for ity ess ge ge	Ma CC () ()	apped CO1 CO2 CO2
Unit No. I II III IV	Cont Inter frame IoT, I Desig syste techn mana Web comr contr Data acqui for da Sense	tents rnet ewor M2N gn H ms nolog agem cor nuni ectec iples ol, A acqu iring ata c or te	of Tl k, Io' <u>1 com</u> <b>Princi</b> laye ies, <u>ent at</u> mmun cation 1-devi s, IP applic uiring , man ollect echno	hings T arcl imuni iples t gate n pro- ices addre addre addre ication and aging ion st logy	: An hitection for ( and and on p tocols netw essing Laye storage g and corage (Ana	Over ural v n, Exa Conn desi richm Ease o orotoc ork in Io r Prot ge, Or storin e and o log s	Sy view, ample ected gns ent, of De ols conne using oT, P tocols rganiz ng pr comp sensor	Inter Techr es of I Data signin for c ected g gat Proxy s. zing th ocesse uting, rs and	net of nolog oT. ices: dardis con g and connet devic eway authe ne dat es, clo IoT c d Dis	f Thin y beh Intro sation solid 1 Affo cted es, w , Int entica ta, An oud c cloud gital	ngs, Id ind Io oductio ation ordabil devic veb co ternet tion, I nalytic omput based senso	oT con T, So on, Io ommu and ity. conr Media s, Kno ting p servic rs), A	T/M2 nicati devi Messa vity f nectiv Acce owled aradig ces.	al of on ce ge for ity ess ge gm or,		<b>apped</b> CO1 CO2 CO2
Unit No. I II III IV	Cont Inter frame IoT, I Desig syste techn mana Web comr conne princ contr Data acqui for da Senso	tents rnet ewor M2N gn I ms nolog agem con nuni ectec siples rol, A acqu iring ata c or te or da	of TI k, Io' I com Princi laye ies, ent at mmu catior I-devi s, IP applic uiring , man ollect echno ata co	hings T arcl muni- iples Ts Data gate nication ices addre addre addre ation in st logy	: An hitectricition for ( and and and and boon p tocols netw essing Laye storage g and corage (Ana anicat	Over ural v n, Exa Conn desi richm Ease o ork in Io r Prot ge, Or storin and o log s ion p	Sy view, view, ample ent, of De ols conne using oT, P tocols rganiz ng pro- comp sensor	Inter Techr es of I Dev stand Data signin for c ected g gat Proxy s. zing th ocesse uting, rs and cols, F	s net of nology oT. ices: dardis con g and connec devic eway authe ne dat es, clo IoT c d Dig Cadio	f Thir y beh Intro sation solid l Affo cted es, w , Int entica ta, Ar oud c cloud gital frequ	ngs, Id ind Io oductio ation ordabil devic veb co ternet tion, I nalytic omput based senso uency	oT con T, So on, Io ommu and ity. conr Media s, Kno ting p servic rs), A identi	T/M2 nicati devi devi Messa vity f nectiv Acce owled aradig ces.	all of M on ce ge for ity ess ge gm or, on		<b>apped</b> CO1 CO2 CO2
Unit No. I II III IV V	Cont Inter frame IoT, I Desig syste techn mana Web comr contr Data acqui for da Sense Sense techn	rnet ewor M2N gn I ms nolog gem con nuni ectec iples rol, A acqu iring ata c or te or da nolog	of Tl k, Io' <u>1 com</u> <b>Princi</b> laye ies, ent at mmu catior l-devi s, IP <u>applic</u> uiring , man <u>ollect</u> echno ata co y, wi	hings T arch iples T arch incath in arch ices T and inaging ion st ion st ion st ion st ion st ion st	: An hitectricition for ( and and and and and bon p tocols netw essing Laye storage g and corage (Ana anicat s sens	Over ural v n, Exa Conn desi ichm Ease o rotoc for ork in Io ge, Or storin e and o log s ion p or ne	Sy view, view, ample ected gns ent, of De ols conne using oT, P tocols rganiz ng pr comp sensor protoc twork	Inter Techr es of I Data signin for c ected g gat Proxy zing th occesse outing, rs and cols, F cs, Int	net of nology oT. ices: dardis connet devic eway authe ne dat es, clo IoT c d Dis Cadio coduc	f Thin y beh Intro sation solid l Affo cted es, w , Int entica ta, An oud c cloud gital frequ tion t	ngs, Id ind Io oductio ation ordabil devic veb co ternet tion, I nalytic ompu- based senso uency o Ard	oT con T, So on, Io ommu and ity. ees, M nnecti conr Media s, Kno ting p servic rs), A identi uino, J	T/M2 nicati devi devi Messa vity f nectiv Acce owled aradig ces. ctuate ificati	al of on ce ge for ity ess ge gr or, on no		apped CO1 CO2 CO2 CO2 CO3
Unit No. I II III IV V	Cont Inter frame IoT, J Desig syste techn mana Web comr contr Data acqui for da Sense techn IDE.	rnet ewor M2N gn H ms nolog agem cor nuni ectec iples ol, A acqu iring ata c or te nolog Nod	of Tl k, Io' <u>I com</u> <b>Princi</b> laye ies, <u>ent at</u> mmun cation I-devi s, IP <u>Applic</u> uiring , man ollect echno ata co sy, wi le MO	hings T arcl inuni iples T arcl inuni iples T arcl inuni iples T arcl inuni iples at gate n pro- ices addre addre addre ion st logy ommu reless CU, I	: An hitectricition for ( and and and and bon p tocols netw essing Laye storage g and corage (Ana unicat s sens ntrodu	Over ural v n, Exa Conn desi tichm Ease o orotoc ork in Io r Prot ge, Or storin e and o log s ion p or ne uctior	Sy view, ample ected gns ent, of De ols conne using oT, P tocols rganiz ng pr comp sensor protoc twork n to F	Inter Techr es of I Data signin for c ected g gat Proxy s. zing th ocesse uting, rs and cols, F as, Int Raspbe	net of nolog oT. ices: dardis con g and connet devic eway authe es, clo IoT c d Dig adio coduc erry P	f Thin y beh Intro sation hsolid l Affo cted es, w , Int entica ta, An oud c cloud gital frequ tion t Pi. Io	ngs, Id ind Io oductio ation ordabil devic veb co ternet tion, I nalytic omput based senso uency o Ard F case	oT con T, So on, Io ommu and ity. es, N necti conr Media s, Kno ting p servic rs), A identi uino, J	T/M2 nicati devi devi Messa vity f nectiv Acce owled aradig ces. ctuato ificati Ardui z: Sma	and and of on ce ge for ity ess ge gm or, on no art		<b>apped</b> CO1 CO2 CO2 CO2
Unit No. I II II IV V	Cont Inter frame IoT, I Desig syste techn mana Web comr contr Data acqui for da Senso techn IDE, city s	tents rnet ewor M2N gn I ms nolog agem cor nuni ectec iples col, A acqu iring ata c or te or da nolog	of TI k, Io' I com Princi laye jies, ent at mmu cation l-devi a, IP uiring , man ollect echno ata co gy, wi le MC	hings T arcl imuni iples T arcl iples T arcl iples T arcl iples at gate n proti- ices addre- addre- ation and aging ion st logy cut, I s con	: An hitectu ication for ( and and and in enu way, l on p tocols netw essing Laye storage g and corage (Ana unicat s sens ntrodu	Over ural v n, Exa Conn desi richm Ease o rotoc ork in Io r Prot ge, Or storin and o log s ion p or ne uctior	Sy view, ample ent, of De ols conne using oT, P tocols rganiz ng pr comp sensor protoc twork n to F	Inter Techri es of Id Data signin for c ected g gat Proxy s. zing th occesse uting, rs and cols, F cs, Intr Caspbe	net of nology oT. ices: dardis connec devic eway authe eway authe ice dat es, clo IoT c d Dia adio coduc erry P	f Thin y beh Intro sation solid l Affo cted es, w , Int entica ta, An oud c cloud gital frequ tion t Pi. Io	ngs, Id ind Io oductio ation ordabil devic veb co ternet tion, I nalytic omput based senso uency o Ard F case	oT con T, So on, Io ommu and ity. ess, N necti conr Media s, Kno ting p servic rs), A identi uino, J	T/M2 nicati devi devi Messa vity f nectivi Acce owled aradig ces. ctuate ificati Ardui z: Sma	all of M on ce ge for ity ess ge gm or, on no art		<b>apped</b> CO1 CO2 CO2 CO2

# ____ Learning Resources **Text Books** 1. Raj kamal, "Internet of Things architecture and design principles ", 1ed, Mc Graw Hill.

100

**Total Marks:** 

# PVP 19

SENSORS AND TRANSDUCERS FOR REMOTE APPLICATIONS										
<b>Course Code</b>	19EC4701F	Year	IV	Semester	Ι					
Course	Programme	Branch	ECE	<b>Course Type</b>	Theory					
Category	Elective-IV									
Credits	3	L-T-P	3-0-0	Prerequisites	Nil					

70

Semester

**Evaluation:** 

End

Continuous

**Evaluation:** 

Internal

30

	Course Outcomes								
Upon	Upon successful completion of the course, the student will be able to								
CO1	Understand the basic concepts and characteristics of Sensors (L2)								
CO2	Discuss the construction, working principle, characteristics and applications of								
	various resistive Sensors.(L4)								
CO3	Discuss the construction, working principle, characteristics and applications of								
	various Capacitive Sensors.(L4)								
<b>CO4</b>	Discuss the construction, working principle, characteristics and applications of								
	Self-Generating Sensors.(L4)								
CO5	Understands the basic concepts of telemetry systems (L2)								

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2			1	1	1		1	2	1
CO2	3	3	2	2	2			1	1	1		1	2	1
CO3	3	3	2	2	2			1	1	1		1	2	1
CO4	3	3	2	2	2			1	1	1		1	2	1
CO5	3	3	2	2	2			1	1	1		1	2	1
Average* (Rounded to nearest integer)	3	3	2	2	2			1	1	1		1	2	1

Syllabus								
Unit Contents								
No.		CO						
Ι	Introduction to Sensors based measurement systems- General	CO1						
	Concepts and Terminology, Sensor Classification-sensors, General							
	input-output Configuration, Static characteristics of measurement							
	system, Dynamic Characteristics, Other sensor characteristics.							
II	Resistive Sensors - Potentiometers, Strain Gages, Resistive	CO2						
	Temperature Detectors (RTD), Thermistors, Magneto resistors, Light-							
	Dependent Resistors (LDR), Resistive Hygrometers, Resistive Gas							
	Sensors.							

т	I Conscitive Sensors Variable conscitor Differential conscitor	CO2						
1	Inductive sensors - Variable reluctance sensors Eddy current sensors	COS						
	Linear variable differential transformers (LVDT) variable							
	transformers. Magneto elastic and magnetostrictive sensors.							
Г	V Self-Generating Sensors- Thermoelectric Sensors, Piezoelectric	CO4						
	Sensors, Pyroelectric Sensors, Photovoltaic sensors, Electrochemical							
	Sensors.							
I	/ Introduction to Telemetry principles, Basic System, Classification,	CO5						
	Non-electrical Telemetry system, Voltage and Current Telemetry							
	System, Local transmitters and convertors, frequency telemetering,							
	Satellite Telemetry, Fibre optic telemetry							
	Learning Resources							
Tey	at Books							
	1. Ramon Pallas-Areny, Jhon G. Webster, "Sensors and Signal Condition	ing" -2nd						
	Edition, John Wiley and Sons							
	2. D Patrabnis, "Telemerty Principles", Tata McGraw Hill, 2007.							
Ref	erence Books							
1.	A.K. Sawhney, "Electrical and Electronic Measurements and Instrum	entation",						
2	Dhanpat Rai.	C1 1 0						
2.	Er. K.K. Kajput, "Electronic Measurements and Instrumentation", S. Company, Ltd. 2nd Edition	chana &						
2	Company Liu. Sid Edition.	n/Drantica						
э.	Holl 2005							
1	Ian, S. Wilson "Sansar Tachnology Hand Book" Elsovier Inc. 2005							
4.	Joh. S. Whison, Schsol recimology fiand book, Elseviel Inc., 2005.							

GLOBAL POSITIONING SYSTEMS										
<b>Course Code</b>	19EC4702A	Year	IV	Semester	Ι					
Course	Program	Branch	ECE	Course Type	Theory					
Category	Elective V									
Credits	3	L-T-P	3-0-0	Prerequisites	Satellite					
					communication					
Continuous	30	Semester	70	Total Marks:	100					
Internal		End								
<b>Evaluation:</b>		<b>Evaluation:</b>								

#### **Course Outcomes**

Upon	successful	completion	of the cour	se, the student	t will be able to

**CO1** Understand GPS signals and their characteristics (L2).

**CO2** Classify and discuss about GPS receivers (L2)

**CO3** Demonstrate different types of GPS **errors** (L3)

**CO4** | Analyse various standard formats of GPS(L3)

**CO5** Differentiate GPS applications (L4)

#### Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 CO₂ CO3

CO4	- 3	3	3	2	2	1	1	1	1	1	1	1	2
CO5	3	3	3	2	2	1	1	1	1	1	1	1	2
Average* (Rounded to nearest integer)	3	3	2	2	2	1	1	1	1	1	1	1	2

	Syllabus									
Unit	Contents	Mapped								
No.		CO								
Ι	Introduction to GPS: Overview of GPS, GPS segments, GPS	CO1, CO2								
	satellite generations, current GPS satellite constellation, control	& CO3								
	sites.									
II	GPS Details: GPS signal structure, GPS modernization, types of	CO1, CO2								
	GPS receivers, time systems, pseudo range measurements, Carrier-	&CO3								
	phase measurements and cycle slips.									
III	GPS errors and Biases: GPS ephemeris errors, Selective	CO1, CO2								
	availability, satellite receiver and clock error, multipath error,	&CO3								
	ionospheric error, tropospheric error									
IV	GPS standard formats: RINEX, NGS-SP3, RTCM SC-104 and	CO1,								
	NMEA 0183.	CO3& CO4								

V	<b>GPS Applications:</b> GPS for utilities industry, forestry and natural	CO1,CO4&
	resources, precision farming, civil engineering applications,	CO5
	monitoring structural deformations, open pit-mining, land seismic	
	surveying, marine seismic surveying, airborne mapping, sea floor	
	mapping and vehicle navigation.	

#### Learning Resources

#### **Text Books**

1. Introduction to GPS the global positioning system: by Ahmed EI-Rabbany, Artech House Boston. London.

#### **Reference Books**

1. Fundamentals of Global Positioning System Receivers: A Software Approach, James Bao-Yen Tsui Copyright @ 2000 John Wiley & Sons, Inc.

---

	<b>BIOMEDICAL SIGNAL PROCESSING</b>								
Course	19EC4702B	Year	IV	Semester	Ι				
Code									
Course	Program	Branch	ECE	Course Type	Theory				
Category	Elective-V								
Credits	3	L-T-P	3-0-0	Prerequisites	Nil				
Continuous	30	Semester	70	<b>Total Marks:</b>	100				
Internal		End							
<b>Evaluation:</b>		<b>Evaluation:</b>							

	Course Outcomes						
Upon	successful completion of the course, the student will be able to						
<b>CO1</b>	Analyse ECG, EEG, EMG and PCG waveforms by applying signal processing,						
	reduction and filtering techniques (L4).						
CO2	Analyse ECG, EEG, EMG and PCG signals using data acquisition, Data Reduction						
	methods (L4).						
CO3	Determine the disorders related to Neurological Advanced Signal processing						
	techniques & Modelling of Biomedical Systems by using advanced signal processing						
	techniques (L5).						
<b>CO4</b>	Evaluate the medical signals by using advanced techniques (L5).						
CO5	Analyse the various data compression methods (L4)						

# Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)Note: 1- Weak correlation2-Medium correlation3-Strong correlation

* - Avera	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2		3					2		2	3
CO2	3	3	3	2		3					2		2	3
CO3	3	3	3	2		3					2		2	3
CO4	3	3	3	2		3					2		2	3
CO5	3	3	3	2		3					2		2	3
Average*														
(Rounded	3	3	3	2		3					2		2	3
to nearest	5	5	5	2		5					2		2	5
integer)														

	Syllabus							
Unit No.	Contents	Mapped CO						
Ι	<b>Introduction to Biomedical signals:</b> Bio-signal Characteristics of Electro Cardiogram (ECG), Electroencephalogram (EEG), Electromyogram (EMG), Phonocardiogram (PCG), Objectives of Biomedical signal analysis, Difficulties in Biomedical signal analysis, Computer-aided diagnosis	CO1 ,CO4						
II	<b>ECG Signal Processing:</b> ECG data acquisition, ECG lead system, ECG parameters and their estimation, ECG QRS detection techniques: Template matching, differentiation based QRS detection techniques. Estimation of R-R Interval: Finite first difference method. The use of multi-scale analysis for parameter estimation of ECG waveforms, Arrhythmia analysis monitoring, long term continuous ECG recording	CO1,CO2, CO4						

III	ECG Data Reduction Techniques: Direct data compression	CO1,CO2,
	techniques, direct ECG data compression techniques: Turing point	CO4,CO5
	algorithm, AZTEC algorithm and FAN algorithm, other data	
	compression techniques: data compression by DPCM, data	
	compression method comparison.	
IV	Neurological applications: EEG rhythms & waveforms, EEG	CO1,CO3,
	applications- Epilepsy, sleep disorders, brain computer interface.	CO4
	Modeling EEG- linear, stochastic models - Nonlinear modeling of	
	EEG - artifacts in EEG & their characteristics and processing -	
	Nonparametric spectral analysis, Model based spectral analysis -	
	EEG segmentation - Joint Time-Frequency analysis - correlation	
	analysis of EEG channels -coherence analysis of EEG channels.	
	Evoked potentials- noise characteristics, Noise reduction by linear	
	filtering.	
V	Advanced Signal processing techniques & Modeling of	CO1,CO3,
	Biomedical Systems: Optimal Signal Processing: Wiener Filters,	CO4
	Adaptive Signal Processing, Adaptive Noise Cancellation.	
	Parametric system modeling, Autoregressive or All-Pole modeling,	
	Pole-Zero Modeling.	

#### Learning Resources

#### **Text Books**

1. Rangaraj M Rangayyan ,"Biomedical Signal Analysis" -, IEEE Press, 2001

2. Biomedical Digital Signal Processing – Willis J Tomkins, PHI, 1993

#### **Reference Books**

1. Biomedical Digital Signal Processing Principles and Techniques-D C Reddy, TMH, 2005

e- Resources & other digital material

1. http://www.biomedicahelp.altervista.org > Segnali

2.https://www.digimat.in/nptel/courses/video/108105101/L12.html

Course	10EC4702C	Year	IV	Semester	Ι
Code	19EC4702C				
Course	Program	Branch	ECE	<b>Course Type</b>	Theory
Category	Elective V				
Credits	3	L-T-P	3-0-0	Prerequisites	VLSI Design
Continuous	30	Semester	70	<b>Total Marks</b>	100
Internal		End			
Evaluation		Evaluation			

Course Outcomes									
Upon	Upon successful completion of the course, the student will be able to								
CO1	CO1 Contrast MOS devices, its models and differential amplifiers. L4								
CO2	Build single stage and differential amplifiers using MOSFET	L3							
CO3	CO3 Analyze OP-AMP based Circuits.								
CO4	CO4 Learn layout and packaging processes L2								

#### Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)

Strengt														
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	1								2	1
CO2	3	2	2	2	1								2	1
CO3	3	2	2	2	1								2	1
CO4	3	2	2	2	1								2	1
Average* (Rounded to nearest integer)														

Syllabus							
Unit No.	Contents	Mapped CO					
т	Basic MOS Device Physics: General Considerations, MOS I/V	C01,					
1	Characteristics, Second-Order Effects, MOS Device Models.	CO2					
	Single Stage and Differential Amplifiers: Common-Source						
п	Stage, Source Follower, Common- Gate Stage, Cascode Stage,	CO1,					
11	Basic Differential Pair, Common-Mode Response, Differential	CO2					
	Pair with MOS Loads.						
	Operational Amplifiers: General Considerations, One-Stage						
Ш	Op Amps, Two-Stage Op Amps, Gain Boosting, Common-	CO3					
111	Mode Feedback, Input Range Limitations, High-Slew-Rate Op	005					
	Amps, Power Supply Rejection.						
	Nanometer Design Studies: Transistor Design Considerations,						
IV	Deep-Submicron Effects, Transconductance Scaling, Transistor	CO3					
	Design, Op Amp Design Examples, High-Speed Amplifier.						
V	Layout and Packaging: General Layout Considerations,	$CO_4$					
v	Analog Layout Techniques, Substrate Coupling, Packaging.	C04					

#### **Learning Resources**

#### **Text Books**

1. Behzad Razavi, Design of Analog CMOS Integrated Circuits, 2/e, Mc-Graw Hill Education, 2017

#### **Reference Books**

- 1. Adel S. Sedra, Kenneth C. Smith, Microelectronic Circuits, 7/e, Oxford University Press.
- 2. R. Jacob Baker, CMOS Circuit Design, Layout and Simulations, 3/e, IEEE press, 2010.
- 3. David A. Johns, Ken Martin, Analog Integrated Circuit Design, 2/e, John Wiley & Sons.
- 4. Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuits Theory, 10/e, Pearson Education, 2009.

RADAR SYSTEMS											
Course Code	19EC4702D	Year	IV	Semester	Ι						
Course	Program	Branch	ECE	Course Type	Theory						
Category	Elective - V										
Credits	3	L-T-P	3-0-0	Prerequisites	AC, AAS						
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100						
	<u> </u>				1						

Upon	successful completion of the course, the student will be able to
<b>CO1</b>	Interpret the complete radar range equation and statistical parameters of Noise L2
CO2	Analyse the fixed and moving targets using different types of radar systems. L4
CO3	Identify various tracking methods, different types of display devices & duplexers.
	L3

**CO4** Apply the various techniques in radar receivers for detection of signals in noise. L3

COs	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	PO11	PO12	PSO1	PSO2
CO1	3	3	1							1	2
CO2	3	1	2							1	2
CO3	3	3	2							1	2
CO4	3	3	2							1	2
Average* (Rounded to nearest integer)	3	3	2							1	2

	Syllabus	
Unit No.	Contents	Mapped CO
Ι	<b>Nature of Radar</b> : Maximum Unambiguous Range, Radar Waveforms, Simple form of Radar Equation, Radar Block Diagram and Operation, Radar Frequencies and Applications. Minimum Detectable Signal, Receiver Noise and SNR, Integration of Radar Pulses, Radar Cross Section of Targets, Transmitter Power, PRF and Range Ambiguities, System Losses	CO1
Π	<b>CW and Frequency Modulated Radar :</b> Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar. FM-CW Radar, Range and Doppler Measurement, Block Diagram and Characteristics (Approaching/ Receding Targets), FM-CW altimeter, Multiple Frequency CW Radar.	CO2
III	MTI and Pulse Doppler Radar: Introduction, Principle, MTI Radar with - Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers – Filter Characteristics, Blind Speeds, Double Cancellation, Staggered PRFs. Range Gated Doppler Filters, Non-coherentMTI, MTI versus Pulse Doppler Radar.	CO2

IV	Tracking Radar: Tracking with Radar, Sequential Lobing,								
	Conical Scan, Monopulse Tracking Radar – Amplitude	<b>CO</b> 2							
	Comparison Monopulse (one and two coordinates), Phase	COS							
	Comparison Monopulse. Comparison of Trackers.								
V	Detection of Radar Signals in Noise : Introduction, Matched Filter								
	Receiver – Response Characteristics and Derivation, Correlation								
	Function and Cross-correlation Receiver, Efficiency of Non-matched								
	Filters Matched Filter with Non-white Noise. Radar Receivers -								
	Noise Figure and Noise Temperature. Displays – types. Duplexers –								
	Branch type and Balanced type.								

#### Learning Resources

#### **Text Books**

1. Introduction to Radar Systems – Merrill I. Skolnik, 2nd Edition, McGraw-Hill.

# 2. Microwave and Radar Engineering - Gottapu Sasi Bhushana Rao

#### **Reference Books**

- 1. Introduction to Radar Systems Merrill I. Skolnik, 3rd Edition, Tata McGraw-Hill,
- 2. Understanding Radar Systems Simon kingsley, McGraw-Hill,1st edition., 1992
- 3. Radar Principles- Peyton Z. Peebles, Jr., Wiley India Pvt. Ltd., 2009

#### e- Resources & other digital material

1. <u>https://deebak.files.wordpress.com/2009/05/skolnik.pdf</u>

# **TV TECHNOLOGY**

<b>Course Code</b>	19EC4702E	Year	IV	Semester	Ι
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective V				
Credits	3	L-T-P	3-0-0	Prerequisites	Analog and
					Digital
					Communications
Continuous	30	Semester	70	<b>Total Marks:</b>	100
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

#### ---Course Outcomes

Upon successful completion of the course, the student will be able to

CO1 Compare Digital TV transmission standards and performance parameters (L2)

CO2 Analyse channel coding and modulation techniques for Digital TV (L4)

**CO3** Make use of RF amplifiers, modules and systems for Digital TV (L3)

CO4 Identify Transmission lines for Digital TV(L3)

**CO5** Test for a Digital TV Transmitter (L4)

#### Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

* - Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	2	-	-	1	2	-	-	-	-	2	-	2
CO2	2	2	2	-	-	-	-	-	-	-	-	2	-	-
CO3	-	2	2	-	-	-	-	-	-	-	-	-	-	2
CO4	-	-	2	-	-	2	-	-	-	-	-	2	-	3
CO5	-	2	-	-	-	-	1	-	-	-	-	2	-	2
Average* (Rounded to nearest integer)	2	2	2			2	2					2		3

___

Syllabus									
Unit No.	Contents	Mapped CO							
Ι	Digital Television Transmission Standards ATSC terrestrial transmission standard, vestigial sideband modulation, DVB-T transmission standard, ISDB-T transmission standard, channel allocations, antenna height and power, MPEG-2 Performance Objectives for Digital Television: System noise, external noise sources, transmission errors, error vector magnitude, eye pattern, interference, cochannel interference, adjacent channel interference, analog to digital TV, transmitter requirements	CO1							
II	Channel Coding and Modulation for Digital Television: Data synchronization, randomization/scrambling, forward error correction, interleaving, inner code, frame sync insertion, quadrature modulation, 8 VSB, bandwidth, error rate, COFDM, flexibility, bandwidth	CO1, CO2							
III	<b>Transmitters for Digital Television</b> : Precorrection and equalization, up conversion, precise frequency control, RF amplifiers, solid-state transmitters, RF amplifier modules, power supplies, cooling, automatic	C01,C03							

	gain or level control, ac distribution, transmitter control, tube transmitters, performance quality.	
IV	<b>Transmission Line for Digital Television:</b> Fundamental parameters, efficiency, effect of VSWR, system AERP, rigid coaxial transmission lines, dissipation, attenuation, and power handling, higher-order modes, peak power rating, frequency response, standard lengths, corrugated coaxial cables, wind load, waveguide, bandwidth, waveguide attenuation, power rating, frequency response, size trade-offs, waveguide or coax pressurization	CO1,CO4
V	<b>Test and Measurement for Digital Television:</b> Power measurements, average power measurement, calorimetry, power meters, peak power measurement, measurement uncertainty, testing digital television transmitters.	C01,C05

#### Learning Resources

1. Gerald w. Collins, Fundamentals of Digital Television Transmission, John Wiley, 2001. **Reference Books** 

1 R. R. Gulati, Modern Television Practice, Principles, Technology and servicing, 2/e, New Age International Publishers, 2001.

2 John Arnold, Michael Frater, Mark Pickering, Digital Television Technology and Standards, John Wiley, 2007.

#### e- Resources & other digital material

**Text Books** 

1.<u>https://www.youtube.com/watch?v=_nGnRvyHMEI&list=RDCMUCdlnqMpRrMcCl</u> K2fT6z8EEw&index=2

____

2. https://www.rfwireless-world.com/Tutorials/digital-television-DTV-basics.html

					ΙΟΤ	IN H	EALI	<b>FH C</b> A	ARE					
Cours	e Code	19	EC470	)2F	Yea	r		IV		S	emest	er	Ι	
Cours	e	Pro	ogram		Bra	nch		ECE		(	Course	Type	The	ory
Categ	ory	Ele	ective	V								• 1		2
Credi	ts	3		•	L-T	-P		3-0-0		F	rereq	uisites	Nil	
Conti	inuous 30 Semester 70 Total Marks								Aarks:	100				
Interr	al				End	l								
Evalu	Evaluation: Evaluation:													
					(	Cours	e Out	comes						
Upon	successf	ul co	mpleti	on of t	the co	urse, t	he stu	ident v	vill be	able to	<u> </u>			
COI	Demor	istrate	e the	sens	ing p	rincipl	es, teo	chnolo	gies a	ind sec	curity	issues	involv	ed in
CO2	Identify	ucal 1	sensin	α tech	<i>.)</i> nolog	ies for	hiom	edical	telem	etru/I	3)			
CO2	Identif	v var		<u>s icen</u> ecurit	v jssu	$\frac{100}{101}$ es inv	olved	in hic	medi	cal tel	emetry	$v(\mathbf{L},3)$		
CO4	Analyz	e the	role o	f IOT	$\frac{1000}{100}$	medic	al apr		ons(L4	.)	since y	(13)		
001										/				
Mapp	ing of c	ourse	e outc	omes	with	Progr	am o	utcon	nes (C	CO/ P(	)/PSC	) Matr	ix)	
Note:	1- Weak	corr	elatio	n 2-N	Aediu	m cor	relatio	on 3-	Stron	g corre	elation	l		
* - Ave	rage val	ue inc	licates	course	e corre	lation	streng	th wit	h map	ped PC	)			
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
01	3	3	3	3	3	3	3						3	3
CO2	3	3	3	3	3	3	3						3	3
C04	3	3	3	3	3	3	3						3	3
Average* (Rounded	: 1				-									_
to neares	t 3	3	3	3	3	3	3						3	3
Integer)														
						S	vllabu	15						
Unit	Conter	nts				~.		-0					Map	ped
No.													CO	•
Ι	Introdu	iction	ı to Bi	omed	ical T	'eleme	etry. T	'ypica	l Bior	nedica	l Tele	metry	CO1	
	System	n, Ch	alleng	es in	Biom	nedica	l Tele	emetry	, Cor	nmerc	ial Mo	edical		
	Teleme	etry D	Device	S					-				~ ~	
II	Sensing	g Prii	nciple	s for E	Biome	dical	Telen	netry,	Introd	luctior	n, Bios	ensor	CO1	,
	Structu	re,	El El	ectroc	nemi	cal	Bi	osenso	ors,	An	nperor	netric	CO2	
	Electro	ocnen	ncal	atria	DIOSE Biose	nsors	, Dia-	Up	ucal	linger	DIOSE	Other		
	Tuper	of Ri	IOLIIII(	ore	biose	nsors,	Flez	LUEIEC	uic E	biosen	5015,	Ouler		
III	Sensin	g Ter	chnole	pries f	for Bi	omed	ical T	eleme	try I	ntrodu	ction	Non-	CO1	
***	invasiv	e Sei	1sors a	and In	terfac	es. In	vasive	e and	[mplai	ntable	Senso	rs	$CO^2$	,
						,			r					
IV	Safety	Issu	es in	Bion	nedica	l Tel	emetr	y, Int	roduc	tion,	Opera	tional	CO1	,
	Safety,	Pro	duct a	and D	evice	Haza	ards,	Patier	nt and	l Clin	ical S	afety,	CO3	
	Human	i Fac	tor an	nd Us	e Issi	ues, E	lectro	omagn	etic (	Compa	tibilit	y and		
	Interfe	rence	Issue	s, Ucc	cupati	onal S	atety							
				, 200	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							1	
V	IoT in Biomedical Applications IoT client &IoT gateway in healthcare, IoT	CO4												
---	---------------------------------------------------------------------------	-----												
	driven smart health care application for everyday use, life critical													
	applications, Health care IOT for rural area, Use of Big Data and													
	Visualization in IoT, Industry 4.0 concepts, sensor markup language													

#### **Learning Resources**

#### **Text Books**

1.K S Nikitha, "Handbook of Biotelemetry", Wiley publishers, 2014

2. Samuel Greengard, "The Internet of Things", MIT Press, 1stEdition, 2015

#### **Reference Books**

1. D Patranabis, "Telemetry Principles", Tata McGraw Hills, 2007

2. Catarina I Reis and Maria D S Maximiano, "Internet of Things and Advanced Applications in Healthcare", IGI-Global, 2017.

----

RENEWABLE ENERGY RESOURCES						
Course Code	19EE2701A	Year	IV	Semester	Ι	
Course Category	IDE-2	Branch	Common to all	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites		
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100	

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Understand the basics of solar energy, wind energy, bio mass, geothermal
001	energy, Ocean energy and principles of energy conversion. (L2)
CO2	Explain and classify instruments for measuring solar radiation solar collectors,
02	solar energy storages, wind turbines, geothermal, MHD and fuel cell. (L2
CO3	Analyze different types of solar collectors, solar cell, combustion characteristics
005	of biogas, thermodynamic cycles, operating conditions of fuel cell (L4)
	Outline about solar radiation, power from solar module, performance
CO4	characteristics of wind mill, potential and conversion techniques of tidal and
	wave energy, mini-hydel power plants and their economics. (L2)

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

							0 ,							
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2		3			2	2	1			2	2	3
CO2	3	3		1		3	3	2	1			1	3	2
CO3	3	3		3			2					1	2	2
CO4	3	2		1			1					1	3	3
Average* (Rounded to nearest integer)	3	3		2		3	2	2	1			2	3	3

	Syllabus	
Unit No	Contents	Mapped CO
Ι	Principles of Solar Radiation and Solar Energy Collection Role and potential of new and renewable source, the solar energy option, environmental impact of solar power, physics of the sun, the solar constant, extra-terrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data. Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors	CO 1 CO 2 CO 3 CO 4
Π	Solar Energy Storage, Applications and Photovoltaic Energy Conversion Different methods, sensible, latent heat and stratified storage, solar ponds. Solar applications solar heating/cooling technique, solar distillation and drying. Solar cell fundamentals, solar cell classification, performance of solar cell- power from solar module.	CO 1 CO 2 CO 3 CO 4

ш	Wind Energy and Bio-Mass Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria. Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of bio-gas digesters, gasyield, combustion characteristics of bio-gas, utilization for cooking	CO 1 CO 2 CO 3 CO 4
IV	Geothermal Energy and Ocean Energy Resources, types of wells, methods of harnessing the energy, potential in India. OTEC, principles of utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques.	CO 1 CO 2 CO 3 CO 4
v	Energy Conversion Principles of energy conversion, MHD generators, principles, MHD power generation systems. Fuel cells, principles, of fuels and operating conditions, merits and demerits of different types of fuel cells, mini-hydel power plants and their economics.	CO 1 CO 2 CO 3 CO 4

#### Learning Resources

## Text books

- 1. Non-Conventional Energy Sources by G.D. Rai, Khanna publishers, 5th edition, 2014.
- 2. Renewable Energy Sources and Emerging Technologies by D.P Kothari, K.C Singal, Rakesh Ranjan , PHI learning Pvt Ltd, 2nd edition ,2012

#### References

- 1. Renewable Energy resources by Tiwari and Ghosal, publisher Narosa, 2005
- 2. Renewable Energy Resources by John Twidell and Tony Weir, publisher Taylor and Francis, 2nd edition 2006
- 3. Solar Photo Voltaics Fundamentals, Technology and application by Chetan Singh Solanki, publisher PHI learning Pvt Ltd, 3rd edition,2019
- 4. Wind Energy Theory and Practice by Siraj Ahmed publisher PHI learning Pvt Ltd ,3rd edition, 2016

## WEB TECHNOLOGIES

Course Code	19IT2701A	Year	IV	Semester	Ι
<b>Course Category</b>	IDE-2	Branch	-	<b>Course Type</b>	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	JAVA
<b>Continuous Internal</b>	20	Semester End	70	Total Manlar	100
Evaluation :	50	<b>Evaluation:</b>	/0		100

Upon s	Blooms Taxonomy Level	
to	-	
CO1	Understand the basic concepts of HTML,CSS,XML,JDBC connectivity, Servlets and JSP	L2
CO2	use Java script for validation of web pages	L3
CO3	Analyze the concepts of DOM,JDBC Architecture and life cycles of Servlets and JSP	L4
<b>CO4</b>	Compare the concepts of HTML and XML, Servlets and JSP	L4
CO5	Develop simple web applications using JDBC, servelet and JSP	L6

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

correlation		· · · · · · · · · · · · · · · · · · ·	· unitin	.,	loucit		Jugue,							
	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2
CO1			2		2								2	2
CO2			2		2								2	2
CO3			2		2									
CO4			2		2									
CO5			2	2	2									
Average* (Rounded to nearest integer)			2	2	2								2	2

	Syllabus					
Unit		Mapped				
No	Contents	CO				
	Introduction to web technologies: History of the web, Overview of					
т	HTTP, HTML Introducing HTML document structure, Creating	CO1				
1	Headings, links, paragraph, images, tables, frames, forms and html					
	controls on a web page					
	Introducing cascading style sheets: Inline, External, Internal, Style	CO2				
	class, Multiple styles, Introducing JavaScript, Using Variables,					
II	Using Operators, Working with Control Flow statements, Working					
	with functions, Handling Events, Using Arrays, Creating objects in					
	Java Script					
	Working with XML: Introduction to XML, XML Basics, XML	CO1				
III	Technologies, Extensible HTML (XHTML), Java API for XML	CO1,				
	Processing, Document Object Model (DOM)	03				

IV	<b>Working with database:</b> Getting started with JDBC, Defining ODBC, Introduction to JDBC, Components of JDBC, JDBC Architecture, Types of Drivers, Working with JDBC APIs, Creating a Simple Application, Working with Prepared Statement, Using Callable Statement	CO1, CO3, CO4, CO5
V	<ul> <li>Working with servlets: Introducing the MVC architecture, Describing Servlets, Understanding Servlets, What are servlets, introducing the Servlet API, Servlet Life Cycle, Developing First Servlet Application</li> <li>Working with JSP: Introduction to JSP, Understanding JSP, Describing the JSP Life Cycle, Creating a Simple JSP pages</li> </ul>	CO1, CO3, CO4, CO5,

## Learning Resources

Learning Resources
Text books
1. Web Technologies, Black Book, Kogent Learning Solutions Inc, Dreamtech Press.
2. JDBC, Servlets, and JSP, New Edition, Santhosh Kumar K, Kogent Learning
Solutions Inc, Dreamtech Press.
References
1. Web Technologies, Uttam K. Roy, Volume 2, Oxford University
2. Core Servlets and Java Server Pages Volume 1 CORE TECHNOLOGIES, Marty
Hall and Larry Brown Pearson
3. Internet and World Wide Web – How to program, Dietel and Nieto
4. An Introduction to Web Design and Programming –Wang-Thomson
5. Professional Java Server Programming S.Allam Raju and others Apres (dreamtech)
6. Java Server Programming, Ivan Bayross and others, The X Team, SPD
7. Beginning Web Programming-Jon Duckett WROX.
8. Java Server Pages, Pekowsky, Pearson.
9. Java Script, D.Flanagan, O"Reilly, SPD.
e-Resources and other Digital Material
1. http://nptel.ac.in/courses/106105084/13
2. http://www.w3schools.com/
3. https://www.javatpoint.com/html-tutorial

<b>OPTIMIZATION TECHNIQUES</b>									
Course Code	19ME2701B	Year	IV	Semester	Ι				
Course Category	IDE-2	Branch	-	Course Type	Theory				
Credits	3	L-T-P	3-0-0	Prerequisites	Operations Research				
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100				

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Apply various Classical optimization techniques	L3			
CO2	Select suitable Numerical method for optimization of Engineering Problems.	L4			
CO3	Analyze multi stage decision making process through dynamic programming	L4			
<b>CO4</b>	Enumerate fundamentals of Integer programming technique	L3			

## Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H: High, M: Medium, L:Low)

			0			· · ·		<b>,</b>				/		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	2		2		2		2		2	2	2
CO2	2	3	3	2		2		2		2		2	2	2
CO3	2	3	3	2		2		2		2		2	2	2
CO4	2	2	3	2		2		2		2		2	2	2
Average* (Rounded to nearest integer)	2	3	3	2		2		2		2		2	2	2

Syllabus						
Unit No	Contents	Mapped CO				
Unit-I	<b>Introduction to optimization</b> : Introduction, engineering applications of optimization, statement of an optimization problem-design vector, design constraints, constraint surface, objective function, classification of optimization problems, optimization techniques. <b>Classical Optimization techniques:</b> Introduction, single variable optimization, multi variable optimization with no constraints, multi variable optimization with equality constraints-Lagrange multiplier method.	CO1				
Unit- II	<b>Non-linear programming, I</b> : One Dimensional Minimization Methods: Introduction, unimodal function, elimination methods- unrestricted search, exhaustive search, interval halving method, Fibonacci method, golden section method, interpolation method,	CO2				
Unit- III	<b>Non-linear programming II:</b> Direct Search Method- Nelder- Mead Simplex method, Indirect search methods- steepest descent method (Cauchy's method), Newton Method, Marquardt Method	CO2				
Unit- IV	<b>Dynamic Programming:</b> Multistage decision processes, Concepts of sub optimization- calculus method and tabular methods, Linear programming as a case of D.P	CO3				

Unit- V	<b>Integer Programming</b> : Introduction, Graphical Representation, Gomory's cutting plane method, Balas algorithm for zero-one programming, Branch-and- bound method, Penalty Function method; Basic approaches of Interior and Exterior penalty function methods.	CO4						
[	L comin a Descurres							
	Learning Resource							
Text bo	ooks:							
1. 2.	<ol> <li>S.S.Rao, Engineering optimization theory and practice, 3rd Edition, New age international, 2007.</li> <li>Van Wylen, Fundamentals of Classical Thermodynamics, John Wylie.</li> </ol>							
Referen	nce books							
1.	H.A.Taha, Operations Research, 9 th Edition, Prentice Hall of India, 2010.							
2.	F.S.Hillier, and G.J.Lieberman, Introduction to Operations Research, 7th							
	Edition, TMH, 2009.							
e- Reso	urces & other digital material							
1. https://	://nptel.ac.in/courses/111/105/111105039/							
2. <u>https</u>	2. https://nptel.ac.in/courses/106/108/106108056/							
3. <u>https</u>	3. https://nptel.ac.in/courses/111/104/111104071/							
4. https://	4. https://nptel.ac.in/courses/112/105/112105235/							

<b>PROJECT MANAGEMENT &amp; OPTIMIZATION</b>								
Course Code	19ME2701C	Year	IV	Semester	Ι			
Course Category	IDE-2	Branch	Common to all	Course Type	Theory			
Credits	3	L-T-P	3-0-0	Prerequisites	Industrial Engineering and Management			
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100			

Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to						
CO1	Explain basics of project management	L2					
CO2	Analyze activities involved in project.	L3					
CO3	Describe various project cost management techniques	L2					
<b>CO4</b>	Apply various Linear programming techniques and sequencing methods	L3					
<b>CO5</b>	select transportation and assignment technique to minimize the cost	L3					

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (H: High, M: Medium, L:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3			2		2			3	2	2	3
CO2	2	2	3	2	2				2		3	2	2	3
CO3	2	2	3			3		2			3	2	2	3
CO4	2	2	3			3		2			3	2	2	3
CO5	2	2	3			3		2			3	2	2	3
Average*	2	2	3	2	2	3		2	2		3	2	2	3
(Rounded														
to nearest														
integer)														

	Syllabus								
Unit No	Contents	Mapped CO							
Ι	<b>Concepts of project management:</b> Meaning, definition and characteristics of a project, technical and socio-cultural dimensions; project life cycle phases, project planning and graphic presentation; work breakdown structure, manageable tasks; size of network; blow down NW; identity and logic dummy activity; Fulkerson rule for numbering NW; time-scaled NW	CO1							
II	<b>NW analysis:</b> Network modelling, Probabilistic model-various types of activity times estimation, programme evaluation review techniques (PERT), probability of completing the project, deterministic model-critical path method (CPM), critical path calculation, crashing of simple of networks	CO2							

Ш	<b>Project duration and control:</b> Importance and options to accelerate project completion; time cost trade off; fixed variable and total costs; use of floats and cost optimization; project performance measures; project monitoring info and reports; project control process; Gant chart and control chart; cost-schedule S-graph; planned cost of work schedule (PV), budgeted/ earned cost of work completed (EV) and actual cost of work completed (AC); schedule and cost variances (SV, CV) forecasting final project costs.	CO2
IV	<b>Linear programming:</b> Linear Programming Problem Formulation, Graphical solution Simplex method, artificial variables techniques- Two–phase method, Big-M method, Duality Principle <b>Sequencing</b> : Introduction, sequencing of n jobs through two machines, n jobs through three machines –two jobs through 'm' machines	CO3
v	<b>Transportation problem:</b> Formulation, Optimal solution, U-V method, unbalanced transportation problems, Degeneracy. <b>Assignment problem:</b> Formulation, Optimal solution, Variants of Assignment Problem-Traveling Salesman problem.	CO4

#### Learning Resource

#### Text books:

1. Prasanna Chandra, Projects Planning, Implementation and Control, Tata McGraw Hill Publishing Company Limited, New Delhi, 1995.

2. Operations Research, by S.D.Sharma, Kedarnath & Ramnath publications (15thedition),2013

#### **Reference books**

- 1. Project Management Institute (PMI), A Guide to the Project Management of Knowledge Newton Square, PA, 1996
- 2. J.R. Meredith and S.J. Mantel, Project Management: A Managerial Approach. John Wiley and Sons, New York, 1995.
- 3. L.S. Srinath, PERT & CPM Principles & Applications, 3rd edition, East west Press, 2001.
- 4. Operations Research, (2nd edition) by R.Pannerselvam, 2009,PHI Publications, Noida

#### e- Resources & other digital material

5. https://nptel.ac.in/courses/105/106/105106149/

6. https://nptel.ac.in/courses/110/104/110104073/

- 7. https://nptel.ac.in/noc/courses/noc16/SEM2/noc16-ce06/
- 8. https://nptel.ac.in/courses/112/106/112106134/

<b>Course Code</b>	19EC3751	Year	IV	Semester	Ι
Course	Program	Branch	ECE	<b>Course Type</b>	Lab
Category	Core				
Credits	1	L-T-P	0-0-2	Prerequisites	Nil
Continuous	25	Semester	50	<b>Total Marks:</b>	75
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

#### **Course Outcomes**

Upon su	Upon successful completion of the course, the student will be able to					
CO1	Explain Communicate between two desktop computers (L3)					
CO2	Implement different protocols (L3)					
CO3	Program employing sockets (L3)					
CO4	Apply and Evaluate various routing algorithms (L4)					
CO5	select simulation tools (L4)					

## Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	3	3								2	
CO2	2	3	3	3	3								2	
CO3	2	2	3	3	3								2	
CO4	3	3	3	2	3								2	
Average* (Rounded to nearest integer)	3	3	3	3	3								2	

S No.	Description
1	Implementation of Error Detection / Error Correction Techniques
2	Implementation of Stop & Wait Protocol and sliding window
3	Implementation & Study of GO-Back N and selective repeat protocols
4	Implementation of High-level data link control
5	Implementation of IP commands such as PING, Trace route, NSLOOKUP
6	Implementation of distance vector routing algorithm
7	Implementation of link state routing algorithm
8	Study of network simulator & Simulation f congestion control algorithm using
	NS
9	Implementation of encryption & Decryption algorithm using programming
	language
10	Implementation of IP Address configuration

# Learning Resource e- Resources & other digital material 1. <u>http://nptel.iitm.ac.in/courses/IIT-MADRAS/Computer_Networks/index.php</u>

	1100201			
9EC3761	Year	IV	Semester	Ι
Project work	Branch	ECE	Course Type	Project work
_				
2	L-T-P	0-0-4	Prerequisites	
100	Semester		Total Marks:	100
	End			
	<b>Evaluation:</b>			
F	9EC3761 Project work 2 100	9EC3761YearProject workBranch2L-T-P100Semester End Evaluation:	9EC3761YearIVProject workBranchECE2L-T-P0-0-4100Semester End 	9EC3761YearIVSemesterProject workBranchECECourse Type2L-T-P0-0-4Prerequisites100Semester End Evaluation:Total Marks:

#### **Course Outcomes**

Upon successful completion of the course, the student will be able to

CO1	Make use of the knowledge on contemporary issues to identify a problem
	requiring technology intervention. (L3)

CO2 Apply the knowledge of Electronics and Communication Engineering to design a circuit/system for solving the identified problem.(L3)

___

**CO3** Create an effective project report. (L6)

**CO4** <u>Function</u> in team and communicate effectively. (L4)

#### Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

* - Average value indicates course correlation strength with mapped PO

Tiverug	Therage value maleades course correlation strength with mapped 10													
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3		3		3	3		3	3		3	3	3
CO 2	3		3		3							2	3	
CO 3				3	3			3	3	3	3	3		
CO 4								3	3	3		1		
Average* (Rounded to nearest integer)	3	3	3	3	3	3	3	3	3	3	3	3	3	3

<b>Course Code</b>	19EC1801A	Year	IV	Semester	II
Course	Program	Branch	ECE	Course Type	Theory
Category	Elective VI				
Credits	3	L-T-P	3-0-0	Prerequisites	1. Analog
					Communications
					2. Digital
					Communications
Continuous	30	Semester	70	<b>Total Marks:</b>	100
Internal		End			
<b>Evaluation:</b>		<b>Evaluation:</b>			

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	Interpret the cellular system design and technical challenges. (L2)							
CO2	Analyze the effects for signal propagation (L4)							
CO3	Analyze methodologies and mobile system specifications to improve the cellular							
	capacity (L4)							
<b>CO4</b>	Explain different generations of GSM systems and interpret the next generation							
	cellular technologies. (L3)							

## Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

* - Average	* - Average value indicates course correlation strength with mapped PO													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1		1								3
CO2	3	3	3	1		1								3
CO3	3	3	3	1		1								3
CO4	2	2	3	1		1								3
Average* (Rounded to nearest integer)	3	3	3	1		1								3

#### ----

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	Cellular and Mobile Radio Systems: Introduction to Cellular	CO1
	Mobile System, Performance criteria, uniqueness of mobile radio	
	environment, operation of cellular systems, Hexagonal shaped	
	cells, Analog and Digital Cellular systems Elements of Cellular	
	Radio System Design: General description of the problem,	
	concept of frequency Reuse channels, Co-channel Interference	
	Reduction Factor, desired C/I from a normal case in a omni	
	directional Antenna system, consideration of the components of	
	Cellular system Interference: Introduction to Co-Channel	
	Interference, real time Co-Channel interference, Co- Channel	
	measurement, design of Antenna system, Antenna parameters and	
	their effects, diversity receiver, non-co-channel interference-	
	different types.	

II	<b>Cell Coverage for Signal and Traffic:</b> Signal reflections in flat	CO1,CO2
	and hilly terrain, effect of human made structures, phase	,
	difference between direct and reflected paths, constant standard	
	deviation straight line path loss slope, general formula for mobile	
	propagation over water and flat open area, near and long distance	
	propagation antenna height gain form of a point to point model	
Ш	Cell Site and Mobile Antennas: Sum and difference patterns and	CO1 CO3
	their synthesis omni directional antennas, directional antennas for	001,005
	interference reduction space diversity antennas umbrella pattern	
	antennas minimum separation of cell site antennas high gain	
	antennas, Frequency Management and Channel Assignment:	
	Numbering and grouping setup access and paging channels	
	channel assignments to cell sites and mobile units channel	
	sharing and horrowing sectorization overlaid calls non fixed	
	sharing and borrowing, sectorization, overlaid cens, non-fixed	
IV	<b>Handoffs:</b> Handoff dropped calls and call splitting types of	CO1 CO2
1.4	handoff handoff invitation delaying handoff forced handoff	01,005
	mandoff, fiandoff Invitation, delaying fiandoff, forced fiandoff,	
	alla vahiala logating mathada drannad call rates and their	
	evaluation	
V	Digital Collular and Mabile Networks: GSM architecture, GSM	CO1 CO4
v	channels GSM Radio Subsystems GSM Channels AG evolution	01,004
	Advantages of AG over 3G Applications of AG. Limitations of	
	Advantages of 40 over 50, Applications of 40, Edition	
	40.50 evolution.	
	L comin a Descurross	
T 4 1	Learning Resources	
1 ext I	500KS	1090
1. MO	blie Cellular Telecommunications, W.C.Y. Lee, McGraw Hill, 2nd Ed,	1989.
2. WII	eless Communications, 1.5 Rappaport, Pearson Ed., 2nd Ed., 2002.	
Keier		
I. M	Dile Cellular Communication, Gottapu Sasibnushana Rao, Pearson	Education,
	w Delni, 2013.	1 2004 2
2. W	ireless Communication Technology – R. Blake, Thompson Asia Pvt. I	.td., 2004.3.
	III U. Allia,	
3. W	ireless Communication and Networking, Jon W. Mark and Zh	qung, PHI,
20	05. Cellular & Mobile Communications – Lee, Mc Graw Hill	
e- Res	ources & other digital material	
https:/	/npte1.ac.in/courses/106/106/106106106//	
https:/	/npte1.ac.in/courses/11/104099/	
nups:/	/swayam.gov.m/nd1_noc19_ee48/preview	

		SPEECH PRO	OCESSIN	١G		
Course	19EC1802B	Year	IV	Semester	II	
Code						
Course	Program	Branch	ECE	Course Type	Theory	
Category	Elective-VI					
Credits	3	L-T-P	3-0-0	Prerequisites	Signal	
					Processing	
Continuous	30	Semester	70	Total Marks:	100	
Internal		End				
<b>Evaluation:</b>		<b>Evaluation:</b>				

Course	Outcomes
Course	Outcomes

Upon	Upon successful completion of the course, the student will be able to					
CO1	Understanding fundamentals of speech processing and the process of speech					
	production (L2).					
<b>CO2</b>	Classify Signal Processing methods for Speech Recognition (L2)					
<b>CO3</b>	Demonstrate different types of speech systems (L3)					
<b>CO4</b>	Distinguish various HMM models (L4)					
<b>CO5</b>	Differentiate Applications of Speech Recognition (L4)					

---

Mappin	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1- Weak correlation 2-Medium correlation							ı .	3-Stroi	ng cor	relatio	n			
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	1	1	1		1	1	1	1	1	2
CO2	3	2	2	1	1	1	1		1	1	1	1	1	2
CO3	3	2	2	2	1	1	1		1	1	1	1	1	2
CO4	3	2	3	2	1	1	1		1	1	1	1	1	2
CO5	3	2	2	2	1	1	1		1	1	1	1	1	2
Average* (Rounded to nearest integer)	3	2	2	2	1	1	1		1	1	1	1	1	2

---

	Syllabus							
Unit	Contents	Mapped						
No.		CO						
Ι	I <b>Fundamentals of speech recognition:</b> Introduction, paradigm for							
	speech recognition.							
	The speech signal: The process of speech production and							
	perception in human beings, the speech production process,							
	representing speech in time and frequency domains, speech sounds							
	and features.							
II	Signal Processing and Analysis methods for Speech	CO1,CO2						
	<b>Recognition: Introduction,</b> Spectral analysis models.	& CO3						
	The Bank-of-filters front-end processor: types of filter banks,							
	implementation of filter banks.							
	Linear predictive coding model for Speech recognition: LPC							
	model, LPC Analysis Equations, Auto correlation method,							
	Covariance method and typical LPC analysis parameters.							

III	<b>Pattern Comparison Techniques:</b> Introduction, Speech detection, Distortion measures: Mathematical considerations, Perceptual considerations. Spectral distortion measures: Long spectral- distance, Cepstral-distance, Weighted Cepstral distances and Liftering, Likelihood distortions.	CO1,CO2 & CO3
IV	<b>Theory and Implementation of Hidden Markov Models:</b> Introduction, Discrete time Markov processes, Extensions to Hidden Markov models, Types of HMMs, comparison of HMMs,	CO1,CO4 & CO5
V	<b>Applications of Automatic Speech Recognition:</b> Introduction, Speech recognizer Performance scores, Characteristics of speech- Recognition Applications, Broad classes of Speech-Recognition Applications, Command and control Applications.	CO1,CO4 & CO5

### Learning Resources

### **Text Books**

1. Lawrence Rabiner and Biing-Hwang Juang, "Fundamentals of Speech Recognition", Pearson Education, 2007.

### **Reference Books**

1. Claudio Becchetti and Lucio Prina Ricotti, "Speech Recognition", John Wiley and Sons, 1999.

---

		F	'UND	AMF	ENTA	LS O	OF SE	CMIC	OND	UCI	OR D	EVIC	ES		
Cours	e Co	de	19E	$\overline{C180}$	)1 <b>C</b>	Year	•		IV		Semes	ter	II		
Cours	e		Prog	ram	/10	Bran	ich		ECE		Cours	e Tvpe	e Th	eorv	
Catego	ory		Elect	ive V	Ι				202			5 F -		J	
Credit	S		3			L-T-	P		3-0-0	)	Prerec	uisite	s 10-	+2 phy	sics
Contin	nuou	s	30			Seme	ester		70		Total 1	Marks	: 10	0	
Intern	al					End									
Evalua	ation	1:				Eval	uatio	n:							
 Course Outcourse															
Unon			com	latio	n of th		ourse	Oute	tont w	vill be	able to	<u> </u>			
CO1	Out	line t	he ato	mic s	tructu	re and	l basi	$\frac{10}{2}$ conc	ents c	of cry	stals (I	) 2)			
CO2	App	ly th	e kno	wledg	ge on	energy	y ban	d theo	ory, ch	arge	carrier	conce	ntratio	ns and	drift
~~~	of c	arrier	s to d	escrib	e the	prope	rties o	of mat	erials	(L3)					
CO3	Dev	elop acter	sma istics	ll sig (1.3)	gnal	mode	el of	sem	icond	uctor	devic	ces ar	nd ex	plain	their
CO4	Solv	ve th	e pro	blem	s on	biasir	ng, sv	witchi	ng ar	nd ai	nplific	ation of	circuit	s base	d on
	sem	iconc	luctor	devid	ces (L	3)			0						
CO5	Ana	lyse	the fu	nctior	ning o	f basic	c elec	tronic	devic	es (L	4)				
Note: 1 * - Ave	ng o - W rage	eak c value	orrela indic	ation ates co	2-M	edium correla	rogra 1 corr ation s	elatio	n 3-3	Stron	ig corre			1X)	
COs CO1		PO1 2	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO2		3		2									1		2
C03		3		3									2		2
CO5 Averag	p*	3		3									2		2
(Rounde	d to	3		3									2		2
integer	ι ·)														
·															
TT 44							Sy	llabu	8					N/L-	
No.							Cont	ents						Map CO	ped
Ι	Cr	ystal	latt	ices:	Peric	odic s	structi	ures,	Cubi	c lat	tices,	Planes	s and	C01	
	dire	ection	ns, Di	amor	nd latt	ice.	-								
	Ato	oms	and		lectro	ons:	Intro	ducti	on t	t0]	ohysica	al mo	odels,		
	EX]	perin	nental	obse mode		ons: 1	ne pn	otoel	ectric	Dro	rt, Ator	nic Sp	ectra.		
	110	z D vertai	ntv F	Princi	nle '	uantu The S	nn n Schrou	dinge	nnes. r Wa	ve F	auatio	y and n Pot	ential		
	well problem Tunneling Excess carriers in Semiconductors														
	(01	ialita	tive t	reatm	ent).		2000				, Sem				
II	En	ergy	Band	ls an	d Cha	arge c	arrie	ers:						CO2	
	Bo	nding	g forc	es and	d Ene	rgy ba	ands i	in soli	ids: B	ondi	ng forc	es in s	olids,		
	Ene	ergy	band	s, Me	etals,	Semi	condu	ictors	, and	Insu	lators,	Direc	t and		
	Ind	irect	Semi	cond	uctors	S.						-			
	Ch	arge	carrie	ers in	Sem	nicond	luctor	s: El	ectron	is an	d hole	s, Effe	ective		
	ma	ss, in	trinsi	c mat	erial,	extrir	isic n	lateria	al.						

	Carrier Concentrations: The Fermi level, Electron and Hole							
	concentrations at Equilibrium, Temperature dependence of carrier							
	concentrations, Compensation and Space charge Neutrality.							
	Drift of carriers: Conductivity and Mobility, Drift and Resistance,							
	Effects of Temperature and Doping on Mobility, High Field effects,							
	Hall Effect.							
III	P-N Junctions : Equilibrium conditions: The contact potential.	CO3.						
	Equilibrium Fermi levels. Space charge at a junction. Forward and	CO4						
	reverse biased Junctions: Steady state conditions: Qualitative	and						
	Description of current flow at a junction Carrier Injection Reverse	CO5						
	bias Pavarsa Rias Braakdown: Zanar Braakdown Avalancha							
	Broakdown Transiant and A C conditions: Time variation of stored							
	bleakuowii. Haisient and A-C conditions. Time variation of stored							
	charge, Reverse recovery Transferre, Switching diodes, Capacitance							
137	Field Effect Transisters The Metal Insulator Consister better EFT.	<u> </u>						
1 V	Fleid Effect Transistor: The Metal-Insulator-Semiconductor FET:	CO3,						
	Basic operation, The Ideal MOS Capacitor, Effects of Real Surfaces,	CO4						
	Inreshold voltage, MOS Capacitance-voltage Analysis.							
	The MOS Field-Effect Transistor: Output Characteristics, Transfer	005						
	characteristics, Mobility models, Short channel MOSFEI I-V							
	Characteristics, Control of Infestion Voltage, Substrate Blas Effects,							
X7	Sub infestion Characteristics, Equivalent circuit for the MOSFET	<u> </u>						
v	Bipolar Junction Transistors: Fundamentals of BJ1 Operation,	CO3,						
	Amplification with BJIs, Minority carrier Distributions and	CO4						
	Terminal Currents: Solution of the diffusion equation in the base							
	region, Evaluation of terminal currents, Approximations of the	COS						
	terminal currents, Current transfer ratio.							
	Generalized Blasing: The coupled-diode model, Charge Control							
	Analysis.							
	Switching: Cutoff, Saturation, the Switching Cycle, and							
	Specifications for Switching Transistors. Small-signal Equivalent							
	circuit.							
								
	Learning Resources							
Text		TT 11 T 1'						
1. Bei 2009.	n G. Streetman, Solid State Electronic Devices, Sixth Edition, Prentice	Hall India,						
2. Rol	bert F. Pierret, Semiconductor device fundamentals, Pearson Publications	, 2006.						
Refer	ence Books	, 						
1. Yı	an Taur, Tak.H. Ning, Fundamentals of Modern VLSI Devices,	Cambridge						
Unive	ersity Press, 1998	-						
2. Do	nald Neamen, Semiconductors Physics and Devices, Tata Mc Graw Hill,	2003						
3. Ty	agi, Introduction to Semiconductor Materials and Devices, Wiley Pr	ublications,						
2002.	2002.							
4. S.N	M. Sze (Ed), Physics of Semiconductor Devices, 2nd Edition, Wiley Physics	ublications,						
1998	1998							
5. Jas	5. Jasprit Singh, Semiconductor Devices, Basic Principles, Wiley Student Edition, 2001							
e- Res	sources & other digital material							
1. <u>http</u>	os://onlinecourses.nptel.ac.in/noc20_bt17/preview_							
2. <u>http</u>	os://www.youtube.com/watch?v=9h10p6M3Jo8							

Course Code	19EC1801D	Year	IV	Semester	Π
Course	Programme	Branch	ECE	Course Type	Theory
Category	Elective-VI			• •	2
Credits	3	L-T-P	3-0-0	Prerequisites	EM Theory
				-	Communications
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Understand and Gain basic knowledge of problems associated with EMI and EMC from
	electronic circuits and systems
CO2	Analyze various sources of EMI and various possibilities to provide EMC
CO3	Analyze possible EMI prevention techniques such as grounding, shielding,
	filtering and use of proper coupling mechanisms to improve compatibility of
	electronic circuits and systems in a given electromagnetic environment.
CO4	Measure emission immunity level from different systems to couple with the prescribed
	EMC standards

Mapping	of co	urse (outco	mes v	vith H	Progr	am o	utcon	nes ((CO/ P	O/PSC) Matı	rix)	
Note: 1- W	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
* - Average	e value	e indic	ates c	ourse	correl	ation	streng	th wit	h map	ped PC)			
COs	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02										PSO2			
CO1	3	3												2
CO2	3	3	3	3	3	2						1		2
CO3	3	3	3	3	3	2						1		2
CO4	3	3	3	3	3	2						1		2
Average*														
(Rounded to	3	3	3	3	3	2						1		2
nearest	5	5	5	5	5	2						1		2
integer)														

Syllabus								
Unit	nit Contents							
No.		CO						
Ι	Introduction: Electromagnetic environment, history, concepts,	CO1,						
	practical experience and concerns, frequency spectrum conservations,	CO2						
	an over-view of EMI/EMC, Overview on natural and nuclear sources							
	of EMI.							
II	EMI from Apparatus and circuits : Electromagnetic emissions,	CO1,						
	noise from relays and switches, non-linearities in circuits, passive							
	inter-modulation, cross-talk in transmission lines, transients in power							
	supply lines, electromagnetic interference(EMI), Overview on Open							
	area test sites and measurements							

III	Radiated and Conducted Interference Measurements : Anechoic	CO1,
	chamber, TEM cell, GH TEM cell, characterization of conduction	CO3
	Currents/voltages, conducted EM noise on power lines, conducted	
	EMI from Equipment, immunity to conducted EMI detectors and	
	measurements.	
IV	Grounding, Shielding and Bonding: Principles and Types of	CO1,
	grounding, shielding and bonding,	CO3
V	Cables, Connectors and Components: EMI suppression cables,	CO1,
	EMC connectors, EMC gaskets, isolation transformers, opt isolators.	CO2,
		CO4

Learning Resources

Text Books

1.V.P.Kodali, Engineering Electromagnetic Compatibility,2/e, IEEE Press,2000 Reference Books

Clayton R Paul, Introduction to Electromagnetic Compatibility, John Wiley and Sons,2010
 Electromagnetic Interference and Compatibility IMPACT series, IIT Delhi (Units1-9)

E - Resources:

1. https://emcfastpass.com/emc-testing-beginners-guide/emc-books-resources-training/

2. https://interferencetechnology.com/emc-resources/

EMBEDI	DED SY	YSTEMS

Course Code	19EC1801E	Year	IV	Semester	II
Course Category	Program	Branch	ECE	Course Type	Theory
	Elective VI				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
Evaluation:		Evaluation:			

Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Apply design methodologies for embedded systems					
CO2	Implement embedded systems design with specifications and technological choice.					
CO3	Build fundamental systems such as sensors, actuators, converters, processors, intra-					
	and inter-communication networks and interfaces.					
CO4	Use modern hardware/software tools for building prototypes of embedded systems.					

Mapping of course outcomes	with Program outcomes ((CO/ PO/PSO Matrix)
Note: 1- Weak correlation	2-Medium correlation	3-Strong correlation
* - Average value indicates	s course correlation strengt	h with mapped PO

		<u> </u>								0		1		
CO/PO & PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO-1	3	3	3	2	3							2	3	3
CO-2	3	3	3	2	3							2	3	3
CO-3	3	3	3	2	3							2	3	3
CO-4	3	3	3	2	3							2	3	3
EC7T4A*	3	3	3	2	3							2	3	3

Syllabus							
Unit No.	Contents	Mapped CO					
Ι	Introduction to Embedded Systems: Embedded systems vs general computing systems, history of embedded systems, classification of embedded systems, major application of embedded systems, purpose of embedded systems, elements of an embedded systems, core of the embedded systems, memory.	CO1					
II	CommunicationBusesinEmbeddedSystems:Onboardcommunicationinterfaces:I2C, SPIbus,1Wirebus, parallelinterface,ExternalCommunicationinterfaces:RS-232,RS485,USB,IEEE1394firewirebus, IrDA, Bluetooth, Wi-Fi,Zigbee.	CO2, CO4					
III	Software Development Tools: Software Development environment- IDE, assembler, compiler, linker, simulator, debugger, In-circuit emulator, target hardware debugging, need for hardware-software partitioning and co-design, Overview of UML, scope of UML modeling, conceptual model of UML, architectural, UML basic elements-diagram- Modeling techniques - structural, behavioral, activity diagrams	CO2, CO3					

IV	Introduction to Real-Time Operating Systems: A brief history of	CO3
	operating systems, defining an RTOS, the scheduler, introduction to	
	task, task states and scheduling, round-robin scheduling algorithm,	
	co-operative scheduling algorithm, pre-emptive scheduling algorithm,	
	introduction to semaphores.	
V	Embedded System Application Development: Objectives, different	СОЗ,
	phases & modeling of the embedded product development life cycle	CO4
	(edlc), case studies on smart card- adaptive cruise control in a car -	
	mobile phone software for key inputs.	

Learning Resources

Text Books:

1. Rajkamal, 'Embedded system-Architecture, Programming, Design', 3e, TMH, 2017.

2. Shibu.K.V, "Introduction to Embedded Systems", Tata McGraw Hill,2017

References:

1. Peckol, "Embedded system Design", JohnWiley&Sons, 2010

- 2. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013
- 3. Embedded/Real-Time Systems, Dr. K.V.K.K. Prasad, dream Tech press

e- Resources & other digital material

- 1. Microsoft PowerPoint pcp_embedded_system_intro (iitb.ac.in)
- 2. NPTEL :: Electrical Engineering Embedded Systems

MEMS	AND	NANOSENSORS

Course Code	19EC1801F	Year	IV	Semester	II
Course	Program Elective VI	Branch	ECE	Course Type	Theory
Category					
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester End	70	Total	100
Internal		Evaluation:		Marks:	
Evaluation:					

---Course Outcomes

Upon successful completion of the course, the student will be able to
CO1 Explain the role of MEMS for various applications (L2)
CO2 Classify micro sensors& actuators used in MEMS and characterize them (L4)
CO3 Choose the suitable micro fabrication technology for given MEMS (L3)
CO4 Select suitable material and technology for MEMs Packaging (L3)

CO5 Categorize nano sensors and describe their characteristics (L4)

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

Note. 1- weak contration 2-intention contration of strong contration

* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2		2			2	2		2			2		2
CO2	2		3			3	3		3			2		3
CO3	2		3			3	3		3			2		3
CO4	2		3			3	3		3			2		3
CO5	2		3			3	3		3			2		3
Average* (Rounded to nearest integer)	2		3			3	3		3			2		3
						-								

Syllabus							
Unit No.	Contents	Map ped CO					
Ι	Introduction: Need for miniaturization, Microsystems versus MEMS, micro fabrication, smart materials, structures and systems, integrated microsystems: micromechanical structures, microsensors, microactuators, applications of smart materials and microsystems. Applications of MEMS in the automotive, health care, aerospace, industrial products, consumer products and telecommunications.	CO1					

resistive pressure sensor, conductometric gas sensor, electrostatic comb drive, a magnetic micro relay, portable blood analyzer, piezoelectric inkjet print head, micromirror array for video projection, micro-PCR systems,	
drive, a magnetic micro relay, portable blood analyzer, piezoelectric inkjet print head, micromirror array for video projection, micro-PCR systems,	
print head, micromirror array for video projection, micro-PCR systems,	CO2
print neud, interonition and for video projection, intero i ex systems,	001
smart materials and systems	
Micro fabrication technologies: Silicon as a material for micromachining	
Thin-film deposition lithography doping etching silicon	
micromachining: hulk and surface specialized materials for microsystems:	CO^{2}
nolymers and ceramic materials, advanced processes for micro fabrication:	COS
wafer bonding techniques dissolved wafer processes LIGA process	
Her Sil process	
MEMs Docksging: Overview of Machanical Deckaging of	
Microalacturica Micro system Deckaging Interfaces in Micro system	
Declaring Essential Declaring Technologies Three Dimensional	CO4
Packaging, Essential Packaging Technologies, Three-Dimensional	
Packaging, Assembly of MEMS, Selection of Packaging Materials, Signal	
Mapping and Transduction, Design Case: Pressure Sensor Packaging.	
Nano Sensors: Introduction to nano sensors, mechanical nano sensors,	CO5
thermal nano sensors, magnetic nano sensors, optical nano sensors,	005
chemical nano sensors and nano biosensors.	
Learning Resources	
ooks	
. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat, V.K. Aatre, Micro at	nd
Systems, Wiley India, 2010.	
Ran Hsu, "MEMS and Microsystems: Design and Manufacture", Wiley, 2008.	
od Kumar Khanna, Nano sensors: Physical, Chemical and Biological, Series in Se	ensors,
ress Taylor and Francis Group, 2012.	
nce Books	
y K. Varadan, K. J. Vinoy, S. Gopalakrishnan, Smart Material Systems and MEM	1S:
and Development Methodologies, John Wiley, 2006.	
amed GadelHak, The MEMS Handbook, University of Notre Dame,	
H Bao "Micromechanical Transducers: Pressure sensors accelrometers, and	
opes". Elsevier. New York. 2000	
Madou "Fundamentals of Microfabrication" 3rd Ed CRC 2011	
wireas & other digital material	
https://pptel.ac.in/courses/117/105/117105082/	
https://www.edv.org/course/micro.and.nanofabrication.mems	
	micromachining: bulk and surface, specialized materials for microsystems: polymers and ceramic materials, advanced processes for micro fabrication: wafer bonding techniques, dissolved wafer processes, LIGA process, HexSil process. MEMs Packaging: Overview of Mechanical Packaging of Microelectronics, Micro-system Packaging, Interfaces in Micro-system Packaging, Essential Packaging Technologies, Three-Dimensional Packaging, Assembly of MEMS, Selection of Packaging Materials, Signal Mapping and Transduction, Design Case: Pressure Sensor Packaging. Nano Sensors: Introduction to nano sensors, mechanical nano sensors, thermal nano sensors, magnetic nano sensors, optical nano sensors, chemical nano sensors and nano biosensors. Itearning Resources ooks Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat, V.K. Aatre, Micro an Systems, Wiley India, 2010. Ran Hsu, "MEMS and Microsystems: Design and Manufacture", Wiley, 2008. dd Kumar Khanna, Nano sensors: Physical, Chemical and Biological, Series in Se ress Taylor and Francis Group, 2012. nce Books y K. Varadan, K. J. Vinoy, S. Gopalakrishnan, Smart Material Systems and MEN and Development Methodologies, John Wiley, 2006. amed GadelHak , The MEMS Handbook, University of Notre Dame, I. Bao, "Micromechanical Transducers: Pressure sensors, accelrometers, and opes", Elsevier, New York, 2000 Madou, "Fundamentals of Microfabrication", 3rd Ed, CRC, 2011 Durces & other digital material https://nptel.ac.in/courses/117/105/117105082/

INTRODUCTION TO PYTHON PROGRAMMING									
Course Code	19CS2801A	Year	IV	Semester	II				
Course Category	IDE - III	Branch	-	Course Type	Theory				
Credits	3	L-T-P	3-0-0	Prerequisites					
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100				

Course	Blooms Taxonomy Level	
Upon s	uccessful completion of the course, the student will be able to	
CO1	Understand the basic constructs of Python Programming.	L2
CO2	Apply Python Programming constructs to solve problems and make an effective report.	L3
CO3	Apply python packages to write programs for a given application.	L3
CO4	Analyze and choose appropriate data structure for solving problems	L4

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02											
CO1	3											
CO2	3								3	3		
CO3	3											
CO4		3										
Average* (Rounded to nearest integer)	3	3							3	3		

	Syllabus	
Unit No	Contents	Mapped CO
I	Introduction to Python Features of Python, Writing and Executing First Python Program, Literal Constants, Variables and Identifiers, Reserved Words, Data Types, Input Operation, Operators and Expressions, Operations on Strings, Type Conversion, Conditional statements and iterative statements.	CO1,CO2
п	Functions in Python Functions: Introduction, Built-in Math Functions, User Defined Functions: Function Call, Variable Scope and Lifetime, The return statement, Lambda Functions, Recursive functions Packages in python.	CO1,CO2

III Strings and File Handhing in Fythen Strings: Introduction, Built-in String Functions, Slice Operation, C Comparing Strings, Iterating String, Regular Expressions	201.
III Comparing Strings Iterating String Pagular Exprassions	,
COMPANIES SUMES, INCLUME SUMES INCENTAL EXPLOSIONS.	202
File Handling: open, close, read and write operations.	
Data Structures in Python Lists: Accessing values in lists,	
Nested Lists, Basic List Operations.	
Tuples: Creating Tuple, Accessing values in a tuple, Basic C	CO1,CO4
Tuple Operations.	
Dictionaries: Creating and Accessing Dictionaries, Built-in	
Dictionary functions, List Vs Tuple Vs Dictionary.	
Packages: Numpy Create, reshape, slicing, operations such as	
min, max, sum, search, sort, math functions etc. Pandas	
V Read/write from csv, excel, json files, add/ drop columns/rows, C	CO1,CO3
aggregations, applying functions Matplotlib Visualizing data with	
different plots, use of subplots.	
Learning Resources	
Text books	
	-
1. Python Programming using Problem Solving Approach, Reema Tharej	eja, 2017

2. Python for Data Analysis, Wes McKinney, 2012, O.Reilly.

References

- 1. Core Python Programming, R. Nageswara Rao, 2018, Dreamtech press.
- 2. Programming with python, T R Padmanabhan, 2017, Springer.

e-Resources and other Digital Material

- 1. http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/thinkcspy3.pdf
- 2. https://zhanxw.com/blog/wp-content/uploads/2013/03/BeautifulCode_2.pdf

INSTRUMENTATION AND SENSOR TECHNOLOGIES OF CIVIL ENGINEERING APPLICATIONS

Course	19EC2801A	Year	IV	Semester	II
Code					
Course	Inter	Branch	Common to	Course Type	Theory
Category	Disciplinary		all		
	Elective III				
Credits	3	L-T-P	3-0-0	Prerequisite	
				S	
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
Evaluation:		Evaluation:			

Course Outcomes

Upon	successful completion of the course, the student will be able to					
CO1	Summarize various performance characteristics of instruments and the quality of					
	measurement (L2)					
CO2	2 Interpret the type of transducer based on the transduction principles(L2)					
CO3	Identify the relevant transducer for measurement of physical quantities (L3)					
CO4	Discover the additional attributes in advanced sensors and their role in Civil					
	Engineering(IA)					

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation										ation	,			
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2	1										2
CO2	2	1	2	1										2
CO3	2	1	2	1										2
CO4	2	1	2	1										2
Average* (Rounded to nearest integer)	2	1	2	1										2

	Syllabus										
Unit	Contents										
No.		СО									
Ι	Introduction: Definition of sensor/transducer-Block Diagram-	CO 1									
	sensors/transducers-static characteristics-accuracy, precision, resolution, linearity, sensitivity, range, loading effect, threshold, dead time, dead zone, span. Errors in measurement : True value, static error, static correction, scale range and scale span, error calibration curve, readability, repeatability & reproducibility, drift and noise	0-1									

II	Resistive Transducers: Potentiometers-Linear POT, Rotary POT,	
c	characteristics of POT. Thermistors- Construction and its	
I	Resistance- Temperature characteristics.	
]	Thermocouples- Construction and its Resistance-emf	CO-2,
c	characteristics	CO-3
1	Inductive Transducers: Principle of change of self inductance,	
I	Principle of change of mutual inductance, Linear variable	
Ċ	lifferential transformer (LVDT), Rotary variable differential	
t	ransformer (RVDT).	
II	Capacitive Transducers: Introduction-Variable area type-variable	
8	air gap type- differential arrangement in capacitive transducers,	~ ~ ~
١	variation of dielectric constant for measurement of liquid level, ,	CO-2,
N	variation of dielectric constant for measurement of displacement,	CO-3
8	advantages & disadvantages of Capacitive transducers.	
1	Plezoelectric Iransoucers: Measurement of Force, Modes of	
(operation of Piezoelectric crystals, properties of Piezoelectric	
	Holl offoot Transducers: Hall offoot alement. Measurement of	
	displacement current and power	CO^{2}
	Ontical Transducers: Vacuum photo emissive cell and its	CO_{-2} ,
	characteristics semi conductor photo electric transducer- Photo	0-5
	conductive cell and its characteristics photo diode and its	
	characteristics, photo voltaic cell and its characteristics.	
V	Digital and Smart Sensors:	CO-4
	Introduction to digital encoding transducer- digital displacement	
	transducers- shaft encoder-optical encoder, Introduction to Smart	
	Sensors, Overview in Applications of sensors in Civil Engineering.	
	Learning Resources	
Fext Bo	oks	
1. A.K	Ghosh, "Introduction to Measurements & Instrumentation", IIIrd ed	, PHI
2. A.K	K.Sawhney & Puneet Sawhney, "A Course in Mechanical Measureme	ents &
	trumentation", Dhanapat Kai & Co.	
3. D. V	7.S.Murty, Transducers & Instrumentation, PHI.	
1 Dor	ner Bolles Arnau & John G. Wahster, "Sansars & Signal Conditioning	·" 2012
1. Kai 2 D P	Datranabis "Sensors and Transducers" 2 nd edition PHI 2013	; , 2012.
2. D.1 3. BC	Nakra KK Chaudhry "Instrumentation Measurement and Analysis"	
2. DC	Fdition TMH	,
<u> </u>		

LOGISTICS AND SUPPLY CHAIN MANAGEMENT																	
Cours	e Code	19HS2	801A		Year		IV		Sem	ester		II					
Cours	e	Inter	Disc	ciplinary	Brand	ch	Co	mmon	Cou	rse T	уре	Theory					
Categ	ory	Electi	ve-III				to a	all				-					
Credit	ts	3			L-T-F)	3-0	-0	Prer	equis	quisites						
Conti	nuous	30			Seme	ster	70		Tota	ıl		100					
Intern	al				End				Mar	ks:							
Evalu	uation: Evaluation:																
				Cour	se Ou	tcome	es										
Upon	Jpon successful completion of the course, the student will be able to																
CO1	To un conce	nain 1	manag	gement													
CO2	2. The ability to apply knowledge to evaluate and measuring logistics costs and performance.																
CO3	To understanding of the foundational role of logistics as it relates to Source and transportation																
CO4	transportation.I To awareness on how to align the management of a supply chain with corporate																
	goals and strategies.																
CO5	5 The capability to analyze and improve pricing product and documentation																
Mappi	ng of co	urse out	comes v	with Prog	ram o	utcon	nes (C	2 0/ P 0	PSO/	Mat	rix)						
Note:	1- Weak	correlat	ion 2	-Medium	correla	ation	3-5	Strong	correla	ation	2						
COs	* - Aver	age valu	e indicat	tes course	correl	ation s	streng	th with	mapp	ed P(
CO1	3	3	2	<u>r05</u> r00	r0/	rua	P09	POIU	ron	3		3 PSO2					
CO2	3	3	2							3		3					
CO3	3	3	2							3		3					
CO4	3	3	2							3		3					
Average*	3	3	2							3		, ,					
(Rounded	3	3	2							3	3						
integer)																	
Syllab	us																
Unit				Con	tents						Map	ped					
No.	T / T		T			4 T -	1	· •	1 • .•		CO						
1	Introdu	iction to) Logist	ics Mana	gemen	it: Int	roduct	tion, O	bjectiv	ves,							
	Concep	t of Log	gistics, (Objectives	of lo	gistic	s, Tyj	pes of	logist	ICS,	001						
	Concep	t of Log	ISTICS M	anagemen	IT, EVO	iution		ogistics	s, Kole	e of	COI						
	Logistic	s in an l	Econom	y, Differe	nce be	iween	Logi	sucs ar	ia Sup	ріу							
п	Chain M	nanagen		ta and -	f		T1	00000	+ cf T	otc1							
11	Ivieasur	ing logi	SUCS COS	sis and pe	intion			concep	i OI IO	the	CON						
	Lost an	iarysis –	rincip.	les of log	istics (robal	g – L don vo	ogistic	s and	me	002						
ш	Jottom-	inne – In	ipact of	Logistics	on sha		uer va	nue.	line ~	the							
111	Logisti	us and	Supply	chain r	elation	nsnip	s: Bei	ncnmai	rking	the							
	logistics	s proces	s and $S($	UM opera	tions -	-Map	ping t	ne sup	piy ch	ain	CO3						
	process	es - St	upplier	and distr	1butor	benc	enmar	King-10	ientify	ing							
	10g1st1cs	s pertorn	nance in	dicators -													

IV	CO4	
V	Pricing Product and Documentation: Pricing - Revenue Management Lack of coordination and Bullwhip Effect - Impact of lack of coordination - Documentation - functions and types.	C05
	Learning Resource	
Text	books:	
1.	Donald J.Bowersox and David J.Closs: "Logistical Management" T Supply Chain Process, TMH, 2011. Edward J. Bradi John J. Coyle: "A Logistics Approach to S	The Integrated

1. D.K.Agrawal: "Distribution and Logistics Management", MacMillan Publishers,

2. Sunil Chopra and Peter Meindl: "Supply chain Management: Strategy, Planning

Rahul V Altekar: Supply Chain Management, PHI Learning Ltd, New Delhi, 2009

Management, Cengage Learning, New Delhi, 2012.

and Operation", Pearson Education, New Delhi 2013

Reference books

3.

2011

TOTAL QUALITY MANAGEMENT

Course Code	19ME2801A	Year	IV	Semester	II
Course	Inter	Branch	Common to	Course Type	Theory
Category	Disciplinary		all		
	Elective-III				
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

Course Outcomes									
Upon successful completion of the course, the student will be able to									
CO1	Develop an understanding on quality management philosophies and frameworks	L2							
CO2	Acquire knowledge of quality costs and leadership	L2							
CO3	Illustrate concepts of customer focus, continuous quality improvement and supplier partnership	L2							
CO4	Explain TQM tools to improve management processes.	L2							
CO5	Determine the set of indicators to evaluate performance excellence of an organization	L2							

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1-W	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
* - A	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2				2	3		3	3	1	2	1	3	2
CO2	2				2	3		3	3	1	2	1	3	2
CO3	2				2	3		3	3	1	2	1	3	2
CO4	2				2	3		3	3	1	2	1	3	2
CO5	2				2	3		3	3	1	2	1	3	2
Average* (Rounded to nearest integer)	2				2	3		3	3	1	2	1	3	2

	Syllabus								
Unit No.	Contents	Mapped CO							
Ι	Introduction: Definition of Quality, Factors effecting quality, Quality management, Quality Dimensions, four phases of quality, Total Quality, Salient features of Total Quality Management (TQM)- definition of TQM, Elements of TQM, Principles of TQM, Pillars of TQM, Traditional Approach and TQM Approach. Characteristics of TQM: TQM Enablers, Approaches, relevance, Barriers to TQM Implementation	CO1							
II	 Quality costs: Cost classification, Basic cost of quality. Applications and Importance of quality cost. Quality leadership: Quality of leadership, Quality of successful leader, leadership for TQM, Deming Philosophy, Contributions of Gurus of TQM 	CO2							

III	Customer Focus: Customer Complaints and suggestions, panels,	
	Customer satisfaction, Customer Perception of Quality, Customer	
	driven quality circles, Customer focus and activities, needs and	
	expectations, Organizations action from the customer point of view.	CO^{2}
	Continuous Quality Improvement - Juran Trilogy, PDCA Cycle,	02
	Kaizen-kaizen suggestions, program introduction at work place,	
	principles of kaizen. Supplier Partnership -Partnering, sourcing,	
	Supplier Selection, Supplier Rating, Relationship Development	
IV	TQM Tools: Benchmarking - Reasons to Benchmark, Benchmarking	
	Process, Quality Function Deployment (QFD) - House of Quality,	
	QFD Process, Benefits. Taguchi Quality Loss Function. Total	000
	Productive Maintenance (TPM) - Concept, Improvement Needs,	CO3
	FMEA - Stages of FMEA, the seven tools of quality, Process	
	Capability-Concept, Methods of calculating process capability,	
V	Nood for ISO 0000 ISO 0001 2008 Quality System Elements	
v	Accumentation	
	Quality Auditing OS 0000 ISO 14000 Concepts	CO4
	Quality Auditing – QS 9000 - ISO 14000 - Concepts, Requirements and Repetits TOM Implementation in	C04
	manufacturing and service sectors	
	Learning Resource	
ext b	ooks:	
. Dal	e H.Besterfiled, "Total Quality Management", Pearson Education, Del	hi, 2006.
. K.	C. Arora, "Total Quality Management", Kataria & sons. New Delhi, 20)05.
lefere	nce books	
. Sut	burai Ramasamy, "Total Quality Management", Tata McGraw Hill Pu	blishing
Co	mpany Ltd., New Delhi, 2005.	U
. Na	rayana V and Sreenivasan N.S., Quality Management - Concepts and T	asks, Nev
Ag	e International, Delhi, 1996.	
- Reso	ources & other digital material	
. <u>htt</u>	os://nptel.ac.in/courses/110/105/110105039/	
. <u>http</u>	s://nptel.ac.in/courses/110/104/110104085/	
http:	s://nptel.ac.in/courses/110/104/110104080/#	

PROJECT PHASE II

Course Code	19EC3861	Year	IV	Semester	II
Course	Project work	Branch	ECE	Course Type	Project
Category					work
Credits	7	L-T-P	0-0-14	Prerequisites	
Continuous	100	Semester	100	Total Marks:	200
Internal		End			
Evaluation:		Evaluation:			

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1 <u>Develop</u> a circuit/system using technology and software tools. (L3)

CO2 Assess the impact of the developed solution in societal/global context. (L5)

--

CO3 <u>Create</u> an effective project report. (L6)

CO4 <u>Function</u> in team and communicate effectively. (L4)

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

* - Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1			3		3							2	3	
CO 2				3	3	3	3	3	3	3	3	3	3	3
CO 3				3	3			3	3	3	3	3		
CO 4								3	3	3		1		
Average* (Rounded to nearest integer)			3	3	3	3	3	3	3	3	3	2	3	3
