# PRASAD V POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY (Autonomous)



# ACADEMIC RULES & REGULATIONS (PVP20) and

# **B.Tech Course Structure, Syllabus**

Applicable for the batch of students admitted from the Academic Year 2020-2021

# DEPARTMENT OF INFORMATION TECHNOLOGY

# PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY (Autonomous)

AICTE approved, NBA & NAAC A<sup>+</sup> Accredited, An ISO 9001:2015 certified Institution Permanently Affiliated to Jawaharlal Nehru Technological University Kakinada Kanuru, Vijayawada -520 007, Andhra Pradesh Phone:0866 2581699 e-mail: principal@pvpsiddhartha.ac.in

www.pvpsiddhartha.ac.in

# w.e.f. A.Y 2020 - 2021

#### PREFACE

PVP Siddhartha Institute of technology, established in 1998, is one of the seventeen educational institutions sponsored and run by Siddhartha Academy of General & Technical Education. The 250 members of the Academy are a group of industrialists, educationists, auditors and philanthropists with vast experience in their respective fields and above all with an ardent desire to spread quality Education. All the academic organizations of Siddhartha Academy stand symbolic of the pragmatic vision of its founders. PVP Siddhartha Institute of Technology has the advantage of inheriting the higher academic standards. The college is approved by AICTE and is permanently affiliated to JNTUK. It is certified by ISO 9001-2015 for its quality standard. All the UG Programs are accredited by the National Board of Accreditation and NAAC with A<sup>+</sup> grade. It is an Autonomous institute.

The curriculum is revised continuously to address the challenges of industry and academia and to foster the global competencies among the students. The curriculum is revised thrice since 2012. The present curriculum(PVP20) is designed incorporating the features such as outcome based approach, encouraging self-learning through MOOCs platforms i.e., Swayam, COURSERA, EDX, NPTEL, etc., Transformation of creative ideas into a prototype through Internship & Project, enhancing depth & breadth by introducing more number of programs, open electives in core and multi-disciplinary areas, offering courses by industry experts to improve Industry Institute Interaction in addition to internships at industry and introduction of wide range of value added courses beyond curriculum to choose according to their interest to enhance their employability skills.

# **Institute Vision**

To provide rich ambience for Academic and Professional Excellence, Research, Employability skills, Entrepreneurship and Social responsibility.

# **Institute Mission**

To empower the students with Technical knowledge, Awareness of up-to-date technical trends, Inclination for research in the areas of human needs, Capacity building for Employment / Entrepreneurship, Application of technology for societal needs.

# **Quality Policy**

At PVPSIT, We commit ourselves to offer Quality professional education in engineering & Management by adhering to applicable statutory and regulatory requirements and through continuous improvement in the Quality of our services by,

- Regular up gradation of knowledge and skills of faculty
- Improving the teaching methods and strategies
- Providing state of art infrastructure
- > Recruiting competent faculty and maintaining prescribed Teacher Student ratio
- Improving the employability of students
- > Enhanced Collaboration with industry and institutions of National Repute

# **DEPARTMENT OF INFORMATION TECHNOLOGY**

# VISION OF THE DEPARTMENT

To be a model center for Education and Training in the frontier areas of Information Technology

# MISSION OF THE DEPARTMENT

Offer High Quality Teaching and Learning in information Technology to prepare students for higher studies and professional career in industry

| PROGRAM EDUCATIONAL OBJECTIVES |                                                                                                                         |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| PEO                            | STATEMENTS                                                                                                              |  |  |
| PEO I                          | Shine as IT Expert with Proficiency in designing solutions to Information Engineering problems.                         |  |  |
| PEO II                         | Pursue higher studies with the sound knowledge of fundamental concepts and skills in basic sciences and IT disciplines. |  |  |
| PEO III                        | Showcase professionalism, team work and expose to current trends towards continuous learning                            |  |  |
| PEO IV                         | Equipped with integrity, ethical values and become responsible Engineers.                                               |  |  |

|             | PROGRAM OUTCOMES (PO's)                                                                                                                                                                                                                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1        | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
| PO 2        | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3        | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.         |
| PO 4        | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5        | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                 |
| PO 6        | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                               |
| PO 7        | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| <b>PO 8</b> | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9        | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10       | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11       | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |

| PO 12    | 2 <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                           |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|          | PROGRAM SPECIFIC OUTCOMES (PSOs)                                                                                                                                                                                                                                                      |  |  |
| PSO1     | Ability to understand, analyze and develop computer programs in the areas<br>related to Algorithms, system software, application software, web design, big<br>data analytics, database design and networking for efficient design of computer<br>based systems of varying complexity. |  |  |
| PSO2     | Ability of analyzing the general business functions to design and develop with appropriate Information Technology solutions.                                                                                                                                                          |  |  |
|          | QUALITY POLICY                                                                                                                                                                                                                                                                        |  |  |
| At PVPSI | T We commit ourselves to offer Quality professional education in engineering                                                                                                                                                                                                          |  |  |

At PVPSIT, We commit ourselves to offer Quality professional education in engineering & Management by adhering to applicable statutory and regulatory requirements and through continuous improvement in the Quality of our services by,

- Regular up gradation of knowledge and skills of faculty
- Improving the teaching methods and strategies
- Providing state of art infrastructure
- Recruiting competent faculty and maintaining prescribed Teacher Student ratio
- Improving the employability of students
- Enhanced Collaboration with industry and institutions of National Repute

#### CONTENTS

- 1. SHORT TITLE AND COMMENCEMENT
- 2. DEFINITIONS
- 3. ACADEMIC PROGRAMMES
  - 3.1Nomenclature of Programmes
- 4 DURATION OF THE PROGRAMMES
  - 4.1Normal Duration
  - 4.2Maximum Duration
  - 4.3 Minimum Duration of Semester
- 5. ADMISSION CRITERIA
  - 5.1CATEGORY A Seats
  - 5.2CATEGORY B Seats
  - 5.3CATEGORY Lateral Entry Seats
- 6. CREDIT SYSTEM AND GRADE POINTS
  - 6.1Credit Definition
  - 6.2 Semester Course Load
  - 6.3 Grade Points and Letter Grade for a Course
  - 6.4 Semester Grade Point Average (SGPA)
  - 6.5 Cumulative Grade Point Average (CGPA)

## 7. CURRICULUM FRAMEWORK

- 7.1 Regular and Honors B.Tech Programme
- 7.2 General Issues
- 7.3 Curriculum Structure
- 7.4 Honors Programme
- 7.5 Minor Programme
- 7.6 Industrial Collaboration (Case Study)
- 7.7 Mandatory Internships
- 7.8 Skill Oriented Courses
- 7.9 Course Numbering Scheme
- 7.10 Medium of Instruction and Examination
- 7.11 Registration
- 8. CHOICE BASED CREDIT SYSTEM (CBCS)
  - 8.1 CBCS Course Registration Policy
  - 8.2 Continuous Evaluation for CBCS Opted Courses
  - 8.3 Eligibility to Appear CBCS Registered Courses For Semester End Examinations8.4 CBCS Course Detention
- 9. EXAMINATIONS AND SCHEME OF EVALUATION
  - 9.1 Description of Evaluation
  - 9.2 Continuous Internal Evaluation (CIE)
  - 9.2.1Theory Courses
  - 9.2.2 Mandatory Learning Courses

9.2.3 Drawing Based Courses

9.2.4 Laboratory Courses

9.2.5 MOOCs Courses

9.3 Semester End Examinations (SEE)

- 9.3.1 Theory Courses
- 9.3.2 Laboratory Courses
- 9.3.3 Internships
- 9.3.4 Community Service Project

9.3.5 Major Project

9.4 Conditions for Pass Marks

9.5 Revaluation

9.5.1 Continuous Internal Evaluation

9.5.2 Semester End Examinations

9.6 Withholding Results

10. CRITERIA TO ATTEND SEMESTER END EXAMINATIONS AND PROMOTION

# TO HIGHER SEMESTER

10.1 Eligibility for Semester End Examinations

10.2 Promotion Rules

11 SUPPLEMENTARY EXAMINATIONS

11.1 General

11.2 Advanced Supplementary

- 12 READMISSION CRITERIA
- 13 BREAK IN STUDY
- 14 GAP YEAR
- 15 TRANSITORY REGULATIONS
- 16 ELIGIBILITY FOR AWARD OF B.TECH.DEGREE
- 17 CONDUCT AND DISCIPLINE
- 18 MALPRACTICES
- 19 OTHER MATTERS
- 20 GENERAL
- 21 INSTITUTE RULES AND REGULATIONS
- 22 AMENDMENTS TO REGULATIONS
- 23 COURSE STRUCTURE AND SYLLABUS

# **Engineering UG Programmes**

# Introduction

The redesigned curriculum focused on up skilling the graduates on the skills relevant to the need and demands of the industry. The curriculum mandates students to take up five skill courses which are relevant to the industry from second year onwards, two basic level skill courses, one on soft skills and other two on advanced level skill courses. The students are also given the option of choosing between skill courses offered by the Institute and a certificate course offered by industry, a professional body, APSSDC or any other accredited body.

Another major change brought in the curriculum is the introduction of B.Tech. with Honors or a B.Tech with a Minor. This is to give an opportunity for the fast learners to earn additional credits either in the same domain or in a related domain, making them more proficient in their chosen field of discipline or be a graduate with multidisciplinary knowledge and job ready skills.

Mandatory Internship, both industry and social, is included in the revised curriculum that aims at making engineering graduates connect with the needs of the industry and society at large. It will be mandatory for the students to intern in the industry/field for four to six weeks during the summer vacation and also in the final semester to acquire the skills required for job.

The redesigned curriculum offers academic flexibility by introducing a pool of interdisciplinary and job-oriented skill courses which are integrated in to the curriculum of each branch of engineering, from which a student can pick his choice. Flexibility is not only given to students in the choices of courses, but flexibility is given in choosing courses either from the pool of courses offered by the concerned department or in choosing the courses offered by APSSDC or by any other reputed organization/professional body which offers with certification, as decided by respective BoS. Hence, the students are given wide choice and flexibility to undertake courses, while at the same time offering relevance to the interest of individual student in their own context. The curriculum also gives flexibility to the institution in offering a variety of courses to the students of a particular discipline. The Board of Studies is empowered to identify as many tracks and pools as possible in emerging technologies and industrial relevance, and also in humanities and sciences.

# 1. SHORT TITLE AND COMMENCEMENT

- a. The regulations listed under this head are common for all degree level undergraduate programmes (B.Tech.), offered by the college with effect from the academic year 2020-21 and they are called as "PVP20" regulations.
- b. The regulations here under are subjected to amendments as may be made by the Academic Council of the college from time to time, keeping in view of the recommendations of the Board of Studies. Any or all such amendments will be effective from such date and to such batches of candidates including those already undergoing the programme, as may be decided by the Academic Council.

# 2. **DEFINITIONS**

- a. "Commission" means University Grants Commission(UGC);
- b. "Council" means All India Council for Technical Education(AICTE);
- c. "**University**" means Jawaharlal Nehru Technological University Kakinada(JNTUK);
- d. "College" means Prasad V Potluri Siddhartha Institute of Technology, Vijayawada;
- e. An **Academic Programme** means any combination of courses and/or requirements leading to award of a degree.
- f. "**Course**" means a subject either theory or practical identified by its course title and code number and which is normally studied in a semester.
- g. "**Degree**" means an academic degree conferred by the university upon those who complete the under graduate curriculum.
- h. "MOOC" means Massive Open Online Course
- i. "**Regular Students**" means students enrolled into the four year programme in the first year.
- j. "**Lateral Entry Students**" means students enrolled into the four year programme in the second year.

# 3. ACADEMIC PROGRAMMES

# 3.1 Nomenclature of Programmes

3.1.1 The nomenclature and its abbreviation given below, shall continue to be used for the Degree programmes under the University, as required by the Council and the Commission:

# **Bachelor of Technology (B. Tech)**

Besides, the name of specialization shall be indicated in brackets after the abbreviation, for example, engineering degree in Mechanical Engineering programme is abbreviated as B.Tech (Mechanical Engineering).

- 3.1.2 Bachelor of Technology (B. Tech.) degree programme is offered in:
  - 1. Civil Engineering(CE)
  - 2. Computer Science and Engineering(CSE)
  - 3. Computer Science and Engineering(AI & ML)
  - 4. Computer Science and Engineering(Data Science)
  - 5. Electronics and Communication Engineering(ECE)
  - 6. Electrical and Electronics Engineering(EEE)
  - 7. Information Technology(IT)
  - 8. Mechanical Engineering(ME)

# 4. DURATION OF THE PROGRAMMES

# 4.1 Normal Duration

- 4.1.1. The duration of an academic programme shall be four years consisting of eight semesters.
- 4.1.2. The duration of the programme for lateral entry students who are admitted in II year shall be three years that consists of six semesters.

# 4.2 Maximum Duration

4.2.1 The maximum period for which a student can take to complete a full time academic programme shall be double the normal duration of the programme, i.e., for regular students eight years, for lateral entry students six years.

#### 4.3 Minimum Duration of a Semester

Each semester consists of a minimum of 90 instruction days with about minimum 20 and maximum 33 contact hours per week.

# 5. ADMISSION CRITERIA

The eligibility criteria for admission into UG Engineering programmes are as per the norms approved by Government of Andhra Pradesh from time to time. The sanctioned seats in each programme in the college are classified into CATEGORY-A, and CATEGORY-B at I year level and only CATEGORY-A at Lateral Entry II year level.

The percentages of Category–A, Category-B and Lateral Entry Seats are decided from time to time by the Government of Andhra Pradesh.

# 5.1 CATEGORY – A Seats

Category - A seats are filled as per the norms approved by the Government of Andhra Pradesh.

## 5.2 CATEGORY – B Seats

Category - B seats are filled by the College as per the norms approved by the Government of Andhra Pradesh.

# 5.3 CATEGORY - Lateral Entry Seats

Lateral entry candidates shall be admitted into the III semester directly as per the norms approved by Government of Andhra Pradesh.

# 6. CREDIT SYSTEM AND GRADE POINTS

# 6.1 Credit Definition

'Credit' means quantified and recognized learning. Credit is measured in terms of contact hours per week in a semester. Typically one credit is given to:

- (a) Theory/Tutorial course conducted for one contact period.
- (b) Laboratory course conducted for two contact periods.

Each course is assigned a certain number of credits depending upon the number of contact hours (Lectures/Tutorials/Practical) per week.

The curriculum of the eight semesters B.Tech program is designed to have a total of 160 credits for the award of B.Tech degree.

For lateral entry students, the curriculum of six semesters B.Tech program is designed to have a total of 121 credits for the award of B.Tech degree.

## 6.2 Semester Course Load

The average course load shall be fixed at 20 credits per semester with its minimum and maximum limits being set at 12 and 23 credits.

# 6.3 Grade Points and Letter Grade for a Course

The grade points and letter grade will be awarded to each course based on student's performance as per the grading system shown in the Table.

# Table: Grading System for B. Tech Programme (PVP20 Regulations)

| Theory / Drawing<br>(Max-100) | Laboratory/ Mini<br>Project/ Internship etc.<br>(Max – 50) | Level        | Grade Point | Letter Grade |
|-------------------------------|------------------------------------------------------------|--------------|-------------|--------------|
| $\geq 90$                     | ≥45                                                        | Outstanding  | 10          | A+           |
| $\geq 80$ to $\leq 89$        | $\geq$ 40 to $\leq$ 44                                     | Excellent    | 9           | А            |
| $\geq$ 70 to $\leq$ 79        | $\geq$ 35 to $\leq$ 39                                     | Very Good    | 8           | В            |
| $\geq 60$ to $\leq 69$        | $\geq$ 30 to $\leq$ 34                                     | Good         | 7           | С            |
| $\geq$ 50 to $\leq$ 59        | $\geq$ 25 to $\leq$ 29                                     | Fair         | 6           | D            |
| $\geq$ 40 to $\leq$ 49        | $\geq 20$ to $\leq 24$                                     | Satisfactory | 5           | Е            |
| < 40                          | < 20                                                       | Fail         | 0           | F (FAIL)     |
| ABSENT                        | ABSENT                                                     | ABSENT       | 0           | AB           |

# Grades and Grade Points (PVP20 Regulations)

\* For Major Project same (%) percentages will be followed for grading

## 6.4 Semester Grade Points Average(SGPA)

The performance of each student at the end of each semester is indicated in terms of SGPA calculated as shown in equation (1)

SGPA=

 $\frac{\sum (CR \times GP)}{\sum CR \text{ (for all courses offered in the semester)}} - (1)$ 

Where CR= Credits of a course

GP = Grade points awarded for a course  $\Sigma CR$  = Summation of all the courses offered in the semester

# 6.5 Cumulative Grade Point Average (CGPA)

The Cumulative Performance of each student at the end of each semester is indicated in terms of CGPA which is calculated as shown in equation (2).

 $CGPA = \frac{\sum CR \times GP}{\sum CR(for all courses of fered up to that semester/entire program)} - (2)$ 

Where CR = Credits of a course

GP = Grade points awarded for a course

Percentage equivalent of CGPA = (CGPA - 0.75) \* 10

#### 7. **CURRICULUM FRAMEWORK**

# 7.1. Regular and Honors B.Tech Programmes of all Branches

- 1. Award of the Degree: A student will be declared eligible for the award of
  - B. Tech. degree if he/she fulfils the following:
  - i. Pursues a course of study in not less than four and not more than eight academic years.
  - ii. After eight academic years from the year of their admission, he/she shall forfeit their seat in B. Tech course and their admission stands cancelled.
  - iii. Registers for 160 credits and must secure all the 160 credits.
  - iv. A student shall be eligible for the award of B.Tech degree with Honors or Minor if he / she earns 20 credits in addition to the 160 credits. A student shall be permitted to register either for Honors or for Minor and not for both simultaneously.

2. Structure of the Undergraduate Engineering program:

Every course of B.Tech. Program shall be placed in one of the nine categories as listed in table below:

| S.<br>No | Category                                                             | Code | Suggested<br>breakup of<br>Credits<br>(APSCHE) | Suggested<br>breakup<br>of Credits<br>(AICTE) |
|----------|----------------------------------------------------------------------|------|------------------------------------------------|-----------------------------------------------|
| 1        | Humanities and social<br>science including<br>Management courses     | HSMC | 10.5                                           | 12                                            |
| 2        | Basic Science courses                                                | BSC  | 21                                             | 25                                            |
| 3        | Engineering Science courses                                          | ESC  | 24                                             | 24                                            |
| 4        | Professional core<br>Courses                                         | PCC  | 51                                             | 48                                            |
| 5        | <b>Open Elective Courses</b>                                         | OEC  | 12                                             | 18                                            |
| 6        | Professional Courses<br>Elective                                     | PEC  | 15                                             | 18                                            |
| 7        | Internship, project<br>work seminar,<br>Community Service<br>Project | PROJ | 16.5                                           | 15                                            |
| 8        | Mandatory courses                                                    | MC   | Non-<br>credit                                 | Non-<br>credit                                |
| 9        | Skill Oriented Courses                                               | SC   | 10                                             | -                                             |
|          | <b>Total Credits</b>                                                 | 160  | 160                                            |                                               |

- 3. Assigning of Credits:
  - 1 Hr. Lecture (L) per week 1 credit
  - 1 Hr. Tutorial (T) per week 1 credit
  - 1 Hr. Practical (P) per week 0.5 credits
  - 2 Hours Practical (Lab)/week 1 credit
- 4. There shall be mandatory student induction program for fresher's, with a three-week duration before the commencement of first semester. Physical activity, Creative Arts, Universal Human Values, Literary, Proficiency Modules, Lectures by Eminent People, Visits to local Areas, Familiarization to Dept./Branch & Innovations etc., shall be included in the guidelines issued by AICTE
- 5. All undergraduate students shall register for NCC/NSS activities. A student will be required to participate in an activity for two hours in a week during second and third semesters. Grade shall be awarded as Completed or Not Completed in the mark sheet on the basis of participation, attendance, performance and behavior, and it is

treated as student practice course. If a student gets an unsatisfactory Grade, he/she shall repeat the above activity in the subsequent years, in order to complete the degree requirements.

- 6. Courses like Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge etc., shall be included in the curriculum as non-credit mandatory courses. Environmental Sciences is to be offered compulsorily as mandatory course for all branches. A student has to secure 40% of the marks allotted in the internal evaluation for passing the course. No marks or letter grade shall be allotted for all mandatory non-credit courses.
- 7. Institution may swap some of the courses between first and second semesters to balance the workload.
- 8. The concerned Board of studies can assign tutorial hours to such courses wherever it is necessary, but without change in the total number of credits already assigned for semester.
- 9. There shall be 05 Professional Elective courses and 04 Open Elective courses. All the Professional & Open Elective courses shall be offered for 03 credits, wherever lab component is involved it shall be (2-0-2) and without lab component it shall be (3-0-0). If a course comes with a lab component, that component has to be cleared separately. The concerned BOS shall explore the possibility of introducing virtual labs for such courses with lab component.
- 10. All Open Electives are offered to students of all branches in general. However, a student shall choose an Open Elective from the list in such a manner that he/she has not studied the same course in any form during the Programme.
- 11. A student shall be permitted to pursue up to a maximum of two elective courses under MOOCs during the Programme. Each of the courses must be of minimum 12 weeks in duration. Attendance will not be monitored for MOOC courses. Student has to pursue and acquire a certificate for a MOOC course only from the organizations/agencies approved by the BoS in order to earn the 3 credits. The Head of the department shall notify the list of such courses at the beginning of the semester.
- 12. The college shall invite registration forms from the students at the beginning of the semester for offering professional and open elective courses. There shall be a limit on the minimum and maximum number of registrations based on class/section strength.
- 13. Students shall undergo mandatory summer internships for a minimum of four to six weeks duration at the end of second and third year of the Programme. There shall also be mandatory full internship in the final semester of the Programme along with the project work.
- 14. There shall be 05 skill-oriented courses offered during III to VII semesters. Among the five skill courses, four courses shall focus on the basic and advanced skills related to the domain courses and the remaining one shall be a soft skills course.
- 15. Under graduate Degree with Honors / Minor shall be issued by the institute to the students who fulfil all the academic eligibility requirements for the B. Tech program and Honors / Minor program. The objective is to provide additional learning opportunities to academically motivated students.

16. Assessment: The performance of a student in each semester shall be evaluated subject wise with a maximum of 100 marks for theory and 50 marks for practical subject. The distribution shall be 30 marks for Internal Evaluation and 70 marks for the End Semester Theory Examinations. 15 marks for Internal Evaluation and 35 marks for the End Semester practical Examinations A student has to secure not less than 35% of marks in the end semester examination and minimum 40% of marks in the sum total of internal and end semester examination marks to earn the credits allotted to each course. Detailed guidelines for continuous evaluation shall be planned by concerned combined BOS of the Universities.

# 17. Attendance Requirements:

- i. A student shall be eligible to appear for end semester examinations if he/she acquires a minimum of 75% of attendance in aggregate of all the subjects in a semester.
- ii. Shortage of Attendance below 65% in aggregate shall in NO case be condoned.
- iii. Condonation for shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester may be granted by the College Academic Committee.
- iv. Students whose shortage of attendance is not condoned in any semester are not eligible to take their end semester examination of that class and their registration shall stand cancelled.
- v. A student will not be promoted to the next semester unless he satisfies the attendance requirements of the present semester, as applicable. They may seek readmission for that semester when offered next.
- vi. A stipulated fee shall be payable towards condonation of shortage of attendance to the college. A student is eligible to write the semester end examinations if he acquires 75% of attendance in aggregate of all the subjects.

# 7.2 General Issues

- 7.2.1 Curriculum framework is important in setting the right direction for a degree programme as it takes into account the type and quantum of knowledge necessary to be acquired by a student in order to qualify for the award of degree in his/her chosen branch or specialization.
- 7.2.2 Besides, this also helps in assigning the credits for each course, sequencing the courses semester-wise and finally arriving at the total number of courses to be studied and the total number of credits to be earned by a student in fulfilling the requirements for conferment of degree.
- 7.2.3 Each theory course shall consist of five units.

# 7.3 Curriculum Structure

The curriculum is designed to facilitate B. Tech (Honors) and B.Tech (Major, Minor) incorporates courses required to attain the expected knowledge, skills and attitude by the time of graduation as per the needs of the stakeholders. The curriculum structure consists of various course categories (as described in 7.3.1 to7.3.5) to cover the depth and breadth required for the programme and for the

attainment of programme outcomes of the corresponding programme.

# 7.3.1 Institutional Core

Institutional Core consists of the courses required for all UG Engineering Programmes offered in this college. The courses offered under this category cover the required knowledge in the following areas:

# a) Basic Sciences:

Basic Science courses include Engineering Physics, Applied Physics, Engineering Physics Lab, Applied Physics Lab Engineering Chemistry, Engineering Chemistry Lab, and Engineering Mathematics, etc.

# **b) Engineering Sciences:**

Engineering Science courses include Problem Solving and Programming, AI Tools, Internet of Things, Design Thinking, Basic Electrical and Electronics Engineering, Engineering Graphics, Problem Solving & Programming Lab, Basic Electrical & Electronics Engineering Lab, AI Tools Lab, Internet of Things Lab, Design Thinking Lab and Basic Workshop, etc.

# c) Humanities and Social Sciences:

Humanities and Social Science Courses consist of Communicative English I, Communicative English II, HS Elective, Communicative English-I Lab and Communicative English-II Lab, etc.

# 7.3.2 Elective Courses

Elective courses are offered across the programmes to enhance the knowledge breadth and professional competency of the students.

| Courses             | Branch Specific        | Compulsory                                                                                                                |
|---------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Flasting            | Professional Electives | Supportive to the discipline courses with<br>expanded scope in a chosen track of<br>specialization or cross track courses |
| Elective<br>courses | HS Management Elective | Nurture the student interests in management courses.                                                                      |
|                     | Open Electives         | Common to all disciplines that helps general interest of a student                                                        |

# 7.3.3 Professional Core

The Professional core consists of set of courses considered which are necessary for the students of the specific programme. The courses under this category satisfy the Programme Specific Criteria prescribed by the appropriate professional societies.

# 7.3.4 Project

In the final semester, the student should mandatorily undergo internship and in parallel he/she should work on a project with well-defined objectives.

# 7.3.5 Mandatory Learning Courses

According to the guidelines given by statutory bodies, Courses on Environmental Science, Constitution of India and Engineering Ethics, Life Sciences for Engineers and Life Sciences for Engineers Lab shall be offered. Induction program shall be offered in I semester for all the branches.

## 7.3.6 Honors Programme

In order to obtain honors degree students shall earn additional 20 credits in addition to the 160 credits for obtaining the UG degree. Students can register for additional courses by satisfying the pre-requisite course(s) to a maximum of 8 credits in each of the semesters from IV semester onwards along with the regular semester courses as prescribed. There is no minimum limit to the credits for taking additional courses.

- 1. Students of a Department/Discipline are eligible to opt for Honors Programme offered by the same Department/Discipline.
  - A student shall be permitted to register for Honors program at the beginning of 4th semester provided that the student must have acquired a minimum of 8.0 CGPA up to the end of 2<sup>nd</sup> semester without any backlogs. In case of the declaration of the 3<sup>rd</sup> semester results after the commencement of the 4th semester and if a student fails to score the required minimum of 8 CGPA, his/her registration for Honors Programme stands cancelled and he/she shall continue with the regular Programme.
  - An SGPA and CGPA of 8.0 and above has to be maintained in the subsequent semesters in major degree without any backlogs in order to keep the Honors degree registration active.
  - Should both the SGPA and CGPA of major degree fall below 8.0 in major degree at any point after registering for the Honors; the Honors degree registration will cease to be active.
- 2. Students can select the additional and advanced courses from their respective branch in which they are pursuing the degree and get an honors degree in the same. e.g. If a Mechanical Engineering student completes the selected advanced courses from same branch under this scheme, he/she will be awarded B.Tech. (Honors) in Mechanical Engineering.
- 3. In addition to fulfilling all the requisites of a Regular B.Tech Programme, a student shall earn 20 additional credits to be eligible for the award of B. Tech (Honors) degree. This is in addition to the credits essential for obtaining the Under Graduate Degree in Major Discipline (i.e. 160 credits).
- 4. Of the 20 additional Credits to be acquired, 16 credits shall be earned by undergoing specified courses listed as pools, with four courses, each carrying 4 credits. The remaining 4 credits must be acquired through two MOOCs, which shall be domain specific, each with 2 credits and with a minimum duration of 8/12weeks as recommended by the Board of studies.
- 5. It is the responsibility of the student to acquire/complete prerequisite before taking the respective course. The courses offered in each pool shall be domain specific courses and advanced courses.
- 6. The concerned BOS shall decide on the minimum enrolments for offering Honors program by the department. If minimum enrolments criteria are not met then the students shall be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department in consultation with BOS.
- 7. Each pool can have theory as well as laboratory courses. If a course comes with a lab component, that component has to be cleared separately. The concerned BOS shall explore the possibility of introducing virtual labs for such courses with lab component.
- 8. MOOC courses must be of minimum 8 weeks in duration. Attendance will not be monitored for MOOC courses. Students have to acquire a certificate from the agencies

approved by the BOS with grading or marks or pass/fail in order to earn 4 credits. If the MOOC course is a pass/fail course without any grades, the grade to be assigned will be as decided by the Institute/academic council.

- 9. The concerned BOS shall also consider courses listed under professional electives of the respective B. Tech programs for the requirements of B. Tech (Honors). However, a student shall be permitted to choose only those courses that he/she has not studied in any form during the Programme.
- 10. If a student drops or is terminated from the Honors program, the additional credits so far earned cannot be converted into free or core electives; they will remain extra. These additional courses will find mention in the transcript (but not in the degree certificate). In such cases, the student may choose between the actual grade or a "pass (P)" grade and also choose to omit the mention of the course as for the following: The courses which were not done under the dropped Honors will not be shown in the transcript.
- 11. In case a student fails to meet the CGPA requirement for Degree with Honors at any point after registration, he/she will be dropped from the list of students eligible for Degree with Honors and they will receive regular B.Tech degree only. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.
- 12. Honors must be completed simultaneously with a major degree program. A student cannot earn Honors after he/she has already earned bachelor's degree.

## 7.4 Minor Programme:

In order to obtain Minor degree students shall earn additional 20 credits in addition to the 160 credits for obtaining the UG degree. Students can register for additional courses by satisfying the pre-requisite course(s) to a maximum of 8 credits in each of the semesters from IV semester onwards along with the regular semester courses as prescribed. There is no minimum limit to the credits for taking additional courses.

A student shall be permitted to register for Minors program at the beginning of  $4^{th}$  semester subject to a maximum of two additional courses per semester, provided that the student must have acquired 7.75 CGPA (Cumulative Grade point average) up to the end of  $2^{nd}$  semester without any history of backlogs. It is expected that the  $3^{rd}$  semester results may be announced after the commencement of the  $4^{th}$  semester. If a student fails to acquire 7.75 CGPA up to  $3^{rd}$  semester or failed in any of the courses, his registration for Minors program shall stand cancelled.

- An SGPA and CGPA of 7.75 and above has to be maintained in the subsequent semesters in major degree without any backlogs in order to keep the minor registration active.
- Should both the SGPA and CGPA fall below 7.75 in major degree at any point after registering for the minor; the minor registration will cease to be active.
- 1. a) Students who are desirous of pursuing their special interest areas other than the chosen discipline of Engineering may opt for additional courses in minor specialization groups offered by a department other than their parent department. For example, If Mechanical Engineering student selects subjects from Civil Engineering under this scheme, he/she will get Major degree of Mechanical Engineering with minor degree of Civil Engineering

b) Student can also opt for Industry relevant tracks of any branch to obtain the Minor Degree, for example, a B.Tech Mechanical student can opt for the industry relevant tracks like Data Mining track, IOT track, Machine learning track etc.

- 2. The BOS concerned shall identify as many tracks as possible in the areas of emerging technologies and industrial relevance / demand. For example, the minor tracks can be the fundamental courses in CE, EEE, ME, ECE, CSE, AND IT etc., or industry tracks such as Artificial Intelligence (AI), Machine Learning (ML), Data Science (DS), Robotics, Electric vehicles, VLSI etc.
- 3. The list of disciplines / branches eligible to opt for a particular industry relevant minor specialization shall be clearly mentioned by the respective BOS.
- 4. There shall be no limit on the number of programs offered under Minor. The Institution can offer minor programs in emerging technologies based on expertise in the respective departments or can explore the possibility of collaborating with the relevant industries/agencies in offering the program.
- 5. Out of the 20 Credits, 16 credits shall be earned by undergoing specified courses listed by the concerned BOS along with prerequisites. It is the responsibility of the student to acquire / complete prerequisite before taking the respective course. If a course comes with a lab component, that component has to be cleared separately. A student shall be permitted to choose only those courses that he / she has not studied in any form during the Programme.
- 6. The concerned BOS shall decide on the minimum enrolments for offering Minor program by the department. If a minimum enrolments criterion is not met, then the students may be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department in consultation with BOS.
- 7. A student shall earn additional 20 credits in the specified area to be eligible for the award of B. Tech degree with Minor. This is in addition to the credits essential for obtaining the Under Graduate Degree in Major Discipline (i.e. 160credits).
- 8. In addition to the 16 credits, students must pursue at least 2 courses through MOOCs. The courses must be of minimum 8 weeks in duration. Attendance will not be monitored for MOOC courses. Student has to acquire a certificate from the agencies approved by the BOS with grading or marks or pass/fail in order to earn 4credits. If the MOOC course is a pass/fail course without any grades, the grade to be assigned as decided by the Institute/academic council.
- 9. Student can opt for the Industry relevant minor specialization as approved by the concerned departmental BOS. Student can opt the courses from Skill Development Corporation (APSSDC) or can opt the courses from an external agency recommended and approved by concerned BOS and should produce course completion certificate. The Board of studies of the concerned discipline of Engineering shall review such courses being offered by eligible external agencies and prepare a fresh list every year incorporating latest skills based on industrial demand.

- 10. A committee should be formed at the level of College / Universities / department to evaluate the grades / marks given by external agencies to a student which are approved by concerned BOS. Upon completion of courses the departmental committee should convert the obtained grades / marks to the maximum marks assigned to that course. The controller of examinations can take a decision on such conversions and may give appropriate grades.
- 11. If a student drops (or terminated) from the Minor program, they cannot convert the earned credits into free or core electives; they will remain extra. These additional courses will find mention in the transcript ( but not in the degree certificate). In such cases, the student may choose between the actual grade or a "pass(P)" grade and also choose to omit the mention of the course as for the following: The courses which were not done under the dropped Minors will not be shown in the transcript.
- 12. In case a student fails to meet the CGPA requirement for B.Tech degree with Minor at any point after registration, he/she will be dropped from the list of students eligible for degree with Minors and they will receive B.Tech degree only. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.
- 13. Minor must be completed simultaneously with a major degree program. A student cannot earn the Minor after he / she has already earned bachelor's degree.

# 7.6 Industrial Collaboration (Case Study)

Institute - Industry linkages refer to the interaction between firms and universities or public research centers with the goal of solving technical problems, working on R&D, innovation projects and gathering scientific as well as technological knowledge. It involves the collaboration of Industries and Institutes in various areas that would foster the research ecosystem in the country and enhance growth of economy, industry and society at large.

The Institution is permitted to design any number of Industry oriented minor tracks as the respective BoS feels necessary. In this process the Institution can plan to have industrial collaborations in designing the minor tracks and to develop the content and certificate programs. Industry giants such as IBM, TCS, WIPRO etc., may be contacted to develop such collaborations. The Universities / Institutions shall also explore the possibilities of collaborations with major Industries in the core sectors and professional bodies to create specialized domain skills.

# 7.7 Mandatory Internships

- 1. Two summer internships each with a minimum of six weeks duration, done at the end of second and third years, respectively are mandatory. The internship can be done by the students at local industries, Govt. Organizations, construction agencies, Industries, Hydel and thermal power projects and also in software MNCs.
- 2. A supervisor/mentor/advisor has to be allotted to guide the students for taking up the summer internship. The supervisor shall monitor the attendance of the students while taking up the internship. Attendance requirements are as per the norms of the Institute.

- 3. Evaluation of the summer internships shall be through the departmental committee. A student will be required to submit a summer internship report to the concerned department and appear for an oral presentation before the departmental committee consisting of an external examiner; Head of the Department; supervisor of the internship and a senior faculty member of the department. The report and the oral presentation shall carry 40% and 60% weightages respectively.
- 4. It shall be evaluated for 50 external marks at the end of the semester. There shall be no internal marks for Summer Internship.
- 5. In the final semester, the student should mandatorily undergo internship and in parallel he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship. The project report shall be evaluated with an external examiner.
- 6. The College shall facilitate and monitor the student internship programs. Completion of internships is mandatory, if any student fails to complete internship, he/she will not be eligible for the award of degree. In such cases, the student shall repeat and complete the internship.

# 7.8 Skill Oriented Courses

- 1. For skill oriented / skill advanced course, one theory and 2 practical hours or two theory hours may be allotted as per the decision of concerned BOS.
- 2. Out of the five skill courses two shall be skill-oriented courses from the same domain and shall be completed in second year. Of the remaining 3 skill courses, one shall be necessarily be a soft skill course and the remaining 2 shall be skill-advanced courses either from the same domain or Job oriented skill courses, which can be of inter disciplinary nature.
- 3. A pool of interdisciplinary skill oriented courses shall be designed by a common Board of studies by the participating departments / disciplines and the syllabus along with the pre requisites shall be prepared for each of the laboratory infrastructure requirements. The list of such courses shall be included in the curriculum structure of each branch of Engineering, so as to enable the student to choose from the list.
- 4. The student shall be given an option to choose either the skill courses being offered by the college or to choose a certificate course being offered by industries / Professional bodies / APSSDC, COURSERA or any other accredited bodies as approved by the concerned BOS.
- 5. The Board of studies of the concerned discipline of Engineering shall review the skill advanced courses being offered by eligible external agencies and prepare a fresh list every year incorporating latest courses based on industrial demand.
- 6. If a student chooses to take a Certificate Course offered by industries/Professional bodies/APSSDC or any other accredited bodies, in lieu of the skill advanced course offered by the Department, the credits shall be awarded to the student upon producing the Course Completion Certificate from the agency / professional bodies

as approved by the Board of studies.

- 7. If a student prefers to take a certificate course offered by external agency, the department shall mark attendance of the student for the remaining courses in that semester excluding the skill course in all the calculations of mandatory attendance requirements upon producing a valid certificate as approved by the concerned Board of Studies, the student is deemed to have fulfilled the attendance requirement of the course and acquire the credits assigned to the course.
- 8. A committee shall be formed at the level of the college to evaluate the grades / marks given for a course by external agencies and convert to the equivalent marks / grades. The recommended conversions and appropriate grades / marks are to be approved by the Institute / Academic Council.
- 9. The course will be evaluated at the end of the semester for 50 marks (record: 15 marks and viva-voce: 35 marks) along with laboratory end examinations in the presence of external and internal examiner (course instructor or mentor). There are no internal marks for the skill oriented courses.

# 7.9 Course Numbering Scheme

The Course code consists of Eight / Nine characters. The following is the structure of the course Code (Figure 1).

#### Course Numbering Scheme (PVP20)

| 2        | 0         | С                                                                                                                                                                                                                                                                                                                                             | S                                                                                                 | 3                                                                                                                                                 | 2                              | 0                                                                                                  | 1                                      | А                                                                           |
|----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------|
| Regul    | lation    | Course Ca                                                                                                                                                                                                                                                                                                                                     | ategory                                                                                           | Kind of course                                                                                                                                    | Semeste<br>r                   | Туре                                                                                               | Course<br>Number                       | [Elective code]                                                             |
| Last two | digits of | HS-Humanities and Social S<br>Management courses<br>BS-Basic Science courses<br>ES-Engineering Science<br>MC- Mandatory Courses<br>Respective Handling depart<br>In case of Professional Core<br>courses department code is<br>CE-Civil Engineering<br>EE- Electrical & Electronics<br>ME- Mechanical Engineerin<br>EC- Electronics and Commu | ciences including<br>tment code is placed<br>t/ Professional Elective<br>s placed:<br>Engineering | <ol> <li>Institutional<br/>Core(i.e.<br/>HS,BS,ES,MC)</li> <li>Open Elective/<br/>Job Oriented<br/>Elective</li> <li>Professional Core</li> </ol> | 1-First<br>2-Second<br>3-Third | 0-Theory<br>1-Theory studied in<br>MOOCS Mode<br>2-Integrated Course<br>(Theory+Lab)<br>4- NCC/NSS | Number                                 | In case if the<br>course is Elective<br>then this field will<br>specify the |
| offered  | VP20      | CS- Computer Science & En<br>IT- Information Technology<br>AM-CSE(Artificial Intelligen<br>DS-CSE(Data Science)                                                                                                                                                                                                                               | gineering                                                                                         | 4. Professional<br>Elective                                                                                                                       | 4-Fourth<br>5- Fifth           | 5- Practical<br>6-Project Work                                                                     | sequence<br>Number in<br>that semester | elective code (i.e<br>A,B,C)                                                |
|          |           | Respective chosen minor de<br>placed                                                                                                                                                                                                                                                                                                          | epartment code is                                                                                 | 5. Minor Course                                                                                                                                   | 6-Sixth<br>7-Seventh           | 7-Seminar                                                                                          |                                        |                                                                             |
|          |           | Respective department coo<br>Respective Handling depart                                                                                                                                                                                                                                                                                       | •                                                                                                 | 6. Honors Course<br>7. Humanities and<br>Social Science<br>Elective                                                                               | 8-Eigth                        |                                                                                                    |                                        |                                                                             |
|          |           | SO- Skill Oriented Course<br>SA- Skill Advanced Course<br>SS- Soft Skill Course                                                                                                                                                                                                                                                               |                                                                                                   | 8. Skill Oriented/<br>Skill Advanced/ Soft<br>Skill Course                                                                                        |                                | 8. Summer/ Industrial/<br>Research Internship<br>9. Community Service<br>Project                   | -                                      | A - Summer<br>B – Industrial<br>C - Research                                |

Figure 1: Course numbering scheme

# 7.10 Medium of Instruction and Examination

The medium of instruction and examinations shall be English.

# 7.11 Registration

Every student has to register himself/herself for the courses in each semester individually at the time as specified in academic calendar.

# 8. Choice Based Credit System (CBCS)

Choice Based Credit System (CBCS) shall be introduced with effect from 2019-20 academic years, based on guidelines of the statutory bodies in order to promote:

- Activity based learning
- Student centered learning
- Students to choose courses of their choice
- Learning at their own pace

Flexibility is extended to the fast learning students to take the courses of higher semesters in advance as per their convenience to concentrate on their placement activity/ project work, etc., during the VII/VIII semesters.

# 8.1 CBCS Course Registration Policy

Fast learning students can register for additional courses from higher semesters by satisfying the pre-requisite course(s) to a maximum of 8 credits in each of the semesters from III semester onwards along with the regular semester courses as prescribed. There is no minimum limit to the credits for taking additional courses.

# Eligibility for choosing CBCS flexibility:

- **Regular Students (4 Year duration),** entering the n<sup>th</sup> semester with no backlog courses up to (n-1)<sup>th</sup> semester, are only eligible to opt for this flexibility.
- Lateral entry students (3 year duration) with 70% Marks in their Diploma are eligible to opt for this flexibility during III and IV Semesters. Those students entering into V/ VI /VII semester with no backlog courses up to (n-1)<sup>th</sup> semester, are only eligible to

V/VI/VII semester with no backlog courses up to  $(n-1)^{ui}$  semester, are only eligible to opt for this flexibility.

The list of additional courses offered in the even & odd semesters, registration dates will be notified by the respective departments well in advance.

A student can withdraw from the respective course within 15 days after the commencement of the course.

The choice of utilizing this flexibility is purely optional to the students.

A minimum number of students required to register for an additional course shall be twenty (20). In case, the registered strength for the additional course is less than twenty (20), the course may be offered on the recommendation of the Head of the Department and subsequent approval of the Principal.

# 8.2 Continuous Internal Evaluation (CIE) for CBCS opted Courses

The contact hours, continuous assessment pattern, eligibility criteria to write end semester examinations and revaluation scheme for these additional courses will be as per the current academic regulations [PVP20].

# 8.3 Eligibility to appear CBCS registered courses for Semester End Examinations

The registered additional courses will be dealt separately as individual courses for the calculation of attendance and continuous assessment of marks for assessing the eligibility to write the end semester examinations for these courses.

The performance of the student in the registered additional courses will be separately mentioned in the semester end grade card and it will not be taken into account for the calculation of the SGPA for that semester.

The performance of the student in the registered additional courses will be taken into account in the corresponding semesters.

# 8.4 CBCS Course Detention

- **8.4.1** In case, the student is detained for want of minimum specified attendance and continuous assessment marks criterion either in the regular semester or in the additional courses, he/she will forfeit the eligibility for registering additional courses from that semester onwards. However, the additional courses completed by the students in the earlier semesters will be valid and taken into consideration.
- **8.4.2** In case, the student is detained for want of minimum specified attendance and continuous assessment marks criterion in the regular semester but meets minimum specified attendance and continuous assessment marks criterion in the registered additional courses, he/she shall write the end semester examinations for these additional courses along with the regular students in the corresponding semester only.
- **8.4.3** In case, the student fails / is absent in the end semester examinations of the registered additional courses or in the regular semester courses in a particular semester, he will forfeit the eligibility for registering additional courses from that semester onwards. However, the additional courses completed by the students in the earlier semesters will be valid and taken into consideration. They can write the end semester examinations for additional courses in which they failed/were absent, along with regular students in the corresponding semesters only.
- **8.4.4** The criterion for the promotion to higher semesters will be as per PVP20 regulations, taking only the regular semester courses into consideration for the fast learners.
- **8.4.5** Additional courses, in which the fast learning student fails, will not be considered as backlogs for them.
- **8.4.6** The fast learning students shall register for all the courses of a regular semester excluding the courses completed in the previous semesters.
- **8.4.7** The credits scored by students through CBCS subjects shall not be considered for credit promotion from II year to III year or from III year to IV year B.Tech.
- **8.4.8** The student opting for the said flexibility will be considered for the award of the division on par with other regular students.
- **8.4.9** The students who have earlier history of indulging in malpractices in semester end examinations are not eligible for opting CBCS.

- **8.4.10** If the student fails to register for opted CBCS courses for semester end examination, he/she will forfeit the eligibility for registering additional courses from that semester onwards and marks secured through continuous assessment will not be considered.
- **8.4.11** The choice of utilizing this flexibility is purely optional to the students.
- **8.4.12** If a student fails/absent in a CBCS course, he/she is bound to appear in the same course when studied in regular semester.

# 9 EXAMINATIONS & SCHEME OF EVALUATION

# 9.1 Description of Evaluation

- 1. **Continuous Internal Evaluation (CIE):** The performance of the student in each course is evaluated by the faculty/course coordinator all through the semester; with mid-term tests (sessional-1and sessional-2), assignments, project reviews, viva-voce, laboratory assessment and other means covering the entire syllabus of the course.
- 2. Semester End Examination (SEE): It shall be conducted by chief controller of examinations at the end of each semester, as per the academic calendar and with a written examination for theory courses and practical/project examination with built-in oral part for laboratory/project.

## 9.2 Continuous Internal Evaluation (CIE)

## 9.2.1 Theory Courses

a) For theory subjects, during a semester, there shall be two mid-term examinations. Each mid-term examination consists of (i) one objective examination (20 multiple choice questions) for 10 marks for duration of 20 minutes (ii) one descriptive examination (3 full questions for 5 marks each) for 15 marks for duration of 90 minutes and (iii) one assignment for 5 marks. Mid-1 shall be conducted from first 50% of the syllabi.

b) In the similar lines, the second objective, descriptive examinations, assignment shall be conducted on the rest of the 50% syllabus.

c) The total marks secured by the student in each mid-term examination are evaluated for 30 marks. The first mid marks (Mid-1) consisting of marks of objective examination, descriptive examination and assignment shall be submitted by the concerned teacher to the department examination section within one week after completion of first mid examination.

d) The mid marks submitted to the department examination section shall be displayed in the concerned department notice boards for the benefit of the students.

e) If any discrepancy found in the submitted Mid-1 marks, it shall be brought to the notice of Head of the department within one week from the submission.

f) Second mid marks (Mid-2) consisting of marks of objective examination, descriptive Examination and assignment shall also be submitted by the concerned teacher to the department examination section within one week after completion of second mid examination and it shall be displayed in the notice boards. If any discrepancy found in the submitted mid-2 marks, it shall be brought to the notice of Head of the department within one week from the submission.

g) Internal marks can be calculated with 80% weightage for better of the two mids and 20% Weightage for other mid exam.

Example:

**Mid-1 marks** = Marks secured in (Objective-1+Descriptive examination-1 +Assignment-1)

**Mid-2 marks** = Marks secured in (Objective-2+Descriptive examination-2 +Assignment-2)

**Final internal Marks** = (Best of (Mid-1/Mid-2) marks x 0.8

+ Least of (Mid-1/Mid-2) marks x 0.2)

h) With the above criteria, concerned departments have to display the consolidated marks obtained by the students in the department notice boards. If any discrepancy found, it shall be brought to the notice of Head of the department through proper channel within one week with all proofs.

## 9.2.2 Mandatory Learning Courses

Mandatory Course (M.C): Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge, Life Sciences for Engineers, etc. non-credit (zero credits) mandatory courses. Environmental Sciences shall be offered compulsorily as mandatory course for all branches. A minimum of 75% attendance is mandatory in these subjects. There shall be an external examination for 70 marks and it shall be conducted by the college internally. Two internal examinations shall be conducted for 30 marks and a student has to secure at least 40% of the marks for passing the course. No marks or letter grade shall be printed in the transcripts for all mandatory non-credit courses, but only Completed (Y)/Not-completed (N) will be specified.

# 9.2.3 Drawing Based Courses:

For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 30 marks for internal evaluation (15 marks for continuous Assessment (day–to–day work) and 15 marks for internal tests) and 70 marks for end examination. There shall be two internal tests in a Semester for 15 marks each and final marks can be calculated with 80% weightage for better of the two tests and 20% weightage for other test and these are to be added to the marks obtained in day to day work.

#### 9.2.4 Laboratory Courses

For practical subjects there shall be continuous evaluation during the semester for 15 internal marks and 35 end examination marks. The internal 15 marks shall be awarded as follows: day today work - 5 marks, Record-5 marks and the remaining 5 marks to be awarded by conducting an internal laboratory test. The end examination shall be conducted by the teacher concerned and external examiner appointed.

| S. No. | Criterion             | Marks |
|--------|-----------------------|-------|
| 1      | Day to Day Evaluation | 5     |
| 2      | Record                | 5     |
| 3      | Internal Examination  | 5     |

### **Table: Distribution of Marks (CIE)**

## 9.2.5 MOOCs Courses

There shall be a Discipline Centric Elective Course through Massive Open Online Course (MOOC) as Program Elective course. The student shall register for the course (Minimum of 12 weeks) offered by SWAYAM/NPTEL through online with the approval of Head of the Department. The Head of the Department shall appoint one mentor for each of the MOOC subjects offered. The student needs to register the course in the SWAYAM/NPTEL portal. During the course, the mentor monitors the student's assignment submissions given by SWAYAM/NPTEL. The student needs to submit all the assignments given and needs to take final exam at the proctor center. The student needs to earn a certificate by passing the exam. The student will be awarded the credits given in curriculum only by submission of the certificate. In case if student does not pass subjects registered through SWAYAM/NPTEL, the same or alternative equivalent subject may be registered again through SWAYAM/NPTEL in the next semester with the recommendation of HOD and shall pass.

#### 9.3 Semester End Examination (SEE)

#### 9.3.1 Theory Courses:

- a) The semester end examinations will be for 70 marks consisting of five questions carrying 14 marks each. Each of these questions is from one unit and may contain subquestions. For each question there will be an "either" "or" choice, which means that there will be two questions from each unit and the student should answer either of the two questions.
- b) The job oriented skill courses may be registered at the college or at any accredited external agency. A student shall submit a record/report on the on the list skills learned. If the student completes job oriented skill course at external agency, a certificate from the agency shall be included in the report. The course will be evaluated at the end of the semester for 50 marks (record: 15 marks and viva-voce: 35 marks) along with laboratory end examinations in the presence of external and internal examiner (course instructor or mentor). There are no internal marks for the job oriented skill courses.

#### 9.3.2 Laboratory Courses: 35 marks

i. The Semester end examination for laboratory courses shall be conducted with three hour duration at the end of semester for 35 marks as given below:

| S.No. | Criterion                        | Marks |
|-------|----------------------------------|-------|
| 1     | Procedure                        | 5     |
| 2     | Experiment / Programme Execution | 15    |
| 3     | Result                           | 10    |
| 4     | Viva-Voce                        | 5     |

Table : Distribution of Marks (SEE)

ii. Each Semester end Laboratory Examination shall be conducted by an External Examiner along with the Internal Examiner.

# 9.3.3 Internship: 50 Marks (Only External marks)

Evaluation of the summer internships: It shall be completed in collaboration with local industries, Govt. Organizations, construction agencies, Industries, Hydel and thermal power projects and also in software MNCs in the area of concerned specialization of the UG programme. Students shall pursue this course during summer vacation just before its offering as per course structure. The minimum duration of this course is at least 6 weeks. The student shall register for the course as per course structure after commencement of academic year. A supervisor / mentor / advisor have to be allotted to guide the students for taking up the summer internship. The supervisor shall monitor the attendance of the students while taking up the internship. Attendance requirements are as per the norms of the Institute. After successful completion, students shall submit a summer internship technical report to the concerned department and appear for an oral presentation before the departmental committee consists of an external examiner; Head of the Department; supervisor of the internship and a senior faculty member of the department. A certificate from industry / skill development center shall be included in the report. The report and the oral presentation shall carry 40% and 60% weightages respectively. It shall be evaluated for 50 external marks at the end of the semester. There shall be no internal marks for Summer Internship. A student shall secure minimum 40% of marks for successful completion. In case, if a student fails, he/she shall reappear as and when semester supplementary examinations are conducted by the Institute.

# 9.3.4 Community Service Project (CSP): 100 Marks

Report on CSP should be submitted by each student. An internal Viva shall also be conducted by a committee constituted by the Principal of the college. The assessment is to be conducted for 100 marks. The number of credits assigned is 4. Later the marks are converted into grades and grade points to include finally in the SGPA and CGPA. A student shall secure minimum 40% of marks for successful completion. In case, if a student fails, he/she shall reappear as and when semester supplementary examinations are conducted by the Institute. The students must do the community service project in the vacation period after I-II.

The weightings shall be:

| Activity Log 20% | CSP Implementation 30% |
|------------------|------------------------|
| Report 25%       | Presentation 25%       |

For Complete details: <u>https://www.jntuk.edu.in/jntuk-dap-community-service-project-guidelines-reg/</u>

# 9.3.5 Major Project

(Project - Project work, seminar and internship in industry):

In the final semester, the student should mandatorily register and undergo internship and in parallel he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship. The project report shall be evaluated with an external examiner.

**Evaluation:** The total marks for project work for **200 marks** and distribution shall be **60 marks for internal** and **140 marks** for **external** evaluation. The supervisor assesses the student for 30 marks (Report: 15 marks, Seminar: 15 marks). At the end of the semester, all projects shall be showcased at the department for the benefit of all students and staff and the same is to be evaluated by the departmental Project Review Committee consisting of supervisor, a senior faculty and HOD for 30 marks. The external evaluation of Project Work is a Viva-Voce Examination conducted in the presence of internal examiner and external examiner and is evaluated for 140 marks.

# 9.4 Conditions for Pass Marks

- I. Paper setting and evaluation of the answer scripts shall be done as per the procedures laid down by the Institution Examination section from time to time.
- II. To maintain the quality, external examiners and question paper setters shall be selected from premier institutes and Universities, NITs, Autonomous colleges.
- III. For non-credit mandatory courses, like Life sciences for Engineers, Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge, the student has to secure 40% of the marks allotted in the internal evaluation for passing the course. No marks or letter grade shall be allotted for all mandatory non-credit courses.
- IV. A student is deemed to have satisfied the minimum academic requirements if he has earned the credits allotted to each theory/practical design/drawing subject/ project etc by securing not less than 35% of marks in the end semester exam and minimum 40% of marks in the sum total of the internal marks and end semester examination marks together.

# V. Distribution and Weightage of marks:

The assessment of the student's performance in each course will be as per the details given

| SNo | Component                                     | Internal | External | Total |
|-----|-----------------------------------------------|----------|----------|-------|
| 1   | Theory                                        | 30       | 70       | 100   |
| 2   | Lab                                           | 15       | 35       | 50    |
| 3   | Mandatory                                     | 30       | 70       | 100   |
| 4   | Drawing                                       | 30       | 70       | 100   |
| 5   | Project                                       | 60       | 140      | 200   |
| 6   | Mini Project/Internship/Industrial Training / | -        | 50       | 50    |
|     | Skill Development Programs/Research Project   |          |          |       |

# 9.5 Revaluation

# 9.5.1 Continuous Internal Evaluation

The continuous Evaluation scripts shall be shown to the students before finalizing the marks. However, if the student has any concern, not addressed before the finalization of marks, he/she may submit the application for revaluation to the concerned head of the department. The Head of the Department may constitute a two-member committee for re-evaluating the script. The evaluation of the committee is final and binding.

# 9.5.2 Semester End Examination

- 1. As per the notification issued by the Controller of Examinations, the students can submit the applications for revaluation, along with the requisite fee receipt for revaluation of his/her answer script(s) of theory course(s), if he/she is not satisfied with the marks obtained.
- 2. The Controller of Examinations shall arrange for re-evaluation of those answer script(s).
- 3. A new external examiner, other than the first examiner, shall re-evaluate the answer script(s).
- 4. Revaluation marks will be taken into consideration only if the difference between the two valuations is more than or equal to 15%. Better marks between the two shall be taken into consideration. However, if the revaluation marks facilitates passing of the candidate, then the revaluation marks will be considered even if the difference of marks is less than 15%.
- 5. If the difference of marks between the two valuations is more than 20%, the answer script will be referred to third valuation. The average of nearest two marks will be awarded.

# 9.6 Withholding of Results

If the student has not paid the dues to the college, or if any case of malpractice or indiscipline is pending against him, the result of the student will be kept as withheld and he/she will not be allowed to enter the next semester. His/her degree shall be considered as withheld in such cases.

# 10 CRITERIA TO ATTEND SEMESTER END EXAMINATION AND PROMOTION TO HIGHER SEMESTER

# **10.1 Eligibility for Semester End Examinations**

- 10.1.1 Students shall put in a minimum average attendance of 75% in the courses. computed by totalling the number of periods of lectures, tutorials, drawing, practical and project work as the case may be, held in every course as the denominator and the total number of periods attended by the student in all the courses put together as the numerator, to be eligible to write semester end examinations.
- 10.1.2 Condonation of shortage in attendance may be recommended by respective Heads of Departments on genuine medical grounds, provided the student puts in at least 65% attendance as calculated above and provided the Principal is satisfied with the genuineness of the reasons and the conduct of the student.
- 10.1.3 Students, having more than 65% and less than 75% of attendance, shall have to pay requisite fee towards condonation.

# **10.2 Promotion Rules**

**1.** A student shall be promoted from first year to second year if he fulfills the minimum attendance requirements.

- **2.** A student will be promoted from II year to III year if he fulfills the academic requirement of 40% of credits up to either II year I-Semester or II year II-Semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in II year II semester.
- **3.** A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

# 11. SUPPLEMENTARY EXAMINATIONS

# 1. General

Semester end Supplementary examinations shall be conducted along with regular semester end examinations.

# 2 Advanced Supplementary Exams

Candidate(s), who fails in Theory or Laboratory courses of VIII semester, can appear for advanced supplementary examination conducted within one month after declaration of the revaluation results. However, those candidates who fail in the advanced supplementary examinations of VIII semester shall appear for subsequent examinations along with regular candidates conducted at the end of the respective academic year.

# **12. READMISSION CRITERIA**

A candidate, who is detained in a semester due to lack of attendance/credits, has to obtain written permission from the Principal for readmission into the same semester after duly fulfilling all the required norms stipulated by the college in addition to paying an administrative fee of **Rs. 1,000/-**

# **Rules for calculation of attendance for readmitted students**

- a) Number of classes conducted shall be counted from the commencement day of the semester concerned, irrespective of the date of payment of tuition fee.
- b) They shall submit a written request to the principal of the college, along with a challan paid towards tuition and other fee, for readmission before the commencement of the class work.
- c) They can get the information regarding date of commencement of class work for each semester that will be made available in the college notice boards/website from time to time.

# **13 BREAK IN STUDY**

Student, who discontinues the studies for valid reason permitted by the principal, shall get readmission into appropriate semester of B.Tech. programme after break-in study, with the prior permission of the Principal and following the transitory regulations applicable to such batch in which he/she joins. An administrative fee of **Rs**. 1000/-per each year of break in study, in addition to the prescribed tuition and special fee has to be paid by the candidate to condone his/her break in study.

# 14 GAP YEAR

Gap Year – concept of Student Entrepreneur in Residence shall be introduced and outstanding students who wish to pursue entrepreneurship are allowed to take a break of one year at any time after I year/II year/III year to pursue entrepreneurship full time. This period shall be counted for the maximum time for graduation. An evaluation committee at Institution level shall be constituted to evaluate the proposal submitted by the student and the committee shall decide on permitting the student for availing the Gap Year.

# **15 TRANSITORY REGULATIONS**

A candidate, who is detained or discontinued in a semester, on re-admission, the academic regulations under which he/she has originally admitted will continue to be applicable to him/her on re-admission.

# **16 ELIGIBILITY FOR AWARD OF B.TECH DEGREE**

- 1. The B.Tech. Degree shall be conferred on a candidate who satisfies the following requirements.
  - a) A Regular student (four year programme) shall register and secure himself/herself for **160** Credits
  - b) A Lateral Entry student (three year programme) shall register and secure himself/herself for121 credits

# 2. Award of Division

The criteria for award of division, after successful completion of programme are as shown in Table:

| <b>Class Awarded</b>         | CGPA to be secured                              | Remarks                        |  |
|------------------------------|-------------------------------------------------|--------------------------------|--|
| First class with distinction | ≥7.75<br>(Without any supplementary appearance) | From the CGPA secured from 160 |  |
| First class                  | ≥6.75                                           | credits                        |  |
| Second class                 | ≥5.75 to <6.75                                  | ciedus                         |  |
| Pass Class                   | ≥5.00 to <5.75                                  |                                |  |

#### Table : Criteria for Award of Division

Awarded only if all the courses prescribed are cleared in single attempt within four years for regular candidates and three years for lateral entry candidates

Detained and break-in study candidates are not eligible for the award of First Class with Distinction

The cases of students who are absent for semester end examination only once in his/her duration of B.Tech. Programme on valid medical grounds/humanitarian grounds shall also be considered for the award of First class with Distinction subject to the recommendations of the committee constituted by the Principal.

For the purpose of awarding First, Second and Pass Class CGPA obtained in the examinations appeared within the maximum period allowed for the completion of the programme shall be considered.

# **Consolidated Grade Card**

A consolidated grade card containing credits & grades obtained by the students will be

issued after successful completion of the four year B.Tech Programme.

# **17 CONDUCT AND DISCIPLINE**

- 1. Students shall conduct themselves within and outside the premises of the Institute in a manner befitting the students of our Institution.
- 2. As per the order of Honorable Supreme Court of India and AICTE guidelines, ragging in any form is considered a criminal offence and is banned. Ragging within or outside any educational institution is prohibited. Ragging means doing an act, that causes or is likely to cause insult or annoyance or fear of apprehension or threat or intimidation or outrage of modesty or injury to a student. Any form of ragging will be severely dealt with as per AP Prohibition of Ragging Act-1997 section-4.

| Nature of ragging                                                                | Punishment                                                   |
|----------------------------------------------------------------------------------|--------------------------------------------------------------|
| Teasing, embarrassing and humiliating                                            | Imprisonment up to 6 months or fine up to Rs.1,000/- or both |
| Assaulting or using criminal force or criminal intimidation                      | Imprisonment up to 1 year or fine up to Rs.2,000/- or both   |
| Wrongfully restraining or confining or causing hurt                              | Imprisonment up to 2 years or fine up to Rs.5,000/- or both  |
| Causing grievous hurt kidnapping<br>or raping or committing unnatural<br>offence | Imprisonment up to 5 years and fine up to Rs.10,000/-        |
| Causing death or abetting suicide                                                | Imprisonment up to 10 years and fine up to Rs.50,000/-       |

**Table : Punishments for Ragging** 

- 3. A student who is convicted of an offence and punished with imprisonment for a term of more than six months shall not be admitted into the institution.
- 4. Whenever any student complains of ragging to the head or manager of an educational institution, such head or manager should inquire into the complaint and if the complaint is prima-facie found true, should suspend the student or students complained against.
- 5. If the head or manager of an educational institution fails or neglects to take action in the manner specified in the Act, the person shall be deemed to have abetted the offence and shall be punished with the punishment provided for the offence.
- 6. If a student commits suicide due to or in consequence of ragging, the person who commits such ragging shall be deemed to have abetted such suicide.
- 7. The following acts of omission and/or commission shall constitute gross violation of the code of conduct and are liable to invoke disciplinary measures.
- i. Lack of courtesy and decorum; indecent behaviour anywhere within or outside the campus
- **ii.** Possession, consumption or distribution of alcoholic drinks or any kind of narcotics or hallucinogenic drugs.

The following activities are not allowed within the campus:

- > Mutilation or unauthorized possession of library books.
- > Noisy and unseemly behaviour, disturbing studies of fellow students.
- Hacking computer systems (such as entering into other person's areas without prior permission, manipulation and/or damage of computer hardware and software or any other cybercrime etc.)
- ➢ Use of mobile phones.
- Plagiarism of any nature.
- > Any other act of gross indiscipline as decided by the Institute from time to time.
- Commensurate with the gravity of offense, the punishment may be reprimand, fine, expulsion from the institute/ hostel, debarment from a examination, disallowing the use of certain facilities of the Institute, rustication for a specified period or even outright expulsion from the Institute, or even handing over the case to appropriate law enforcement authorities or the judiciary, as required by the circumstances.
- ➢ For an offence committed in (i) a hostel, (ii) a department or in a class room and (iii) elsewhere, the Chief Warden, the Head of the Department and the Principal, respectively, shall have the authority to reprimand or impose fine.
- Cases of adoption of unfair means and/or any malpractice in an examination shall be reported to the Principal for taking appropriate action.
- > Unauthorized collection of money in any form is strictly prohibited.
- Detained and break-in-study candidates are allowed into the campus for academic purposes only with the permission from authorities.
- Misconduct committed by a student outside the Institute campus but having the effect of damaging, undermining & tarnishing the image & reputation of the institution will make the student concerned liable for disciplinary action commensurate with the nature and gravity of such misconduct.
- The disciplinary action committee constituted by the Principal, shall be the authority to investigate the details of the offence, and recommend disciplinary action based on the nature and extent of the offence committed.
- ➢ Grievance redressal committee, constituted by the Principal, shall deal with all grievances pertaining to the academic/ administrative and disciplinary matters.
- All the students must abide by the code and conduct rules of the Institute.

# **18 MALPRACTICES**

The Principal shall refer the cases of malpractices by students in internal assessment tests and end semester examinations, to a malpractice enquiry committee constituted for the purpose. The committee shall follow the approved scales of punishment.

The committee consists of:

- 1. Heads of Department (Three)
- 2. Controller of Examinations
- 3. Assistant Controller of Examinations

# Table – 10: Disciplinary action for malpractices/improper conduct in examinations

| Nature of Malpractices/Improper<br>conduct     Punishment |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

| 1 (a) | If the candidate possesses or keeps<br>accessible, any paper, note book,<br>programmable calculators, mobile<br>phones, pager, palm computers or any<br>other form of material concerned with<br>or related to the subject of the<br>examination (theory or practical) in<br>the examination hall but has not made<br>use of (material shall include any<br>marks on the student's body that can<br>be used as an aid in the subject of the<br>examination) | Expulsion from the examination hall and cancellation of the performance in that subject only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b)   | If the candidate gives assistance or<br>guidance or receives it from any other<br>candidate orally or by any other body<br>language methods or communicates<br>through mobile phones with any<br>candidate or persons in or outside the<br>exam hall in respect of any matter.                                                                                                                                                                              | Expulsion from the examination hall and<br>cancellation of the performance in that subject<br>only of all the candidates involved. In case of<br>an outsider, he will be handed over to the police<br>and a case is registered against him.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2     | If the candidate has copied in the<br>examination hall from any paper,<br>book, programmable calculators, palm<br>computers or any other form of<br>material relevant to the subject of the<br>examination (theory or practical) in<br>which the candidate is appearing.                                                                                                                                                                                    | Expulsion from the examination hall and<br>cancellation of the performance in that subject<br>and all other subjects the candidate has already<br>appeared including practical examinations and<br>project work. He shall not be permitted to<br>appear for the remaining examinations of the<br>subjects of that semester/year. The hall ticket<br>of the candidate is to be cancelled.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3     | If the candidate impersonates any<br>other candidate in connection with the<br>examination.                                                                                                                                                                                                                                                                                                                                                                 | The candidate who has impersonated shall be<br>expelled from examination hall. The candidate<br>is also debarred and forfeits the seat. The<br>performance of the original candidate, who has<br>been impersonated, shall be cancelled in all the<br>subjects of the examination (including<br>practicals and project work) already appeared<br>and shall not be allowed to appear for<br>examinations of the remaining subjects of that<br>semester/year. The candidate is also debarred<br>for two consecutive semesters from class work<br>and all University examinations. The<br>continuation of the course by the candidate is<br>subject to the academic regulations in<br>connection with forfeiture of seat. If the<br>imposter is an outsider, he will be handed over<br>to the police and a case is registered against<br>him. |
| 4     | If the candidate smuggles in an answer<br>book or additional sheet or takes out<br>or arranges to send out the question<br>paper during the examination or<br>answer book or additional sheet,<br>during or after the examination.                                                                                                                                                                                                                          | Expulsion from the examination hall and<br>cancellation of performance in that subject and<br>all the other subjects the candidate has already<br>appeared including practical examinations and<br>project work and shall not be permitted for the<br>remaining examinations of the subjects of that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | semester/year. The candidate is also debarred<br>for two consecutive semesters from class work<br>and all other examinations. The continuation of<br>the course by the candidate is subject to the<br>academic regulations in connection with<br>forfeiture of seat.                                                                                                                                                                                                                                                                                                         |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | If the candidate uses objectionable,<br>abusive or offensive language in the<br>answer paper or in letters to the<br>examiners or writes to the examiner<br>requesting him to award pass marks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cancellation of the performance in that subject.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6 | If the candidate refuses to obey the<br>orders of the Chief<br>Superintendent/Assistant -<br>Superintendent / any officer on<br>duty or misbehaves or creates<br>disturbance of any kind in and<br>around the examination hall or<br>organizes a walk out or instigates<br>others to walk out, or threatens the<br>officer-in charge or any person on<br>duty in or outside the<br>examination hall of any injury to his<br>person or to any of his relations<br>whether by words, either spoken or<br>written or by signs or by visible<br>representation, assaults the officer-in-<br>charge, or any person on duty in or<br>outside the examination hall or any of<br>his relations, or indulges in any other<br>act of misconduct or mischief which<br>results in damage to or destruction of<br>property in the examination hall or<br>any part of the Institute campus or<br>engages in any other act which in the<br>opinion of the officer on duty<br>amounts to use of unfair means or<br>misconduct or has the tendency to<br>disrupt the orderly conduct of the<br>examination. | In case of students of the Institute, they shall be<br>expelled from examination halls and<br>cancellation of their performance in that subject<br>and all other subjects the candidate(s) has<br>(have) already appeared and shall not be<br>permitted to appear for the remaining<br>examinations of the subjects of that<br>semester/year. The candidates also are debarred<br>and forfeit their seats. In case of outsiders, they<br>will be handed over to the police and a police<br>case is registered against them.                                                  |
| 7 | If the candidate leaves the exam hall<br>taking away answer script or<br>intentionally tears of the script or any<br>part thereof inside or outside the<br>examination hall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Expulsion from the examination hall and<br>cancellation of performance in that subject and<br>all the other subjects the candidate has already<br>appeared including practical examinations and<br>project work and shall not be permitted for the<br>remaining examinations of the subjects of that<br>semester/year. The candidate is also debarred<br>for two consecutive semesters from class work<br>and all other examinations. The continuation of<br>the course by the candidate is subject to the<br>academic regulations in connection with<br>forfeiture of seat. |

| 8  | If the candidate possesses any lethal<br>weapon or firearm in the examination<br>hall.                                                                                                                        | Expulsion from the examination hall and<br>cancellation of the performance in that subject<br>and all other subjects the candidate has already<br>appeared including practical examinations and<br>project work and shall not be permitted for the<br>remaining examinations of the subjects of that<br>semester/year. The candidate is also debarred<br>and forfeits the seat.                                                                                                                                                                       |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  | If student of the Institute, who is not a candidate for the particular examination or any person not connected with the Institute indulges in any malpractice or improper conduct mentioned in clause 6 to 8. | Student of the Institute: Expulsion from the<br>examination hall and cancellation of the<br>performance in that subject and all other<br>subjects the candidate has already appeared<br>including practical examinations and project<br>work. He shall not be permitted for the<br>remaining examinations of the subjects of that<br>semester/ year. The candidate is also debarred<br>and forfeits the seat. Person(s) who do not<br>belong to the Institute: Will be handed over to<br>police and a police case will be registered<br>against them. |
| 10 | If the candidate comes in a drunken condition to the examination hall.                                                                                                                                        | Expulsion from the examination hall and<br>cancellation of the performance in that subject<br>and all other subjects the candidate has already<br>appeared including practical examinations and<br>project work. He shall not be permitted for the<br>remaining examinations of the subjects of that<br>semester/year.                                                                                                                                                                                                                                |
| 11 | Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.                                                                                                     | Cancellation of the performance in that subject<br>and all other subjects the candidate has<br>appeared including practical examinations and<br>project work of that semester/year<br>examinations.                                                                                                                                                                                                                                                                                                                                                   |
| 12 | If any malpractice is detected which is<br>not covered in the above clauses 1 to<br>11, shall be awarded suitable<br>punishment.                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Note: Special squads may be formed to oversee the proper conduct of examinations.

## **19 OTHER MATTER**

- **19.1** Scribe facility is extended to B Tech students strictly following the guidelines issued under F. No. 16-110/2003-DD.III Dt. 26-02-2013 by the Ministry of Social Justice and Empowerment, Department of Disability Affairs, Govt. of India.
- **19.2** Students who are suffering from contagious diseases are not allowed to appear either continuous internal assessment or semester end examinations
- **19.3** The students who participate in coaching/tournaments held at State/National/International levels through University/Indian Olympic Association during semester end examination period will be promoted to subsequent semesters till the entire programme is completed as per the guidelines of University Grants Commission Letter No. F.1-5/88 (SPE/PES), dated18-08-1994.

- **19.4** Based on the recommendations of HOD & Principal, exemption from attending the class work shall be given to those students who secure placement and intend to join as the employer in VIII semester of B.Tech. Special Continuous Internal Evaluation (Assignment Tests, Sessional, etc.,) will be arranged to such candidates separately if necessary. However, they shall appear for Semester End Examinations as per the Academic Calendar
- **19.5** The Principal shall deal with any academic problem, which is not covered under these rules and regulations, in consultation with the Heads of the Departments in an appropriate manner, and subsequently such actions shall be placed before the academic council for ratification. Any emergency modification of regulation, approved in the Heads of the Departments Meetings, shall be reported to the academic council for ratification.

## 20 GENERAL

- 1 Wherever the words "he", "him", "his", occur in the regulations, they may include "she", "her", "hers".
- 2 The academic regulations should be read as a whole for the purpose of any interpretation.
- 3 In case of any doubt or ambiguity in the interpretation of above rules, the decision of the principal is final.

## **21 INSTITUTE RULES AND REGULATIONS**

- 1 Use of **Mobile phones** is strictly prohibited inside the Institute academic area.
- 2 Students should come to Institute in **proper dress**.
- 3 All students should wear **Identity cards** in the Institute premises.
- 4 Students should be present in their respective classrooms before the commencement of class sharply.
- 5 Students should not leave the Institute premises without prior permission of their respective Heads of the departments during Institute working hours.
- 6 Students should maintain silence in the class rooms during working periods.
- 7 Sitting / wandering of the students at the stair cases, corridors, cycle stands or the areas within the Institute premises is strictly prohibited.
- 8 Usage of Vehicle horn inside the Institute premises is prohibited.

## 22 AMENDMENTS TO REGULATIONS

The Academic Council may, from time to time, revise, amend or change the regulations, schemes of examination and/or syllabi.

Oratory

## PRINCIPAL

# COURSE STRUCTURE AND SYLLABUS

## Prasad V. Potluri Siddhartha Institute of Technology DEPARTMENT OF INFORMATION TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY Course Structure for B. Tech (IT) Students under PVP20 Regulations (Effective from Academic Year 2020-21)

|           |                | I B.7                                                  | Tech I S | Semes          | ter |         |     |     |                |
|-----------|----------------|--------------------------------------------------------|----------|----------------|-----|---------|-----|-----|----------------|
| SI.<br>No | Course<br>Code | Course Title                                           |          | urs Pe<br>week | er  | Credits | CIE | SEE | Total<br>marks |
| INU       | Coue           |                                                        | L        | Т              | Р   | С       |     |     |                |
| 1         | 20HS1101       | Communicative English I                                | 3        | 0              | 0   | 3       | 30  | 70  | 100            |
| 2         | 20BS1101       | Calculus and Linear<br>Algebra                         | 3        | 0              | 0   | 3       | 30  | 70  | 100            |
| 3         | 20BS1103       | Engineering Physics                                    | 3        | 0              | 0   | 3       | 30  | 70  | 100            |
| 4         | 20ES1101       | Basic Electrical and<br>Electronics Engineering        | 3        | 0              | 0   | 3       | 30  | 70  | 100            |
| 5         | 20ES1103       | Problem Solving<br>Techniques                          | 3        | 0              | 0   | 3       | 30  | 70  | 100            |
| 6         | 20HS1151       | Communicative English I<br>Lab                         | 0        | 0              | 3   | 1.5     | 15  | 35  | 50             |
| 7         | 20BS1152       | Engineering Physics Lab                                | 0        | 0              | 3   | 1.5     | 15  | 35  | 50             |
| 8         | 20ES1151       | Basic Electrical and<br>Electronics Engineering<br>Lab | 0        | 0              | 3   | 1.5     | 15  | 35  | 50             |
|           |                | Total                                                  | 15       | 0              | 9   | 19.5    | 195 | 455 | 650            |

#### I B.Tech II Semester

| Sl.<br>No | Course<br>Code          | Course Title                           |    | ours Po<br>week | er | Credits | CIE                     | SEE | Total<br>marks |
|-----------|-------------------------|----------------------------------------|----|-----------------|----|---------|-------------------------|-----|----------------|
| INU       | Coue                    |                                        | L  | Т               | P  | С       |                         |     |                |
| 1         | 20HS1201                | Communicative English II               | 3  | 0               | 0  | 3       | 30                      | 70  | 100            |
| 2         | 20BS1202                | Engineering Chemistry                  | 3  | 0               | 0  | 3       | 30                      | 70  | 100            |
| 3         | 20BS1204                | Probability and Statistics             | 3  | 0               | 0  | 3       | 30                      | 70  | 100            |
| 4         | 20ES1202                | Programming for Problem<br>Solving     | 3  | 0               | 0  | 3       | 30                      | 70  | 100            |
| 5         | 20ES1204                | Engineering Graphics                   | 1  | 0               | 4  | 3       | 30                      | 70  | 100            |
| 6         | 20HS1251                | Communicative English II<br>Lab        | 0  | 0               | 3  | 1.5     | 15                      | 35  | 50             |
| 7         | 20BS1251                | Engineering Chemistry<br>Lab           | 0  | 0               | 3  | 1.5     | 15                      | 35  | 50             |
| 8         | 20ES1253                | Programming for Problem<br>Solving Lab | 0  | 0               | 3  | 1.5     | 15                      | 35  | 50             |
| 9         | 20MC1201                | Life Sciences for<br>Engineers         | 2  | 0               | 2  | 0       | 30                      | 70  | 100            |
| 10        | 20MC1241A/<br>20MC1241B | NSS/NCC                                | 0  | 0               | 2  | 0       | Completed/Not Completed |     |                |
|           |                         | Total                                  | 15 | 0               | 17 | 19.5    | 225 525 750             |     |                |

## II B.Tech I Semester

| SI. | Course                  | Course Title                                                         |    | ours P<br>week | er | Credits | CIE    | SEE        | Total<br>marks |
|-----|-------------------------|----------------------------------------------------------------------|----|----------------|----|---------|--------|------------|----------------|
| No  | Code                    | Course The                                                           | L  | Т              | Р  | С       |        |            |                |
| 1   | 20BS1303                | Engineering Mathematics<br>III (Discrete<br>Mathematical Structures) | 3  | 0              | 0  | 3       | 30     | 70         | 100            |
| 2   | 20ES1305                | Data Structures                                                      | 3  | 0              | 0  | 3       | 30     | 70         | 100            |
| 3   | 20IT3301                | Fundamentals of Digital<br>Logic Design                              | 3  | 0              | 0  | 3       | 30     | 70         | 100            |
| 4   | 20IT3302                | Software Engineering                                                 | 3  | 0              | 0  | 3       | 30     | 70         | 100            |
| 5   | 201T3303                | Object Oriented<br>Programming through<br>C++                        | 3  | 0              | 0  | 3       | 30     | 70         | 100            |
| 6   | 20ES1356                | Data Structures Lab                                                  | 0  | 0              | 3  | 1.5     | 15     | 35         | 50             |
| 7   | 20IT3351                | Software Engineering<br>Lab                                          | 0  | 0              | 3  | 1.5     | 15     | 35         | 50             |
| 8   | 201T3352                | Object Oriented<br>Programming through<br>C++ Lab                    | 0  | 0              | 3  | 1.5     | 15     | 35         | 50             |
| 9   | 20\$08356               | UX Design                                                            | 1  | 0              | 2  | 2       |        | 50         | 50             |
| 10  | 20MC1301                | Environmental Science                                                | 2  | 0              | 0  | 0       | 30     | 70         | 100            |
| 11  | 201T3391                | Community Service<br>Project                                         | 0  | 0              | 0  | 4       | 100    | -          | 100            |
| 12  | 20MC1341A/<br>20MC1341B | NSS/NCC                                                              | 0  | 0              | 2  | 0       | Comple | eted/Not C | ompleted       |
|     |                         | Total                                                                | 18 | 0              | 13 | 25.5    | 325    | 575        | 900            |

## **II B.Tech II Semester**

| SI.<br>No | Course<br>Code       | Course Title                                                 | H    | Iours<br>weel |        | Credits      | CIE | SEE | Total<br>marks |
|-----------|----------------------|--------------------------------------------------------------|------|---------------|--------|--------------|-----|-----|----------------|
| TAO       |                      |                                                              | L    | Т             | P      | С            |     |     |                |
| 1         | 20BS1404             | Transform Techniques,<br>Numerical Methods& Number<br>Theory | 3    | 0             | 0      | 3            | 30  | 70  | 100            |
| 2         | 20IT3401             | Database Management<br>System                                | 3    | 0             | 0      | 3            | 30  | 70  | 100            |
| 3         | 20IT3402             | Computer Organization                                        | 3    | 0             | 0      | 3            | 30  | 70  | 100            |
| 4         | 201T3403             | Design and Analysis of<br>Algorithms                         | 3    | 0             | 0      | 3            | 30  | 70  | 100            |
| 5         | 20IT3404             | Programming with Java                                        | 3    | 0             | 0      | 3            | 30  | 70  | 100            |
| 6         | 20IT3451             | Database Management<br>System Lab                            | 0    | 0             | 3      | 1.5          | 15  | 35  | 50             |
| 7         | 20IT3452             | Design and Analysis of<br>Algorithms Lab                     | 0    | 0             | 3      | 1.5          | 15  | 35  | 50             |
| 8         | 20IT3453             | Programming with Java Lab                                    | 0    | 0             | 3      | 1.5          | 15  | 35  | 50             |
| 9         | 20SO8455             | Python Programming                                           | 1    | 0             | 2      | 2            |     | 50  | 50             |
| 10        | 20MC1401             | Universal Human Values                                       | 2    | 0             | 0      | 0            | 30  | 70  | 100            |
|           |                      | Total                                                        | 18   | 0             | 11     | 21.5         | 225 | 575 | 800            |
|           | Sum                  | mer Internship(Mandatory) 4-6 w                              | eeks | during        | g Sumr | ner vacation | n   |     |                |
| 11        | 20IT5401             | Operating Systems (Minor)                                    | 4    | 0             | 0      | 4            | 30  | 70  | 100            |
|           | (Honors)<br>20IT6401 | Cyber Security &<br>Ethical Hacking                          | 4    | 0             | 0      | 4            | 30  | 70  | 100            |
| 12        | 20IT6401             | Object Oriented<br>Modelling and Design                      | 4    | 0             | 0      | 4            | 30  | 70  | 100            |
|           | 20IT6401             | Cryptography                                                 | 4    | 0             | 0      | 4            | 30  | 70  | 100            |
|           | 20IT6401             | Bioinformatics                                               | 4    | 0             | 0      | 4            | 30  | 70  | 100            |

## III B.Tech I Semester

| SI.<br>No | Course<br>Code     | Course Title                                                                                                              | H  | lours<br>weel |   | Credits | CIE | SEE | Total<br>marks |
|-----------|--------------------|---------------------------------------------------------------------------------------------------------------------------|----|---------------|---|---------|-----|-----|----------------|
| INO       |                    |                                                                                                                           | L  | Т             | Р | C       |     |     |                |
| 1         | 20IT3501           | Operating Systems                                                                                                         | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
| 2         | 20IT3502           | Web Technologies                                                                                                          | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
| 3         | 20IT3503           | Computer Networks                                                                                                         | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
|           |                    | <b>Open Elective -I</b>                                                                                                   |    | 1             | 1 |         |     | 1   | 1              |
|           | 20IT2501A          | offered by IT to other Branches<br>1. Cyber Laws                                                                          | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
|           | 20CE2501A          | offered by other branches<br>Air Pollution and Control                                                                    | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
|           | 20EC2501A          | Sensor Technology                                                                                                         | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
| 4         | 20EC2501B          | Electronic Instrumentation                                                                                                | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
|           | 20EE2501A          | Electrical Safety                                                                                                         | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
|           | 20ME2501A          | Design Thinking                                                                                                           | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
|           | 20ME2501B          | Logistics and Supply<br>Chain Management                                                                                  | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
|           | 20CS250A           | Programming with C (not<br>for IT students)                                                                               | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
|           |                    | Professional Elective-I                                                                                                   |    |               |   |         |     | •   | 1              |
|           | 20IT4501A          | Information Security                                                                                                      | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
|           | 20IT4501B          | Distributed Systems                                                                                                       | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
| 5         | 20IT4501C          | Software Requirements<br>Management                                                                                       | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
|           | 20IT4501D          | Neural Networks                                                                                                           | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
|           | 20IT4501E          | Data Mining                                                                                                               | 3  | 0             | 0 | 3       | 30  | 70  | 100            |
| 6         | 20IT3551           | Operating Systems Lab                                                                                                     | 0  | 0             | 3 | 1.5     | 15  | 35  | 50             |
| 7         | 20IT3552           | Web Technologies Lab                                                                                                      | 0  | 0             | 3 | 1.5     | 15  | 35  | 50             |
| 8         | 20SS8551           | Soft Skills                                                                                                               | 1  | 0             | 2 | 2       |     | 50  | 50             |
| 9         | 20MC1501           | Constitution of India                                                                                                     | 2  | 0             | 0 | 0       | 30  | 70  | 100            |
| 10        | 20IT3581A          | Summer Internship 4-6 weeks<br>(Mandatory) after second year (to<br>be evaluated during this 5 <sup>th</sup><br>semester) | 0  | 0             | 0 | 1.5     |     | 50  | 50             |
|           |                    | Total                                                                                                                     | 18 | 0             | 8 | 21.5    | 210 | 590 | 800            |
| 12        | Minor-<br>20IT5501 | Computer Networks                                                                                                         | 4  | 0             | 0 | 4       | 30  | 70  | 100            |
|           | 20IT6501           | Social Media Analytics                                                                                                    | 4  | 0             | 0 | 4       | 30  | 70  | 100            |
| 13        | 20IT6501           | Security Governance Risk<br>Management                                                                                    | 4  | 0             | 0 | 4       | 30  | 70  | 100            |
| 13        | 20IT6501           | Scala programming                                                                                                         | 4  | 0             | 0 | 4       | 30  | 70  | 100            |
|           | 20IT6501           | Software Design and<br>System Integration                                                                                 | 4  | 0             | 0 | 4       | 30  | 70  | 100            |

## III B.Tech II Semester

| 1       201T         2       201T         3       20ES         3       20ES         4       20IT4         20IT4       20IT4         20E       20EE         20E       20EE         20ME       20CS         6       20IT         7       20IT         8       20ES         9       20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Machine Learning Techniques<br>Modern Web Applications<br>Internet of Things<br><b>Professional Elective - II</b><br>Cyber Forensics<br>Cloud Computing<br>Object Oriented Software<br>Engineering<br>Artificial Intelligence and<br>Expert Systems<br>Data Visualization<br><b>Open Elective - II</b><br>offered by IT to other Branches<br>1. Introduction to Data Mining<br>offered by other branches<br>Ecology and Environment<br>MAT Lab Programming<br>TV Engineering<br>Energy Management<br>Value Engineering<br>Human Factors in Engineering | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0 | P         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0 | C<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30 | 70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70          70          70          70          70          70          70          70          70          70 | 100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2       201T         3       20ES         3       20ES         4       20IT4         20IT4       20IT4         20E       20EE         20E       20EE         20ME       20ME         20ME       20CS         6       20IT         7       20IT         8       20ES         9       20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Г3602<br>S1602<br>4601A<br>4601B<br>4601C<br>4601C<br>4601E<br>2601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Modern Web Applications Internet of Things Professional Elective - II Cyber Forensics Cloud Computing Object Oriented Software Engineering Artificial Intelligence and Expert Systems Data Visualization Open Elective - II offered by IT to other Branches 1. Introduction to Data Mining offered by other branches Ecology and Environment MAT Lab Programming TV Engineering Energy Management Value Engineering Human Factors in Engineering                                                                                                       | $     \begin{array}{c}       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\       3 \\     $ | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                     | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30                                  | 70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70          70          70          70                                                                         | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                      |
| 3       20ES         3       20IT4         20IT4       20IT4         20E       20E         20E       20E         20E       20E         20E       20E         20ME       20CS         6       20IT         7       20IT         8       20ES         9       20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S1602<br>4601A<br>4601B<br>4601C<br>74601D<br>74601E<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72 | Internet of Things  Professional Elective - II  Cyber Forensics  Cloud Computing  Object Oriented Software Engineering  Artificial Intelligence and Expert Systems  Data Visualization  Open Elective - II  offered by IT to other Branches 1. Introduction to Data Mining  offered by other branches Ecology and Environment  MAT Lab Programming  TV Engineering Energy Management Value Engineering Human Factors in Engineering                                                                                                                    | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                          | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                | 30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30                                                        | 70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70                                                                                                             | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                      |
| 20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4601A<br>4601B<br>4601C<br>4601C<br>4601E<br>4601E<br>2601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Professional Elective - IICyber ForensicsCloud ComputingObject Oriented SoftwareEngineeringArtificial Intelligence andExpert SystemsData VisualizationOpen Elective - IIoffered by IT to other Branches1. Introduction to Data Miningoffered by other branchesEcology and EnvironmentMAT Lab ProgrammingTV EngineeringEnergy ManagementValue EngineeringHuman Factors in Engineering                                                                                                                                                                   | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                    | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                | 30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30                                                        | 70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70                                                                                                                                                                                                                                                                                             | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                      |
| 20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20175         20175         20176         20176         20177         20176         20177         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4601B<br>4601C<br>4601C<br>4601E<br>2601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cyber Forensics<br>Cloud Computing<br>Object Oriented Software<br>Engineering<br>Artificial Intelligence and<br>Expert Systems<br>Data Visualization<br><b>Open Elective - II</b><br>offered by IT to other Branches<br>1. Introduction to Data Mining<br>offered by other branches<br>Ecology and Environment<br>MAT Lab Programming<br>TV Engineering<br>Energy Management<br>Value Engineering<br>Human Factors in Engineering                                                                                                                      | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                         | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                     | 30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30                                                        | 70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70                                                                                                                                                                                                                                                                                             | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                             |
| 20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20174         20175         20175         20176         20176         20177         20176         20177         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171         20171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4601B<br>4601C<br>4601C<br>4601E<br>2601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cloud Computing<br>Object Oriented Software<br>Engineering<br>Artificial Intelligence and<br>Expert Systems<br>Data Visualization<br><b>Open Elective - II</b><br>offered by IT to other Branches<br>1. Introduction to Data Mining<br>offered by other branches<br>Ecology and Environment<br>MAT Lab Programming<br>TV Engineering<br>Energy Management<br>Value Engineering<br>Human Factors in Engineering                                                                                                                                         | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                         | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                     | 30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30                                                        | 70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70                                                                                                                                                                                                                                                                                             | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                             |
| 4<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174 | 4601C<br>4601D<br>4601E<br>2601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A<br>22601A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Object Oriented Software<br>Engineering<br>Artificial Intelligence and<br>Expert Systems<br>Data Visualization<br><b>Open Elective - II</b><br>offered by IT to other Branches<br>1. Introduction to Data Mining<br>offered by other branches<br>Ecology and Environment<br>MAT Lab Programming<br>TV Engineering<br>Energy Management<br>Value Engineering<br>Human Factors in Engineering                                                                                                                                                            | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                              | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                          | 30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30                                                                                                    | 70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70                                                                                                                                                                                                                                                                                                        | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                    |
| 4<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174<br>20174 | 74601D<br>74601E<br>72601A<br>72601A<br>72601A<br>72601B<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A<br>72601A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Engineering<br>Artificial Intelligence and<br>Expert Systems<br>Data Visualization<br><b>Open Elective - II</b><br>offered by IT to other Branches<br>1. Introduction to Data Mining<br>offered by other branches<br>Ecology and Environment<br>MAT Lab Programming<br>TV Engineering<br>Energy Management<br>Value Engineering<br>Human Factors in Engineering                                                                                                                                                                                        | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                   | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                               | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                      | 70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70                                                                                                                                                                                                                                                                                                                                                    | 100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                           |
| 20IT4<br>20IT4<br>20IT2<br>20CE<br>20EC<br>20EC<br>20EE<br>20ME<br>20ME<br>20ME<br>20ME<br>20ME<br>20ME<br>20ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4601E<br>2601A<br>22601A<br>22601A<br>22601B<br>22601A<br>22601A<br>E2601B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Expert Systems<br>Data Visualization<br><b>Open Elective - II</b><br>offered by IT to other Branches<br>1. Introduction to Data Mining<br>offered by other branches<br>Ecology and Environment<br>MAT Lab Programming<br>TV Engineering<br>Energy Management<br>Value Engineering<br>Human Factors in Engineering                                                                                                                                                                                                                                      | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                             | 3<br>3<br>3<br>3<br>3<br>3<br>3                                    | 30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                            | 70       70       70       70       70       70       70       70       70       70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                  |
| 20IT2<br>20CE<br>20EC<br>20EC<br>20EC<br>20EC<br>20EE<br>20ME<br>20ME<br>20ME<br>20ME<br>20ME<br>20CS<br>6 20IT<br>7 20IT<br>8 20ES<br>9 20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2601A<br>E2601A<br>C2601A<br>C2601B<br>E2601A<br>E2601A<br>E2601B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Open Elective - II</b><br>offered by IT to other Branches<br>1. Introduction to Data Mining<br>offered by other branches<br>Ecology and Environment<br>MAT Lab Programming<br>TV Engineering<br>Energy Management<br>Value Engineering<br>Human Factors in Engineering                                                                                                                                                                                                                                                                              | 3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                       | 3<br>3<br>3<br>3<br>3<br>3                                         | 30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                  | 70<br>70<br>70<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                         |
| 20CE<br>20EC<br>20EC<br>20EE<br>20ME<br>20ME<br>20ME<br>20ME<br>20ME<br>20CS<br>6 20IT<br>7 20IT<br>8 20ES<br>9 20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E2601A<br>C2601A<br>C2601B<br>E2601A<br>E2601A<br>E2601B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | offered by IT to other Branches<br>1. Introduction to Data Mining<br>offered by other branches<br>Ecology and Environment<br>MAT Lab Programming<br>TV Engineering<br>Energy Management<br>Value Engineering<br>Human Factors in Engineering                                                                                                                                                                                                                                                                                                           | 3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                            | 3<br>3<br>3<br>3                                                   | 30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                        | 70<br>70<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100<br>100<br>100<br>100                                                                                                                                                                                                                                                                |
| 20CE<br>20EC<br>20EC<br>20EE<br>20ME<br>20ME<br>20ME<br>20ME<br>20ME<br>20CS<br>6 20IT<br>7 20IT<br>8 20ES<br>9 20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E2601A<br>C2601A<br>C2601B<br>E2601A<br>E2601A<br>E2601B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ol> <li>Introduction to Data Mining         <ul> <li>offered by other branches</li> <li>Ecology and Environment</li> </ul> </li> <li>MAT Lab Programming         <ul> <li>TV Engineering</li> <li>Energy Management</li> <li>Value Engineering</li> <li>Human Factors in Engineering</li> </ul> </li> </ol>                                                                                                                                                                                                                                           | 3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                            | 3<br>3<br>3<br>3                                                   | 30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                        | 70<br>70<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100<br>100<br>100<br>100                                                                                                                                                                                                                                                                |
| 5       20EC         20EC       20EC         20EE       20ME         20ME       20ME         20ME       20ME         20ME       20ME         20CS       20CS         6       20IT         7       20IT         8       20ES         9       20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2601A<br>C2601B<br>E2601A<br>E2601A<br>E2601B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ecology and Environment<br>MAT Lab Programming<br>TV Engineering<br>Energy Management<br>Value Engineering<br>Human Factors in Engineering                                                                                                                                                                                                                                                                                                                                                                                                             | 3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                 | 3<br>3<br>3                                                        | 30<br>30<br>30                                                                                                                                                                                                                                                                                                                    | 70<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100<br>100<br>100                                                                                                                                                                                                                                                                       |
| 20EC           20EE           20ME           20CS           6           20IT           8           20ES           9           20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C2601B<br>E2601A<br>E2601A<br>E2601B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAT Lab Programming<br>TV Engineering<br>Energy Management<br>Value Engineering<br>Human Factors in Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                 | 0 0                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                  | 30<br>30                                                                                                                                                                                                                                                                                                                          | 70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100<br>100                                                                                                                                                                                                                                                                              |
| 20EE<br>20ME<br>20ME<br>20ME<br>20CS<br>6 20IT<br>7 20IT<br>8 20ES<br>9 20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E2601A<br>E2601A<br>E2601B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Energy Management<br>Value Engineering<br>Human Factors in Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                  | 30                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                     |
| 20ME<br>20ME<br>20CS<br>6 20IT<br>7 20IT<br>8 20ES<br>9 20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E2601A<br>E2601B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Energy Management<br>Value Engineering<br>Human Factors in Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                         |
| 20ME<br>20CS<br>6 20IT<br>7 20IT<br>8 20ES<br>9 20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E2601B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Value Engineering<br>Human Factors in Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                  |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                                                                                                                                                                                                                                                     |
| 20CS           6         20IT           7         20IT           8         20ES           9         20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Human Factors in Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                  | 30                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                     |
| 6 20IT<br>7 20IT<br>8 20ES<br>9 20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S2601A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                  | 30                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                     |
| 7         20IT           8         20ES           9         20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Introduction to Data Structures (not for IT students)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                  | 30                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                     |
| 8 20ES<br>9 20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Г3651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Machine Learning Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                | 15                                                                                                                                                                                                                                                                                                                                | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                      |
| 9 20SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Г3652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Full Stack Technologies Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                | 15                                                                                                                                                                                                                                                                                                                                | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S1652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Internet of Things Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                | 15                                                                                                                                                                                                                                                                                                                                | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                      |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A8652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mobile Application<br>Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                  |                                                                                                                                                                                                                                                                                                                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                      |
| Ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                          | 21.5                                                               | 195                                                                                                                                                                                                                                                                                                                               | 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 700                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ndustri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al/Research Internship(Mandatory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | veeks                                                                                                                                                                                                                                                                                                                                                                       | during                                                                                                                                                                                                                                                                                                                                                                      | Summer                                                             | vacation                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5601(Mi<br>or)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Software Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                  | 30                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                     |
| 20IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Software Architecture and Design Patterns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                  | 30                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                     |
| 12 20IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Г6601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Advanced JAVA and J2EE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                  | 30                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Г6601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Storage Area Networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                  | 30                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                     |
| 20IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Г6601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | High Performance Computing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                  | 30                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | User Centric Computing for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                  |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                         |
| NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | onors<br>OCs/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                  |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                         |

#### Credit CIE SEE Total Hours Per week SI. Course marks **Course Title** S Code No L Т Р С Professional Elective - III 20IT4701A 1. Wireless Sensor Networks 20IT4701B 2. Recommender Systems 20IT4701C 3. Elements of Software Project Management 20IT4701D 4. Deep Learning 20IT4701E 5. Mining Massive Datasets Professional Elective - IV 20IT4702A 1. Adhoc Networks 20IT4702B 2. Service Oriented Architecture 20IT4702C 3. Agile Software Development 20IT4702D 4. Natural Language Processing 20IT4702E 5. Big Data Analytics Professional Elective - V 1. Fundamentals of Block Chain 20IT4703A Technology 20IT4703B 2. Cloud Security and Privacy 20IT4703C 3. Software Testing Methodologies 20IT4703D 4. Soft Computing 20IT4703E 5. Data Science **Open Elective - III** 20IT2701A offered by IT to other Branches 1. Fundamentals of Data Science offered by other branches 20CE2701A Disaster Management and Preparedness 20EC2701A Research Methodology 20EC2701B E-waste Management 20EE2701A Non-Conventional Energy Resources 20ME2701A **Operation Research** 20ME2701B Management Information Systems 20CS2701A Java Programming (not for IT students)

#### **IV B.Tech I Semester**

|    |                 | Open Elective IV                                                                                                                      |    |   |   |        |     |     |     |
|----|-----------------|---------------------------------------------------------------------------------------------------------------------------------------|----|---|---|--------|-----|-----|-----|
|    | T               | Open Elective - IV                                                                                                                    |    | 1 | 1 |        | T   | r   |     |
|    | 20IT2702A       | offered by IT to other Branches<br>Fundamentals of Artificial<br>Intelligence                                                         | 3  | 0 | 0 | 3      | 30  | 70  | 100 |
|    | 20CE2702A       | offered by other branches<br>Environmental Management and<br>Audit                                                                    | 3  | 0 | 0 | 3      | 30  | 70  | 100 |
| 5  | 20EC2702A       | Telecommunications                                                                                                                    | 3  | 0 | 0 | 3      | 30  | 70  | 100 |
|    | 20EC2702B       | Satellite Communications                                                                                                              | 3  | 0 | 0 | 3      | 30  | 70  | 100 |
|    | 20EE2702A       | Utilization of Electrical Power                                                                                                       | 3  | 0 | 0 | 3      | 30  | 70  | 100 |
|    | 20ME2702A       | Mechatronics                                                                                                                          | 3  | 0 | 0 | 3      | 30  | 70  | 100 |
|    | 20ME2702B       | Robotics                                                                                                                              | 3  | 0 | 0 | 3      | 30  | 70  | 100 |
|    | 20CS2702A       | Database Management Systems<br>(not for IT students)                                                                                  | 3  | 0 | 0 | 3      | 30  | 70  | 100 |
|    |                 | Humanities and Social Sciences<br>Elective                                                                                            |    | • |   |        |     |     |     |
|    | 20HS7701A       | Managerial Economics and<br>Financial Analysis                                                                                        | 3  | 0 | 0 | 3      | 30  | 70  | 100 |
|    | 20HS7701B       | Human Resources Management                                                                                                            | 3  | 0 | 0 | 3      | 30  | 70  | 100 |
|    | 20HS7701C       | Entrepreneurship Management                                                                                                           | 3  | 0 | 0 | 3      | 30  | 70  | 100 |
| 6  | 20HS7701D       | Organizational Behavior                                                                                                               | 3  | 0 | 0 | 3      | 30  | 70  | 100 |
|    | 20HS7701E       | Construction Management                                                                                                               | 3  | 0 | 0 | 3      | 30  | 70  | 100 |
|    | 20HS7701F       | Industrial Engineering<br>Management                                                                                                  | 3  | 0 | 0 | 3      | 30  | 70  | 100 |
|    | 20HS7701G       | Project Management                                                                                                                    | 3  | 0 | 0 | 3      | 30  | 70  | 100 |
| 7  | 20SA8756        | Sales force Technologies                                                                                                              | 1  | 0 | 2 | 2      |     | 50  | 50  |
| 8  | 20IT3781B/<br>C | Industrial/Research Internship 4-6<br>weeks (Mandatory) after third<br>year (to be evaluated during this<br>7 <sup>th</sup> semester) | 0  | 0 | 0 | 3      |     | 50  | 50  |
|    |                 | Total                                                                                                                                 | 19 | 0 | 2 | 23     | 180 | 520 | 700 |
| 9  | 201T5701        | Cloud Computing                                                                                                                       | 4  | 0 | 0 | 4      | 30  | 70  | 100 |
| 10 | Minor<br>MOOC   | Data Structures DBMS                                                                                                                  |    |   |   | 2<br>2 |     |     |     |
|    | 20IT6701        | Applications of Deep Learning                                                                                                         | 4  | 0 | 0 | 4      | 30  | 70  | 100 |
|    | 20IT6701        | Information Retrieval Systems                                                                                                         | 4  | 0 | 0 | 4      | 30  | 70  | 100 |
| 11 | 20IT6701        | Perception and Computer Vision                                                                                                        | 4  | 0 | 0 | 4      | 30  | 70  | 100 |
|    | 20IT6701        | Multi Agent Systems                                                                                                                   | 4  | 0 | 0 | 4      | 30  | 70  | 100 |
|    | Honors          | Scalable Data Science                                                                                                                 |    |   |   | 2      |     |     |     |
| 12 | MOOC/NP<br>TEL  | Multicore Computer Architecture storage and Interconnects.                                                                            |    |   |   | 2      |     |     |     |

## IV B.Tech II Semester

| Sl.<br>No | Course<br>Code | Course Title | Η | ours F<br>week |   | Credits | CIE | SEE | Total<br>marks |
|-----------|----------------|--------------|---|----------------|---|---------|-----|-----|----------------|
| INU       | Coue           |              | L | Т              | Р | С       |     |     |                |
| 1         | 20IT3861       | Project Work | 0 | 0              | 0 | 8       | 60  | 140 | 200            |
|           |                |              |   |                |   |         |     |     |                |
|           |                | Total        | 0 | 0              | 0 | 8       | 60  | 140 | 200            |

| 00021                           | se Cod                                     | e 2                                                                   | 20HS11                                              | 101                                                            | Year                                                      | r                                             |                                                    | Ι                                                  |                                                 | Seme                  | ester                                      | Ι                       |         |              |
|---------------------------------|--------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------|-----------------------|--------------------------------------------|-------------------------|---------|--------------|
| Cours                           |                                            | ]                                                                     | Humani                                              | ities                                                          | Brar                                                      | nch                                           |                                                    | IT                                                 |                                                 | Cour                  | rse Type                                   | e T                     | heory   |              |
| <u>Categ</u><br>Credi           |                                            | 1                                                                     | 3                                                   |                                                                | L-T-                                                      | P                                             |                                                    | 3-0-0                                              |                                                 |                       | equisite                                   |                         | Jil     |              |
|                                 | nuous                                      |                                                                       | )                                                   |                                                                |                                                           |                                               |                                                    | 3-0-0                                              |                                                 |                       | -                                          |                         | 1111    |              |
| Interr                          |                                            |                                                                       | 30                                                  |                                                                |                                                           | ester <b>E</b>                                |                                                    | 70                                                 |                                                 | Tota                  | l Marks                                    | · 1                     | 00      |              |
|                                 | ation                                      |                                                                       |                                                     |                                                                | Eval                                                      | uation                                        | l                                                  | , 0                                                |                                                 |                       |                                            | -                       | 00      |              |
|                                 |                                            | I                                                                     |                                                     |                                                                |                                                           | Co                                            | ourse (                                            | Dutcon                                             | nes                                             |                       |                                            |                         |         |              |
| Upon                            | succes                                     | sful co                                                               | ompleti                                             | on of t                                                        | he cou                                                    | rse, the                                      | stude:                                             | nt will                                            | be able                                         | e to                  |                                            |                         |         |              |
| CO1                             | Unc                                        | lerstan                                                               | d the c                                             | oncept                                                         | of LSI                                                    | RW and                                        | d basic                                            | gramn                                              | nar (L2                                         | 2)                    |                                            |                         |         |              |
| CO2                             |                                            |                                                                       | ummar (                                             |                                                                |                                                           |                                               |                                                    |                                                    |                                                 |                       |                                            |                         |         |              |
| CO3                             |                                            |                                                                       | lifferent                                           |                                                                |                                                           |                                               |                                                    |                                                    |                                                 |                       |                                            |                         |         |              |
| CO4                             |                                            |                                                                       |                                                     |                                                                |                                                           |                                               |                                                    |                                                    |                                                 | urposes               | . (L4)                                     |                         |         |              |
| CO5                             |                                            |                                                                       | he text                                             |                                                                |                                                           |                                               |                                                    |                                                    | /                                               |                       |                                            | 0.00                    |         |              |
|                                 |                                            |                                                                       |                                                     |                                                                |                                                           |                                               | achie                                              | vemen                                              | t of Pr                                         | ogram                 | Outcom                                     | es &Str                 | ength o | f            |
| corre                           | PO1                                        |                                                                       | igh, 2:<br><b>PO3</b>                               |                                                                | ,                                                         |                                               | DO7                                                | PO8                                                | PO9                                             | <b>PO10</b>           | PO11                                       | PO12                    | PSO1    | PSO          |
| CO1                             | PUI                                        | PU2                                                                   | PO5                                                 | PU4                                                            | P05                                                       | PU0                                           | PU/                                                | PUð                                                | P09                                             | POIU                  | rom                                        | PO12                    | P501    | <b>PS</b> U  |
| CO1                             |                                            |                                                                       |                                                     |                                                                |                                                           |                                               |                                                    |                                                    |                                                 | 3                     |                                            | 3                       |         | 1            |
| $\frac{\text{CO2}}{\text{CO3}}$ |                                            |                                                                       |                                                     |                                                                |                                                           |                                               |                                                    |                                                    | 3                                               | 3                     |                                            | 3                       |         | 1            |
| CO4                             |                                            |                                                                       |                                                     |                                                                |                                                           |                                               |                                                    |                                                    | 5                                               | 3                     |                                            | 3                       |         | 1            |
| CO5                             |                                            |                                                                       |                                                     |                                                                |                                                           |                                               |                                                    |                                                    | 3                                               | 3                     |                                            | 3                       |         | 1            |
|                                 |                                            |                                                                       | 1                                                   | l                                                              |                                                           | I                                             | l                                                  |                                                    |                                                 |                       |                                            |                         |         | I            |
|                                 |                                            |                                                                       |                                                     |                                                                |                                                           |                                               | Sylla                                              | bus                                                |                                                 |                       |                                            |                         |         |              |
| Unit                            |                                            |                                                                       |                                                     |                                                                |                                                           | S                                             | Syllabu                                            | IS                                                 |                                                 |                       |                                            |                         |         | pped         |
| <u>No.</u>                      |                                            |                                                                       |                                                     |                                                                |                                                           |                                               |                                                    |                                                    |                                                 |                       | ng to lo                                   |                         | C       | O's          |
|                                 | spe<br>Re<br>top<br>par<br>Gr<br>Ve<br>sin | ecific p<br>ading<br>vic, su<br>cagraph<br>camma<br>rbs, N<br>gular a | bieces o<br>for Wi<br>mmariz<br>h.<br>ar and        | of infor<br>riting:<br>ting th<br>Vocab<br>Adjecti<br>ral; Bas | mation<br>Begin<br>e mair<br>ulary:<br>ives ar<br>sic sen | nings a<br>idea<br>Conte<br>nd Adv<br>tence s | and end<br>and/or<br>ent wor<br>verbs;<br>structur | lings o<br>proviet<br>ds and<br>Nouns:<br>res; Sin | f parag<br>ding a<br>functions<br>count<br>ople | graphs -<br>transiti  | Introduc<br>on to tl<br>s; Word<br>d uncou | ting the ne next forms: |         | 1,CO3<br>CO5 |
| 2                               | hel<br>Wi<br>Me<br>Gr                      | p to lin<br>riting:<br>chanic<br>amma<br>nsition                      | nk the i<br>Paragr<br>cs of wr<br>ar and<br>signals | deas in<br>aph wi<br>riting -<br><b>Vocab</b>                  | a para<br>riting (s<br>punctu<br>ulary:                   | ngraph<br>specific<br>ation,<br>Cohes         | togeth<br>c topic<br>capita<br>ive dev             | er.<br>s) using<br>l letters<br>vices -            | g suital                                        | ble cohe<br>, sign po | niques t<br>sive dev<br>osts and           |                         |         | 1,C02<br>CO5 |

| 4               | <b>Reading:</b> Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display |              |  |  |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|
|                 | complicated data. Writing: Information transfer; describe, compare, contrast,                                                                               | ~ ~ . ~ ~ ~  |  |  |  |  |
|                 | identify significance/trends based on information provided in                                                                                               | CO1,CO2,     |  |  |  |  |
|                 | figures/charts/graphs/tables.                                                                                                                               | CO4,CO5      |  |  |  |  |
|                 | <b>Grammar and Vocabulary:</b> Quantifying expressions - adjectives and adverbs; comparing and contrasting; Degrees of comparison; Use of antonyms          |              |  |  |  |  |
|                 | Correction of sentences                                                                                                                                     |              |  |  |  |  |
| 5               | Reading: Reading for comprehension.                                                                                                                         |              |  |  |  |  |
|                 | Writing: Writing structured essays on specific topics using suitable claims and                                                                             |              |  |  |  |  |
|                 | evidences                                                                                                                                                   |              |  |  |  |  |
|                 | Grammar and Vocabulary: Editing short texts – Identifying and correcting                                                                                    | CO1,CO3,     |  |  |  |  |
|                 | common errors in grammar and usage (Articles, Prepositions, Tenses, Subject-                                                                                | CO5          |  |  |  |  |
|                 | verb agreement) Prefixes/suffixes                                                                                                                           |              |  |  |  |  |
|                 | Learning Resources                                                                                                                                          |              |  |  |  |  |
| Text B          | ő                                                                                                                                                           |              |  |  |  |  |
| 1. ]            | Prabhavathy Y, M.Lalitha Sridevi, Ruth Z. Hauzel, "English all Round 1: Communic                                                                            | ation skills |  |  |  |  |
|                 | for Undergraduate students", Orient Black Swan, 2019                                                                                                        |              |  |  |  |  |
| Reference Books |                                                                                                                                                             |              |  |  |  |  |
|                 | Bailey, Stephen. Academic writing: A handbook for international students. Routledg                                                                          |              |  |  |  |  |
|                 | Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educa                                                                                 | tional.      |  |  |  |  |
|                 | Hewings, Martin. Cambridge Academic English (B2). CUP, 2012                                                                                                 |              |  |  |  |  |
|                 | urces & other digital material                                                                                                                              |              |  |  |  |  |
|                 | mar/Listening/Writing:                                                                                                                                      |              |  |  |  |  |
| U               | uage.com; http://www.5minuteenglish.com/<br>/www.englishpractice.com/                                                                                       |              |  |  |  |  |
| -               | mar/Vocabulary:                                                                                                                                             |              |  |  |  |  |
|                 | h Language Learning Online; http://www.bbc.co.uk/learningenglish/                                                                                           |              |  |  |  |  |
|                 | www.better-english.com/; http://www.nonstopenglish.com/                                                                                                     |              |  |  |  |  |
| -               | /www.vocabulary.com/; BBC Vocabulary Games                                                                                                                  |              |  |  |  |  |
| -               | ice Vocabulary Game                                                                                                                                         |              |  |  |  |  |
| Readi           | ng:                                                                                                                                                         |              |  |  |  |  |
| https:/         | /www.usingenglish.com/comprehension/; https://www.englishclub.com/reading/sho                                                                               | rt-          |  |  |  |  |
| stories         |                                                                                                                                                             |              |  |  |  |  |
| All Sk          |                                                                                                                                                             |              |  |  |  |  |
| -               | /www.englishclub.com/; http://www.world-english.org/                                                                                                        |              |  |  |  |  |
|                 | earnenglish.britishcouncil.org/                                                                                                                             |              |  |  |  |  |
|                 | e Dictionaries:<br>ridge dictionary online; MacMillan dictionary; Oxford learner's dictionaries                                                             |              |  |  |  |  |
| Camo            | nuge dictionary online, macivinian dictionary, Oxford learner's dictionaries                                                                                |              |  |  |  |  |

## Calculus and Linear Algebra

| Cour                                              | seCod                                                          | e 2                                                                                                                                 | 20BS110                                                                                                              | 01                                                                                                    | Year                                                                                                                   | ſ                                                                                                 |                                                                                                        | Ι                                                                                    |                                                                                               | Sem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ester                                                                   | Ι                                                              |                                                                                      |                                                 |  |  |  |  |  |
|---------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|--|--|
| Cours                                             | se                                                             |                                                                                                                                     | Basic Sc                                                                                                             | ience                                                                                                 | Brar                                                                                                                   | nch                                                                                               |                                                                                                        | IT                                                                                   |                                                                                               | Соц                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rse Type                                                                | <u>۲</u>                                                       | Theory                                                                               |                                                 |  |  |  |  |  |
| Categ                                             |                                                                | -                                                                                                                                   |                                                                                                                      | ienee                                                                                                 | Diai                                                                                                                   |                                                                                                   |                                                                                                        |                                                                                      |                                                                                               | cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |                                                                | licory                                                                               |                                                 |  |  |  |  |  |
| Credi                                             |                                                                |                                                                                                                                     | 3                                                                                                                    |                                                                                                       | L-T-                                                                                                                   | ·P                                                                                                |                                                                                                        | 3-0-0                                                                                |                                                                                               | Prer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | equisite                                                                | s N                                                            | Vil                                                                                  |                                                 |  |  |  |  |  |
|                                                   | inuous                                                         |                                                                                                                                     | 30                                                                                                                   |                                                                                                       |                                                                                                                        | ester E                                                                                           | Ind                                                                                                    | 70                                                                                   |                                                                                               | Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |                                                                | .00                                                                                  |                                                 |  |  |  |  |  |
| Interi                                            |                                                                |                                                                                                                                     |                                                                                                                      |                                                                                                       |                                                                                                                        | uation                                                                                            |                                                                                                        |                                                                                      |                                                                                               | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |                                                                |                                                                                      |                                                 |  |  |  |  |  |
| Evalu                                             | ation                                                          | ion Course Outcomes                                                                                                                 |                                                                                                                      |                                                                                                       |                                                                                                                        |                                                                                                   |                                                                                                        |                                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                |                                                                                      |                                                 |  |  |  |  |  |
|                                                   |                                                                |                                                                                                                                     |                                                                                                                      | · · · ·                                                                                               |                                                                                                                        |                                                                                                   |                                                                                                        |                                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                |                                                                                      |                                                 |  |  |  |  |  |
|                                                   |                                                                |                                                                                                                                     | mpletio                                                                                                              |                                                                                                       |                                                                                                                        |                                                                                                   |                                                                                                        |                                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                |                                                                                      |                                                 |  |  |  |  |  |
| CO1                                               |                                                                |                                                                                                                                     | <b>d</b> the ba                                                                                                      |                                                                                                       | 1                                                                                                                      |                                                                                                   |                                                                                                        |                                                                                      | 0                                                                                             | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |                                                                |                                                                                      |                                                 |  |  |  |  |  |
| CO2                                               |                                                                | -                                                                                                                                   |                                                                                                                      |                                                                                                       | to obt                                                                                                                 | ain the                                                                                           | soluti                                                                                                 | on of s                                                                              | ystem                                                                                         | of linea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r equatio                                                               | ons and                                                        | eigen                                                                                |                                                 |  |  |  |  |  |
|                                                   |                                                                |                                                                                                                                     | a matrix.                                                                                                            |                                                                                                       |                                                                                                                        |                                                                                                   |                                                                                                        |                                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                |                                                                                      |                                                 |  |  |  |  |  |
| CO3                                               |                                                                |                                                                                                                                     |                                                                                                                      |                                                                                                       |                                                                                                                        |                                                                                                   |                                                                                                        |                                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | extremu                                                                 | m of a                                                         | given fu                                                                             | Inctio                                          |  |  |  |  |  |
|                                                   |                                                                |                                                                                                                                     | ed by pla                                                                                                            |                                                                                                       |                                                                                                                        |                                                                                                   |                                                                                                        |                                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                |                                                                                      |                                                 |  |  |  |  |  |
| CO4                                               |                                                                |                                                                                                                                     |                                                                                                                      |                                                                                                       |                                                                                                                        |                                                                                                   |                                                                                                        |                                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                | forms. (I                                                                            |                                                 |  |  |  |  |  |
| CO5                                               |                                                                |                                                                                                                                     |                                                                                                                      |                                                                                                       |                                                                                                                        | ions us                                                                                           | sing m                                                                                                 | ean val                                                                              | ue theo                                                                                       | orems, ez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | xtremum                                                                 | of the                                                         | given fu                                                                             | nctior                                          |  |  |  |  |  |
| 204                                               |                                                                |                                                                                                                                     | of integra                                                                                                           |                                                                                                       |                                                                                                                        | -1 1;                                                                                             | :: al                                                                                                  | 1 tr                                                                                 | -1 - ori                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · 1 · · · · · ·                                                         | ·                                                              |                                                                                      | 4(T 2                                           |  |  |  |  |  |
| $\frac{CO6}{Cant}$                                |                                                                |                                                                                                                                     |                                                                                                                      |                                                                                                       |                                                                                                                        |                                                                                                   |                                                                                                        |                                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                | it a repo                                                                            |                                                 |  |  |  |  |  |
|                                                   |                                                                |                                                                                                                                     |                                                                                                                      |                                                                                                       |                                                                                                                        |                                                                                                   | achie                                                                                                  | vemen                                                                                | t of Pr                                                                                       | ogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Outcom                                                                  | es & Su                                                        | rength o                                                                             | f                                               |  |  |  |  |  |
| COLL                                              | PO1                                                            |                                                                                                                                     | igh, 2: N<br>PO3                                                                                                     |                                                                                                       |                                                                                                                        |                                                                                                   | PO7                                                                                                    | PO8                                                                                  | PO9                                                                                           | PO10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PO11                                                                    | PO12                                                           | PSO1                                                                                 | PSC                                             |  |  |  |  |  |
| CO1                                               | rui                                                            | r02                                                                                                                                 | PUJ .                                                                                                                | P04                                                                                                   | PUJ                                                                                                                    | ruu                                                                                               | ru,                                                                                                    | ruo                                                                                  | r02                                                                                           | PUIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PULL                                                                    | ru12                                                           | 1                                                                                    | r su                                            |  |  |  |  |  |
|                                                   | 3                                                              |                                                                                                                                     |                                                                                                                      |                                                                                                       |                                                                                                                        |                                                                                                   |                                                                                                        |                                                                                      | 2                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ļ                                                                       |                                                                | 1                                                                                    | ┨────                                           |  |  |  |  |  |
| $CO^{2}$                                          |                                                                |                                                                                                                                     |                                                                                                                      |                                                                                                       |                                                                                                                        |                                                                                                   |                                                                                                        |                                                                                      | 4                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                | 1                                                                                    |                                                 |  |  |  |  |  |
| $\frac{\text{CO2}}{\text{CO3}}$                   |                                                                | ──                                                                                                                                  | ├                                                                                                                    |                                                                                                       |                                                                                                                        |                                                                                                   |                                                                                                        |                                                                                      | 2                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                | 1                                                                                    | 1                                               |  |  |  |  |  |
| CO3                                               | 3                                                              | 3                                                                                                                                   |                                                                                                                      |                                                                                                       |                                                                                                                        |                                                                                                   |                                                                                                        |                                                                                      | 2                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                | 1                                                                                    |                                                 |  |  |  |  |  |
| CO3<br>CO4                                        |                                                                | 3                                                                                                                                   |                                                                                                                      |                                                                                                       |                                                                                                                        |                                                                                                   |                                                                                                        |                                                                                      | 2                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                | 1                                                                                    |                                                 |  |  |  |  |  |
| CO3<br>CO4<br>CO5                                 | 3                                                              | 3 3                                                                                                                                 |                                                                                                                      |                                                                                                       |                                                                                                                        |                                                                                                   |                                                                                                        |                                                                                      |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                | 1<br>1                                                                               |                                                 |  |  |  |  |  |
| CO3                                               |                                                                |                                                                                                                                     |                                                                                                                      |                                                                                                       |                                                                                                                        |                                                                                                   |                                                                                                        |                                                                                      | 2                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                                                                | 1                                                                                    |                                                 |  |  |  |  |  |
| CO3<br>CO4<br>CO5                                 | 3                                                              |                                                                                                                                     |                                                                                                                      |                                                                                                       |                                                                                                                        |                                                                                                   | Svll                                                                                                   | ahus                                                                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                | 1<br>1                                                                               |                                                 |  |  |  |  |  |
| CO3<br>CO4<br>CO5<br>CO6                          | 3                                                              |                                                                                                                                     |                                                                                                                      |                                                                                                       |                                                                                                                        |                                                                                                   | •                                                                                                      | abus<br>us                                                                           |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                                                                | 1<br>1<br>1                                                                          |                                                 |  |  |  |  |  |
| CO3<br>CO4<br>CO5<br>CO6<br>Unit N                | 3<br>3<br>No.                                                  | 3                                                                                                                                   |                                                                                                                      |                                                                                                       | tem 0                                                                                                                  |                                                                                                   | Syllab                                                                                                 | us                                                                                   | 2                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         | n form.                                                        | 1<br>1<br>1<br>Марре                                                                 |                                                 |  |  |  |  |  |
| CO3<br>CO4<br>CO5<br>CO6                          | 3<br>3<br>No.                                                  | 3<br>Matrice                                                                                                                        |                                                                                                                      | -                                                                                                     |                                                                                                                        | f Equa                                                                                            | Syllab<br>ations:                                                                                      | us<br>: Rank                                                                         | 2<br>of a m                                                                                   | 2<br>natrix by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y Echelo                                                                |                                                                | 1<br>1<br>1<br>Марре<br>СО1,                                                         | ,CO2,                                           |  |  |  |  |  |
| CO3<br>CO4<br>CO5<br>CO6<br>Unit N                | 3<br>3<br>No.                                                  | 3<br>Matrice                                                                                                                        | form,                                                                                                                | PAQ                                                                                                   | form                                                                                                                   | <b>f Equa</b><br>1, solv                                                                          | Syllab<br>ations:                                                                                      | us<br>: Rank                                                                         | 2<br>of a m                                                                                   | 2<br>natrix by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y Echelo<br>eous an                                                     |                                                                | 1<br>1<br>1<br>Марре<br>СО1,                                                         |                                                 |  |  |  |  |  |
| CO3<br>CO4<br>CO5<br>CO6<br>Unit N                | 3<br>3<br>No.                                                  | 3<br>Matrice<br>Normal<br>nomoge                                                                                                    | form,<br>eneous lin                                                                                                  | PAQ<br>inear e                                                                                        | form<br>quatio                                                                                                         | <b>f Equa</b><br>n, solv<br>ons.                                                                  | Syllab<br>ations:<br>ving                                                                              | us<br>Rank<br>system                                                                 | 2<br>of a m<br>of ho                                                                          | 2<br>natrix by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eous an                                                                 | d non-                                                         | 1<br>1<br>1<br>Mappe<br>CO1,<br>CO4,                                                 | ,CO2,                                           |  |  |  |  |  |
| CO3<br>CO4<br>CO5<br>CO6                          | 3<br>3<br>No.<br>No.                                           | 3<br>Matrice<br>Normal<br>nomoge<br>Eigen                                                                                           | form,<br>eneous lin<br>values a                                                                                      | PAQ<br>inear e<br>and E                                                                               | form<br>quatio<br>Ligen                                                                                                | f Equa<br>n, solv<br>ons.<br>Vector                                                               | Syllab<br>ations:<br>ving s<br>rs: Ei                                                                  | us<br>: Rank<br>system<br>gen va                                                     | 2<br>of a m<br>of hc<br>lues, E                                                               | 2<br>natrix by<br>omogene<br>Eigen ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         | d non-                                                         | 1<br>1<br>1<br>Mappe<br>CO1,<br>CO4,                                                 | ,CO2,<br>,CO6                                   |  |  |  |  |  |
| CO3<br>CO4<br>CO5<br>CO6                          | 3<br>3<br>No.<br>N<br>H<br>I<br>F                              | 3<br>Matrice<br>Normal<br>nomoge<br>Eigen v                                                                                         | form,<br>eneous lin<br>values a<br>es, Cay                                                                           | PAQ<br>inear e<br>and E<br>vley-Ha                                                                    | form<br>quatio<br>C <b>igen</b><br>amilto                                                                              | f Equa<br>n, solv<br>ns.<br>Vector<br>n theo                                                      | Syllab<br>ations:<br>ving s<br>rs: Ei<br>orem (v                                                       | us<br>Rank<br>system<br>gen va<br>without                                            | 2<br>of a m<br>of hc<br>lues, E                                                               | 2<br>natrix by<br>pomogene<br>Eigen ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eous and                                                                | d non-<br>nd their<br>rse and                                  | 1<br>1<br>1<br>Mappe<br>CO1,<br>CO4,                                                 | ,CO2,<br>,CO6                                   |  |  |  |  |  |
| CO3<br>CO4<br>CO5<br>CO6                          | 3<br>3<br>No.<br>N<br>H<br>H<br>F                              | 3<br>Matrice<br>Normal<br>nomoge<br>Eigen v<br>properti                                                                             | form,<br>eneous lin<br>values a<br>es, Cay                                                                           | PAQ<br>inear e<br>and E<br>vley-Ha<br>rix by                                                          | form<br>equatio<br><b>Ligen</b><br>amilto<br>Cayle                                                                     | f Equa<br>n, solv<br>ns.<br>Vecto<br>n theo<br>ey-Han                                             | Syllab<br>ations:<br>ving s<br>rs: Ei<br>orem (v<br>niltont                                            | us<br>Rank<br>system<br>gen va<br>without<br>heoren                                  | 2<br>of a m<br>of ho<br>lues, E<br>t proof<br>n, diago                                        | 2<br>natrix by<br>pomogene<br>Eigen ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eous an<br>ectors ar<br>ng inver                                        | d non-<br>nd their<br>rse and                                  | 1<br>1<br>1<br>Mappe<br>CO1,<br>CO4,                                                 | ,CO2,<br>,CO6                                   |  |  |  |  |  |
| CO3<br>CO4<br>CO5<br>CO6<br>Unit N<br>1           | 3<br>3<br>No.<br>N<br>H<br>H<br>F                              | 3<br>Matrice<br>Normal<br>nomoge<br>Eigen v<br>properti                                                                             | form,<br>eneous lin<br>values a<br>es, Cay<br>of a mat                                                               | PAQ<br>inear e<br>and E<br>vley-Ha<br>rix by                                                          | form<br>equatio<br><b>Ligen</b><br>amilto<br>Cayle                                                                     | f Equa<br>n, solv<br>ns.<br>Vecto<br>n theo<br>ey-Han                                             | Syllab<br>ations:<br>ving s<br>rs: Ei<br>orem (v<br>niltont                                            | us<br>Rank<br>system<br>gen va<br>without<br>heoren                                  | 2<br>of a m<br>of ho<br>lues, E<br>t proof<br>n, diago                                        | 2<br>natrix by<br>pomogene<br>Eigen ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eous an<br>ectors ar<br>ng inver                                        | d non-<br>nd their<br>rse and                                  | 1<br>1<br>1<br>Mappe<br>CO1,<br>CO4,                                                 | ,CO2,<br>,CO6                                   |  |  |  |  |  |
| CO3<br>CO4<br>CO5<br>CO6                          | 3<br>3<br>No.<br>N<br>H<br>H<br>F<br>F<br>C                    | 3<br>Vatrice<br>Normal<br>Domoge<br>Eigen v<br>Doroperti-<br>Dower o<br>Juadrati                                                    | form,<br>eneous lin<br>values a<br>es, Cay<br>of a matri<br>ic forms<br>Value T                                      | PAQ<br>inear e<br>and E<br>vley-Ha<br>rix by<br>and na<br>heore                                       | form<br>quatio<br><b>Cigen</b><br>amilto<br>Cayle<br>ature o<br><b>ms:</b> R                                           | f Equa<br>n, solvens.<br>Vector<br>n theo<br>ey-Ham<br>of the c                                   | Syllab<br>ations:<br>ving s<br>rs: Ei<br>orem (v<br>nilton t<br>juadra                                 | us<br>Rank<br>system<br>gen va<br>without<br>heoren<br>tic form<br>em, La            | 2<br>of a m<br>of ho<br>lues, E<br>t proof<br>n, diagons.<br>grange                           | 2<br>natrix by<br>pmogene<br>Bigen ve<br>C), findit<br>onalizati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eous an<br>ectors ar<br>ng inver<br>ion of a<br>value th                | d non-<br>nd their<br>rse and<br>matrix,<br>heorem,            | 1<br>1<br>1<br>CO1,<br>CO4,<br>CO4,<br>CO4,                                          | ,CO2,<br>,CO6<br>,CO2,<br>,CO6                  |  |  |  |  |  |
| CO3<br>CO4<br>CO5<br>CO6<br>Unit N<br>1           | 3<br>3<br>No.<br>No.<br>I<br>F<br>F<br>C<br>N<br>C             | 3<br>Matrice<br>Normal<br>nomoge<br>Eigen v<br>propertio<br>power of<br>quadrati<br>Mean V<br>Cauchy                                | form,<br>eneous lin<br>values a<br>es, Cay<br>of a math<br>ic forms<br>Value Th<br>'s mean                           | PAQ<br>near e<br>and E<br>vley-Ha<br>rix by<br>and n<br>heorem<br>n value                             | form<br>quatio<br>Cigen<br>amilto<br>Cayle<br>ature c<br>ms: R<br>ue theo                                              | f Equa<br>n, solvens.<br>Vector<br>n theo<br>ey-Han<br>of the construction<br>of the construction | Syllab<br>ations:<br>ving s<br>rs: Ei<br>orem (v<br>nilton t<br>juadra                                 | us<br>Rank<br>system<br>gen va<br>without<br>heoren<br>tic form<br>em, La            | 2<br>of a m<br>of ho<br>lues, E<br>t proof<br>n, diagons.<br>grange                           | 2<br>natrix by<br>pmogene<br>Bigen ve<br>C), findit<br>onalizati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eous an<br>ectors ar<br>ng inver<br>ion of a                            | d non-<br>nd their<br>rse and<br>matrix,<br>heorem,            | 1<br>1<br>1<br>CO1,<br>CO4,<br>CO4,<br>CO4,<br>CO4,<br>CO1,                          | ,CO2,<br>,CO6<br>,CO2,<br>,CO6<br>,CO3,         |  |  |  |  |  |
| CO3<br>CO4<br>CO5<br>CO6<br>Unit N<br>1           | 3<br>3<br>No.<br>No.<br>I<br>F<br>F<br>C<br>N<br>C             | 3<br>Matrice<br>Normal<br>nomoge<br>Eigen v<br>propertio<br>power of<br>quadrati<br>Mean V<br>Cauchy                                | form,<br>eneous lin<br>values a<br>es, Cay<br>of a matri<br>ic forms<br>Value T                                      | PAQ<br>near e<br>and E<br>vley-Ha<br>rix by<br>and n<br>heorem<br>n value                             | form<br>quatio<br>Cigen<br>amilto<br>Cayle<br>ature c<br>ms: R<br>ue theo                                              | f Equa<br>n, solvens.<br>Vector<br>n theo<br>ey-Han<br>of the construction<br>of the construction | Syllab<br>ations:<br>ving s<br>rs: Ei<br>orem (v<br>nilton t<br>juadra                                 | us<br>Rank<br>system<br>gen va<br>without<br>heoren<br>tic form<br>em, La            | 2<br>of a m<br>of ho<br>lues, E<br>t proof<br>n, diagons.<br>grange                           | 2<br>natrix by<br>pmogene<br>Bigen ve<br>C), findit<br>onalizati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eous an<br>ectors ar<br>ng inver<br>ion of a<br>value th                | d non-<br>nd their<br>rse and<br>matrix,<br>heorem,            | 1<br>1<br>1<br>CO1,<br>CO4,<br>CO4,<br>CO4,<br>CO4,<br>CO1,                          | ,CO2,<br>,CO6<br>,CO2,<br>,CO6                  |  |  |  |  |  |
| CO3<br>CO4<br>CO5<br>CO6<br>Unit N<br>1<br>2<br>3 | 3<br>3<br>No.<br>No.<br>N<br>H<br>H<br>F<br>F<br>C<br>C        | 3<br>Matrice<br>Normal<br>nomoge<br>Eigen v<br>properti<br>power c<br>juadrati<br>Mean V<br>Cauchy<br>emaind                        | form,<br>eneous lin<br>values a<br>es, Cay<br>of a matri<br>ic forms<br>Value Th<br>'s mean<br>lers (with            | PAQ<br>inear e<br>and E<br>dey-Ha<br>rix by<br>and n<br>heore<br>h valu<br>hout p                     | form<br>equatio<br><b>Sigen</b><br>amilto<br>Cayle<br>ature of<br><b>ms:</b> R<br>ature theo<br>proofs)                | f Equa<br>n, solvens.<br>Vector<br>n theo<br>ey-Ham<br>of the c<br>colle's<br>orem,               | Syllab<br>ations:<br>ving s<br>rs: Ei<br>orem (v<br>nilton t<br>juadrat<br>Theore<br>Taylon            | us<br>Rank<br>system<br>gen va<br>without<br>heoren<br>tic forn<br>em, Lag           | 2<br>of a m<br>of ho<br>lues, E<br>t proof<br>n, diagons.<br>grange<br>I Macl                 | 2<br>natrix by<br>pmogene<br>C), finditionalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizationalizat | eous an<br>ectors ar<br>ng inver<br>ion of a<br>value theoren           | d non-<br>nd their<br>rse and<br>matrix,<br>heorem,<br>ns with | 1<br>1<br>1<br>CO1,<br>CO4,<br>CO4,<br>CO4,<br>CO4,<br>CO4,<br>CO4,<br>CO4,<br>CO4   | ,CO2<br>,CO6<br>,CO2<br>,CO6                    |  |  |  |  |  |
| CO3<br>CO4<br>CO5<br>CO6<br>Unit N<br>1           | 3<br>3<br>No.<br>No.<br>No.<br>No.<br>No.<br>No.<br>No.<br>No. | 3<br>Matrice<br>Normal<br>Domoge<br>Eigen V<br>Doropertio<br>Dower of<br>Juadrati<br>Mean V<br>Cauchy<br>remaind                    | form,<br>eneous lin<br>values a<br>es, Cay<br>of a matric<br>forms<br>Value Th<br>'s mean<br>lers (with<br>ariable ( | PAQ<br>inear e<br>and E<br>vley-Ha<br>rix by<br>and n<br>hout p<br>hout p<br>Calcul                   | form<br>equatio<br>Cigen<br>amilto<br>Cayle<br>ature of<br>ms: R<br>ms: R<br>ne theo<br>proofs)<br>lus: Fu             | f Equa<br>n, solvens.<br>Vector<br>n theo<br>ey-Han<br>of the c<br>olle's<br>orem,                | Syllab<br>ations:<br>ving s<br>rs: Ei<br>prem (v<br>niltont<br>juadrat<br>Theore<br>Taylor<br>as of se | us<br>Rank<br>system<br>gen va<br>without<br>heoren<br>tic form<br>em, La<br>c's and | 2<br>of a m<br>of hc<br>lues, E<br>t proof<br>n, diago<br>ns.<br>grange<br>l Macl<br>wariable | 2<br>natrix by<br>omogene<br>Eigen ve<br>C), findi<br>onalizati<br>'s mean<br>aurin's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ectors and<br>ectors aring investion of a<br>value theorem<br>bian, Fur | d non-<br>nd their<br>rse and<br>matrix,<br>heorem,<br>ns with | 1<br>1<br>1<br>Mappe<br>CO1,<br>CO4,<br>CO4,<br>CO4,<br>CO4,<br>CO1,<br>CO5,         | ,CO2,<br>,CO6<br>,CO2,<br>,CO6<br>,CO3,<br>,CO6 |  |  |  |  |  |
| CO3<br>CO4<br>CO5<br>CO6<br>Unit N<br>1<br>2<br>3 | 3<br>3<br>No.<br>No.<br>No.<br>No.<br>No.<br>No.<br>No.<br>No. | 3<br>Matrice<br>Normal<br>nomoge<br>Eigen v<br>properti-<br>power o<br>juadrati<br>Mean V<br>Cauchy<br>emaind<br>Multiva<br>lepende | form,<br>eneous lin<br>values a<br>es, Cay<br>of a matric<br>forms<br>Value Th<br>'s mean<br>lers (with<br>ariable ( | PAQ<br>inear e<br>and E<br>and E<br>/ley-Ha<br>rix by<br>and n<br>hout p<br>hout p<br>Calcul<br>axima | form<br>aquatio<br><b>Cigen</b><br>amilto<br>Cayle<br>ature of<br><b>ms:</b> R<br>ie theo<br>proofs)<br><b>lus:</b> Fu | f Equa<br>n, solvens.<br>Vector<br>n theo<br>ey-Han<br>of the c<br>olle's<br>orem,                | Syllab<br>ations:<br>ving s<br>rs: Ei<br>prem (v<br>niltont<br>juadrat<br>Theore<br>Taylor<br>as of se | us<br>Rank<br>system<br>gen va<br>without<br>heoren<br>tic form<br>em, La<br>c's and | 2<br>of a m<br>of hc<br>lues, E<br>t proof<br>n, diago<br>ns.<br>grange<br>l Macl<br>wariable | 2<br>natrix by<br>omogene<br>Eigen ve<br>C), findi<br>onalizati<br>'s mean<br>aurin's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eous an<br>ectors ar<br>ng inver<br>ion of a<br>value theoren           | d non-<br>nd their<br>rse and<br>matrix,<br>heorem,<br>ns with | 1<br>1<br>1<br>Mappe<br>CO1,<br>CO4,<br>CO4,<br>CO4,<br>CO4,<br>CO1,<br>CO5,<br>CO1, | ,CO2,<br>,CO6<br>,CO2,<br>,CO6<br>,CO3,<br>,CO6 |  |  |  |  |  |

| 5           | <ul> <li>Multiple Integrals: Double integrals, change of order of integration, double integration in polar coordinates, Triple integrals, change of variables between Cartesian, cylindrical and spherical polar co-ordinates, volume as triple integral.</li> <li>Application- Areas enclosed by plane curves.</li> </ul> | CO1,CO3,<br>CO5,CO6 |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|             | Learning Resources                                                                                                                                                                                                                                                                                                         |                     |
| Text Bo     | ooks                                                                                                                                                                                                                                                                                                                       |                     |
| 1. ]        | B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.                                                                                                                                                                                                                                                |                     |
| 2. ]        | Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 200                                                                                                                                                                                                                                              | 6                   |
| Referer     | nce Books                                                                                                                                                                                                                                                                                                                  |                     |
|             | N.P. Bali and Manish Goyal, A Text book of Engineering Mathematics, Laxmi 2008.                                                                                                                                                                                                                                            | Publications        |
| e- Reso     | urces & other digital material                                                                                                                                                                                                                                                                                             |                     |
|             | ttps://nptel.ac.in/courses/111/108/111108157/                                                                                                                                                                                                                                                                              |                     |
| 2 h         | ttps://www.nptel.ac.in/courses/111/104/111104125/                                                                                                                                                                                                                                                                          |                     |
|             |                                                                                                                                                                                                                                                                                                                            |                     |
| 3. <u>h</u> | <u>ttps://youtu.be/xDSejIvZmg4</u><br>ttp://202.53.81.118/ -> PVPSIT FED-Moodle                                                                                                                                                                                                                                            |                     |

## **Engineering Physics**

| Cours<br>Code                          |             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )BS110                                                                                                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yea                                                                                                                                                | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                     | Ι                                                                                                                   |                                                                                                                  | Sem                                                                                           | ester                                                                                    | Ι                                                                          |                          |                                   |
|----------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------|-----------------------------------|
| Cours                                  |             | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | asic Sci                                                                                                                                             | ience                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Brai                                                                                                                                               | nch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                     | IT                                                                                                                  |                                                                                                                  | Cou                                                                                           | rse Type                                                                                 | еЛ                                                                         | Theory                   |                                   |
| Categ                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                     |                                                                                                                  |                                                                                               |                                                                                          |                                                                            | -                        |                                   |
| Credi                                  |             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L-T-                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                     | 3-0-0                                                                                                               |                                                                                                                  |                                                                                               | equisite                                                                                 |                                                                            | Jil                      |                                   |
|                                        | inuous      | s 3(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    | ester I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                     | 70                                                                                                                  |                                                                                                                  | Tota                                                                                          |                                                                                          | 1                                                                          | 00                       |                                   |
| Internal Evaluation Marks              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                     |                                                                                                                  |                                                                                               |                                                                                          |                                                                            |                          |                                   |
| Evaluation                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                     |                                                                                                                  |                                                                                               |                                                                                          |                                                                            |                          |                                   |
|                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    | Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ourse (                                                                                                                             | Outcon                                                                                                              | nes                                                                                                              |                                                                                               |                                                                                          |                                                                            |                          |                                   |
| Upon                                   | succe       | ssful cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mpletic                                                                                                                                              | on of tl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | he cou                                                                                                                                             | rse, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | stude                                                                                                                               | nt will l                                                                                                           | be able                                                                                                          | to                                                                                            |                                                                                          |                                                                            |                          |                                   |
| CO1                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , mag                                                                                                                                              | netic,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | optical                                                                                                                             | l comm                                                                                                              | nunicat                                                                                                          | ion and                                                                                       | semico                                                                                   | onducto                                                                    | or princip               | oles ir                           |
|                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | spects. (                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                     | <u> </u>                                                                                                            |                                                                                                                  |                                                                                               | <u> </u>                                                                                 |                                                                            |                          |                                   |
| CO2                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                     |                                                                                                                  |                                                                                               | etronic d                                                                                |                                                                            |                          |                                   |
| CO3                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                     |                                                                                                                  |                                                                                               | ng appli                                                                                 |                                                                            | , (L3)                   |                                   |
| CO4                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                     |                                                                                                                  |                                                                                               | neters. (I                                                                               |                                                                            |                          |                                   |
| CO5                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                     |                                                                                                                  |                                                                                               | onducto                                                                                  |                                                                            |                          |                                   |
| CO6                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                     |                                                                                                                  |                                                                                               |                                                                                          |                                                                            | olids, la                | WS O                              |
| Canta                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                     |                                                                                                                  |                                                                                               | t a repor                                                                                |                                                                            |                          | •                                 |
|                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | acmev                                                                                                                               | /emem                                                                                                               | OI PTU                                                                                                           | gram U                                                                                        | utcome                                                                                   | s asu                                                                      | rength of                |                                   |
| AArro                                  |             | <u>" / ⊀'H1(</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rn n n                                                                                                                                               | "oduum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ח ויי י                                                                                                                                            | **71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                     |                                                                                                                     |                                                                                                                  |                                                                                               |                                                                                          |                                                                            |                          |                                   |
| corre                                  | ation       | s (3:Hig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gn, 2: N                                                                                                                                             | lediun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1, 1:L0                                                                                                                                            | W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |                                                                                                                     |                                                                                                                  |                                                                                               |                                                                                          |                                                                            |                          |                                   |
| corre                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PO7                                                                                                                                 | PO8                                                                                                                 | PO9                                                                                                              | PO10                                                                                          | PO11                                                                                     | PO12                                                                       | PSO1                     | PSO                               |
|                                        | PO1         | s (3:H1g<br>PO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n, 1:Lo<br>PO5                                                                                                                                     | PO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PO7                                                                                                                                 | PO8                                                                                                                 | PO9                                                                                                              | PO10                                                                                          | PO11                                                                                     | PO12                                                                       | PSO1                     | PSO                               |
| CO1<br>CO2                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PO7                                                                                                                                 | PO8                                                                                                                 | PO9                                                                                                              | PO10                                                                                          | PO11                                                                                     | PO12                                                                       | PSO1                     | PSO                               |
| CO1                                    | PO1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PO7                                                                                                                                 | PO8                                                                                                                 | PO9                                                                                                              | PO10                                                                                          | PO11                                                                                     | PO12                                                                       | PSO1                     | PSO                               |
| CO1<br>CO2                             | PO1<br>3    | PO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PO7                                                                                                                                 | PO8                                                                                                                 | PO9                                                                                                              | PO10                                                                                          | PO11                                                                                     | PO12                                                                       | PSO1                     | PSO                               |
| CO1<br>CO2<br>CO3                      | PO1<br>3    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PO7                                                                                                                                 | PO8                                                                                                                 | PO9                                                                                                              | PO10                                                                                          | PO11                                                                                     | PO12                                                                       | PSO1                     | PSO                               |
| CO1<br>CO2<br>CO3<br>CO4               | PO1<br>3    | PO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PO7                                                                                                                                 | PO8                                                                                                                 | PO9                                                                                                              | PO10                                                                                          | PO11                                                                                     | PO12                                                                       | PSO1                     | PSO                               |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5        | PO1<br>3    | PO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PO7                                                                                                                                 | PO8                                                                                                                 |                                                                                                                  |                                                                                               | PO11                                                                                     |                                                                            | PSO1                     | PSO                               |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5        | PO1<br>3    | PO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PO7                                                                                                                                 | PO8                                                                                                                 |                                                                                                                  |                                                                                               | PO11                                                                                     |                                                                            | PSO1                     | PSC                               |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>CO6 | PO1 3 3     | PO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                  | PO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Syl                                                                                                                                 | labus                                                                                                               |                                                                                                                  |                                                                                               | PO11                                                                                     |                                                                            |                          |                                   |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5        | PO1 3 3 .   | PO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PO3                                                                                                                                                  | PO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PO5                                                                                                                                                | PO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Syllab                                                                                                                              | labus                                                                                                               | 2                                                                                                                | 2                                                                                             |                                                                                          | 2                                                                          | PSO1                     |                                   |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>CO6 | PO1 3 3 .   | PO2 3 3 Fiber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PO3                                                                                                                                                  | PO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PO5                                                                                                                                                | PO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Syllab<br>vantag                                                                                                                    | labus<br>us<br>es of o                                                                                              | 2<br>optical                                                                                                     | 2<br>fibers,                                                                                  | princip                                                                                  | 2<br>le and                                                                | Mappe                    | d CO'                             |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>CO6 | PO1 3 3 .   | PO2 3 3 5 Fiber structu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PO3<br>Optics<br>re, acc                                                                                                                             | PO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PO5                                                                                                                                                | PO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Syllab<br>vantag                                                                                                                    | labus<br>us<br>es of o<br>l apert                                                                                   | 2<br>optical<br>ture, m                                                                                          | 2<br>fibers,<br>nodes o                                                                       | princip]                                                                                 | 2<br>le and<br>gation,                                                     | Mappe                    | ed CO'                            |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>CO6 | PO1 3 3 .   | PO2 3 3 5 Fiber structu classifi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PO3<br>Optics<br>re, acc<br>ication                                                                                                                  | PO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PO5                                                                                                                                                | PO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Syll<br>Syllab<br>vantag<br>merica<br>ptic c                                                                                        | labus<br>us<br>es of o<br>d apert                                                                                   | 2<br>optical<br>cure, m                                                                                          | 2<br>fibers,<br>nodes o                                                                       | princip                                                                                  | 2<br>le and<br>gation,                                                     | Mappe                    | ed CO'<br>1,CO2                   |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>CO6 | PO1 3 3 No. | PO2 3 3 5 Fiber structu classifi (Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PO3<br>Optics<br>re, acc<br>ication<br>erature,                                                                                                      | PO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PO5                                                                                                                                                | PO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Syllab<br>Vantag<br>merica<br>ptic c<br>force),                                                                                     | labus<br>us<br>es of o<br>l apert                                                                                   | 2<br>optical<br>cure, m                                                                                          | 2<br>fibers,<br>nodes o                                                                       | princip]                                                                                 | 2<br>le and<br>gation,                                                     | Mappe                    | ed CO'<br>1,CO2                   |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>CO6 | PO1 3 3 No. | PO2 3 3 3 Fiber structu classifi (Temp Dielec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PO3<br>Optics<br>Tre, acc<br>ication<br>erature,<br>tric and                                                                                         | PO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PO5                                                                                                                                                | PO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Syllab<br>Vantag<br>merica<br>ptic c<br>force),<br>als                                                                              | labus<br>us<br>es of o<br>il apert<br>commun<br>applica                                                             | 2<br>optical<br>ture, m<br>nication<br>ttions.                                                                   | 2<br>fibers,<br>nodes o<br>n, fiber                                                           | principl<br>f propa;<br>optic s                                                          | 2<br>le and<br>gation,<br>sensors                                          | Mappe                    | ed CO'<br>1,CO2                   |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>CO6 | PO1 3 3 No. | PO2         3         3         3         3         4         5         5         6         6         7         7         8         7         10         10         11         12         13         14         15         16         17         17         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PO3<br>Optics<br>re, acc<br>ication<br>erature,<br>tric and<br>tric-ma                                                                               | PO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PO5                                                                                                                                                | PO6<br>on, adv<br>le, num<br>iber on<br>nt and f<br><b>materia</b><br>roduct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Syll<br>Syllab<br>vantag<br>merica<br>ptic c<br>force),<br>als<br>ion, e                                                            | labus<br>us<br>es of o<br>applica<br>electron                                                                       | 2<br>optical<br>cure, m<br>nication<br>ations.                                                                   | 2<br>fibers,<br>nodes o<br>n, fiber<br>larizatio                                              | principl<br>f propa<br>optic s                                                           | 2<br>le and<br>gation,<br>sensors<br>ectric                                | Mappe                    | ed CO'<br>1,CO2                   |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>CO6 | PO1 3 3 No. | PO2         3         3         3         4         5         6         7         7         8         10         11         12         13         14         15         16         17         17         17         18         19         10         10         10         10         10         10         10         10         10         11         12         13         14         15         16         17         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 <tr< td=""><td>PO3<br/>Optics<br/>re, acc<br/>ication<br/>erature,<br/>tric and<br/>tric-ma<br/>cability,</td><td>PO4</td><td>PO5<br/>oduction<br/>tee ang<br/>pers, fracement<br/><b>netic r</b><br/>s: Int<br/>ptibilit</td><td>PO6<br/>Dn, adv<br/>le, nur<br/>iber o<br/>nt and f<br/><b>nateria</b><br/>roducti<br/>y and o</td><td>Syllab<br/>Vantag<br/>merica<br/>ptic c<br/>force),<br/>als<br/>ion, c<br/>dielect</td><td>labus<br/>us<br/>es of o<br/>applica<br/>electron<br/>tric con</td><td>2<br/>optical<br/>cure, m<br/>nication<br/>ations.</td><td>2<br/>fibers,<br/>nodes o<br/>n, fiber<br/>larizatio</td><td>principl<br/>f propag<br/>optic s<br/>on, diel</td><td>le and<br/>gation,<br/>ensors<br/>ectric<br/>ations</td><td>Mappe</td><td>ed CO<sup>3</sup><br/>1,CO2</td></tr<>                                                                                                    | PO3<br>Optics<br>re, acc<br>ication<br>erature,<br>tric and<br>tric-ma<br>cability,                                                                  | PO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PO5<br>oduction<br>tee ang<br>pers, fracement<br><b>netic r</b><br>s: Int<br>ptibilit                                                              | PO6<br>Dn, adv<br>le, nur<br>iber o<br>nt and f<br><b>nateria</b><br>roducti<br>y and o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Syllab<br>Vantag<br>merica<br>ptic c<br>force),<br>als<br>ion, c<br>dielect                                                         | labus<br>us<br>es of o<br>applica<br>electron<br>tric con                                                           | 2<br>optical<br>cure, m<br>nication<br>ations.                                                                   | 2<br>fibers,<br>nodes o<br>n, fiber<br>larizatio                                              | principl<br>f propag<br>optic s<br>on, diel                                              | le and<br>gation,<br>ensors<br>ectric<br>ations                            | Mappe                    | ed CO <sup>3</sup><br>1,CO2       |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>CO6 | PO1 3 3 No. | PO2         3         3         3         3         4         5         5         6         7         10         11         12         13         14         15         16         17         17         18         19         10         10         10         10         10         10         10         10         10         10         11         12         12         12         13         14         15         16         17         16         17         16         17         16         17         17         18         19         10         10         10         10         10         10 <tr< td=""><td>PO3<br/>PO3<br/>Optics<br/>re, acc<br/>ication<br/>erature,<br/>tric and<br/>tric-ma<br/>cability,<br/>tative),</td><td>PO4<br/>PO4<br/>S: Intro<br/>ceptance<br/>of filt<br/>displation<br/>displaterials<br/>susception<br/>frequentials</td><td>PO5</td><td>PO6<br/>Dn, adv<br/>le, num<br/>iber o<br/>nt and f<br/>nateria<br/>roducti<br/>y and o<br/>depen</td><td>Syllab<br/>Vantag<br/>merica<br/>ptic c<br/>force),<br/>als<br/>ion, c<br/>dielect<br/>idence</td><td>labus<br/>us<br/>es of o<br/>apert<br/>commun<br/>applica<br/>electron<br/>tric con<br/>of p</td><td>2<br/>optical<br/>cure, m<br/>nication<br/>ations.</td><td>2<br/>fibers,<br/>nodes o<br/>n, fiber<br/>larizatio</td><td>principl<br/>f propa<br/>optic s</td><td>le and<br/>gation,<br/>ensors<br/>ectric<br/>ations</td><td>Mappe<br/>COI<br/>CO<br/>CO</td><td>ed CO<br/>1,CO2<br/>95,<br/>96</td></tr<> | PO3<br>PO3<br>Optics<br>re, acc<br>ication<br>erature,<br>tric and<br>tric-ma<br>cability,<br>tative),                                               | PO4<br>PO4<br>S: Intro<br>ceptance<br>of filt<br>displation<br>displaterials<br>susception<br>frequentials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PO5                                                                                                                                                | PO6<br>Dn, adv<br>le, num<br>iber o<br>nt and f<br>nateria<br>roducti<br>y and o<br>depen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Syllab<br>Vantag<br>merica<br>ptic c<br>force),<br>als<br>ion, c<br>dielect<br>idence                                               | labus<br>us<br>es of o<br>apert<br>commun<br>applica<br>electron<br>tric con<br>of p                                | 2<br>optical<br>cure, m<br>nication<br>ations.                                                                   | 2<br>fibers,<br>nodes o<br>n, fiber<br>larizatio                                              | principl<br>f propa<br>optic s                                                           | le and<br>gation,<br>ensors<br>ectric<br>ations                            | Mappe<br>COI<br>CO<br>CO | ed CO<br>1,CO2<br>95,<br>96       |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>CO6 | PO1 3 3 No. | PO2<br>3<br>3<br>Fiber<br>structu<br>classifi<br>(Temp<br>Dielect<br>polariz<br>(Qualit<br>(quant)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PO3<br>Optics<br>re, acc<br>ication<br>erature,<br>tric and<br>tric-ma<br>cability,<br>tative),                                                      | PO4<br>PO4<br>s: Intro<br>ceptance<br>of fib<br>, displa<br>d Mag<br>aterials<br>suscep<br>freque<br>, Claus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PO5<br>oduction<br>ce ang<br>pers, fracement<br><b>netic r</b><br>s: Int<br>ptibilit<br>iency<br>ius - N                                           | PO6<br>Dn, adv<br>le, num<br>iber o<br>nt and f<br><b>nateria</b><br>roduction<br>y and of<br>depen<br>for the state of the state of the state<br>of the state of the stat                                                                                                                                                                                                                                                                                                                                                     | Syll<br>Syllab<br>vantag<br>merica<br>ptic c<br>force),<br>als<br>ion, e<br>dielect<br>idence<br>i equat                            | labus<br>us<br>es of o<br>applica<br>electron<br>tric con<br>of p<br>tion.                                          | 2<br>optical<br>cure, m<br>nication<br>ations.<br>nic pol<br>astant, t<br>polariza                               | 2<br>fibers,<br>nodes o<br>n, fiber<br>larizatio<br>types of<br>tion, I                       | principl<br>f propa<br>optic s<br>on, diel<br>polarizz                                   | le and<br>gation,<br>sensors<br>ectric<br>ations<br>field                  | Mappe<br>CO1<br>CO<br>CO | <u>ed CO</u><br>1,CO2<br>1,CO3    |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>CO6 | PO1 3 3 No. | PO2         3         3         3         3         4         5         5         6         7         7         7         8         7         7         7         8         7         7         8         7         8         7         8         7         8         8         8         9         10         10         10         10         10         11         11         12         12         12         12         12         12         12         13         14         15         15         16         17         16         17         16         17         16         17         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PO3<br>PO3<br>Optics<br>re, acc<br>ication<br>erature,<br>tric and<br>tric-ma<br>cability,<br>tative),<br>itative),                                  | PO4<br>PO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PO5<br>oduction<br>the ang<br>pers, fracement<br>acement<br>s: Int<br>ptibilit<br>tency<br>ius - M<br>ials:                                        | PO6<br>Dn, adv<br>le, nur<br>iber o<br>nt and f<br>nateria<br>roducti<br>y and o<br>depen<br>Iossott<br>Introd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Syllab<br>Vantag<br>merica<br>ptic c<br>force),<br>als<br>ion, e<br>dielect<br>idence<br>i equat                                    | labus<br>us<br>es of o<br>applica<br>electron<br>tric con<br>of p<br>tion.                                          | 2<br>optical<br>ture, m<br>nication<br>nic pol<br>astant, t<br>polariza                                          | 2<br>fibers,<br>nodes o<br>n, fiber<br>larizatio<br>types of<br>tion, I<br>dipol              | principl<br>f propa<br>optic s<br>on, diel<br>polariza<br>Lorentz<br>le mo               | le and<br>gation,<br>sensors<br>ectric<br>ations<br>field<br>ment,         | Mappe<br>CO1<br>CO<br>CO | ed CO<br>1,CO2<br>95,<br>96       |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>CO6 | PO1 3 3 No. | PO2         3         3         3         3         4         5         5         6         7         1         1         1         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PO3<br>PO3<br>Optics<br>re, acc<br>ication<br>erature,<br>tric and<br>tric-ma<br>cability,<br>tative),<br>itative),<br>itative),                     | PO4<br>PO4<br>PO4<br>Si Intro<br>ceptanc<br>of fit<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>displa<br>d | PO5<br>oduction<br>coduction<br>coers, fracement<br>pers, fracement<br><b>netic r</b><br>s: Int<br>ptibilit<br>iency<br>ius - N<br>ials:<br>gnetic | PO6<br>PO6<br>POn, adv<br>le, nur<br>iber o<br>nt and f<br>nateria<br>roducti<br>y and o<br>depen<br>fossott<br>Introd<br>susce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Syllab<br>Vantag<br>merica<br>ptic c<br>force),<br>als<br>ion, c<br>dielect<br>idence<br>i equat<br>luction<br>eptibili             | labus<br>us<br>es of o<br>al apert<br>commun<br>applica<br>electron<br>tric con<br>of p<br>tion.<br>n, ma<br>ty and | 2<br>optical<br>cure, m<br>nication<br>nic pol<br>istant, t<br>polariza<br>agnetic<br>l pern                     | 2<br>fibers,<br>nodes o<br>n, fiber<br>larizatio<br>types of<br>tion, I<br>dipol<br>neability | principl<br>f propag<br>optic s<br>on, diel-<br>polariza<br>Lorentz<br>le mo<br>y, origi | le and<br>gation,<br>sensors<br>ectric<br>ations<br>field<br>ment,<br>n of | Mappe<br>CO1<br>CO<br>CO | <u>ed CO</u><br>1,CO2<br>5,<br>66 |
| CO1<br>CO2<br>CO3<br>CO4<br>CO5<br>CO6 | PO1 3 3 No. | PO2<br>3<br>3<br>Fiber<br>structu<br>classifi<br>(Temp<br>Dielect<br>polariz<br>(Qualit<br>(quant)<br>Magne<br>permai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PO3<br>PO3<br>Optics<br>re, acc<br>ication<br>erature,<br>tric and<br>tric-ma<br>cability,<br>tative),<br>itative),<br>etic n<br>tization<br>nent ma | PO4<br>PO4<br>s: Intro<br>ceptance<br>of fib<br>displa<br>d Mag<br>aterials<br>suscep<br>freque<br>claus<br>materi<br>a, mag<br>agnetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PO5<br>oduction<br>ce ang<br>pers, fracement<br>metic r<br>s: Int<br>ptibilit<br>ius - M<br>ials:<br>gnetic<br>mome                                | PO6<br>Dn, adv<br>le, nur<br>iber o<br>nt and f<br>nateria<br>roduction<br>y and of<br>depen<br>for the formation<br>of t | Syllab<br>Vantag<br>merica<br>ptic c<br>force),<br>als<br>ion, c<br>dielect<br>idence<br>i equat<br>luction<br>eptibili<br>sssifica | labus<br>us<br>es of o<br>al apert<br>commun<br>applica<br>electron<br>tric con<br>of p<br>tion.<br>n, ma<br>ty and | 2<br>optical<br>cure, m<br>nication<br>ations.<br>nic pol<br>astant, t<br>polariza<br>agnetic<br>1 pern<br>magne | 2<br>fibers,<br>nodes o<br>n, fiber<br>larizatio<br>types of<br>tion, I<br>dipol<br>neability | principl<br>f propa<br>optic s<br>on, diel<br>polariza<br>Lorentz<br>le mo               | le and<br>gation,<br>sensors<br>ectric<br>ations<br>field<br>ment,<br>n of | Mappe<br>CO1<br>CO<br>CO | <u>ed CO</u><br>1,CO2<br>5,<br>66 |

| 3                          | Electromagnetics:<br>Electrostatic field: Electric potential, Coulombs law and Gauss law,<br>derivation of Coulombs law from Gauss law, applications of Gauss law<br>(line charge, thin sheet of charge and solid charged sphere), Gauss law of<br>electrostatics in dielectric medium, Poisson's and Laplace equations.                                                                                                                        | CO1,CO3<br>CO5, CO6      |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                            | <b>Magnetostatic field:</b> Bio–Savart law, Faraday's and Ampere's laws in integral and differential form, displacement current, continuity equation and Maxwell's equations (qualitatively).                                                                                                                                                                                                                                                   |                          |
| 4                          | Semiconductor Physics<br>Introduction, origin of energy band, intrinsic and extrinsic semiconductors,<br>generation and recombination, carrier concentration in intrinsic<br>semiconductors, variation of Fermi level with temperature in intrinsic<br>semiconductor, n-type and p-type semiconductors, carrier concentration<br>in n type and p type semiconductors, variation of Fermi level with<br>temperature in extrinsic semiconductors. | CO1,CO3,<br>CO4, CO6     |
| 5                          | Semiconductor Devices<br>Drift and diffusion currents in semiconductors, Hall effect and its<br>applications, p-n junction diode formation and V-I characteristics, direct<br>and indirect band gap semiconductors, construction and working of<br>photodiode, LED, solar cell                                                                                                                                                                  | CO1, CO2,<br>CO5,<br>CO6 |
|                            | Learning Resources                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
| Text B                     | Books                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |
| 1.<br>2.                   | R. K. Gaur, S. L. Gupta, "Engineering Physics", Dhanpat Rai Publications, 8th Ec<br>S. O. Pillai, Solid State Physics, New age international publishers, 7th edition (201                                                                                                                                                                                                                                                                       |                          |
| Refere                     | ence Books                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
| 1.<br>2.<br>3.             | A Text Book of Engineering Physics, M.N.Avadhanulu & P.G.Kshrisa<br>Publications, fourth edition, 2014.<br>Semiconductor Devices & Physics, S.M.Sze,Wiley, 2008.<br>Applied Physics, P.K. Palanai Swamy, Sci-Tech Publications. December, 2018                                                                                                                                                                                                  | gar, S.Chand             |
| 4.<br>5.                   | Engineering Physics, Dr.M.Arumugam, Anuradha Publications, Second edition, 20<br>Introduction To Electrodynamics, David.J.Griffths, Pearson Education India Le<br>Limited, Fourth edition, 2015.                                                                                                                                                                                                                                                |                          |
|                            | ources & other digital material                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
| 1.<br>2.<br>3.<br>4.<br>5. | http://physicsforidiots.com/physics/electromagnetism/<br>https://www.arcelect.com/fibercable.htm<br>http://freevideolectures.com/Course/3048/Physics-of-Materials/36<br>https://www.iitk.ac.in/mse/electronic-materials-and-devices<br>https://link.springer.com/chapter/10.1007/978-3-319-48933-9_35                                                                                                                                           |                          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>_</u>                 |

| Cours         | se  |                                                                                   | 2        | 20ES11          |        | Yea    |         |         | Ι         |          | gineerin<br>Sem                       | ester     | Ι           |       |          |               |
|---------------|-----|-----------------------------------------------------------------------------------|----------|-----------------|--------|--------|---------|---------|-----------|----------|---------------------------------------|-----------|-------------|-------|----------|---------------|
| Code<br>Cours | 20  |                                                                                   | F        | Enginee         | ring   | Bra    | nch     |         | IT        |          | Cou                                   | rse Typ   | e 7         | Theor | rv       |               |
| Categ         |     | v                                                                                 |          | Science         |        | Dia    | nen     |         |           |          | Cou                                   | ise iyp   |             | neoi  | L y      |               |
| Credi         |     |                                                                                   | 3        |                 |        | L-T    | -P      |         | 3-0-0     |          | Prei                                  | requisite | es l        | Nil   |          |               |
| Conti         | nu  | ous                                                                               | 3        | 80              |        | Sem    | ester l | End     | 70        |          | Tota                                  | ıl        | 1           | 00    |          |               |
| Interr        |     |                                                                                   |          | EvaluationMarks |        |        |         |         |           |          |                                       |           |             |       |          |               |
| Evalu         | ati | ion Course Outcomes                                                               |          |                 |        |        |         |         |           |          |                                       |           |             |       |          |               |
| <b>T</b> T    |     | Course Outcomes<br>ccessful completion of the course, the student will be able to |          |                 |        |        |         |         |           |          |                                       |           |             |       |          |               |
| 1             |     |                                                                                   |          |                 |        |        |         |         |           |          |                                       | 0         |             |       |          |               |
| CO1           |     |                                                                                   |          |                 |        | -      |         |         |           |          |                                       | es, Conc  | -           |       |          |               |
|               |     |                                                                                   |          | g Dom           |        |        | ze the  | Аррис   | cations   | OI Ele   | ctrical c                             | k Electro | onics in    | me    | ruisc    | ipinai        |
| CO2           |     |                                                                                   |          | -               |        |        | of mat  | hemat   | ics sci   | ence a   | nd elect                              | rical en  | gineerin    | σto   | oht      | ain th        |
| 02            |     |                                                                                   |          |                 |        |        |         |         | Iachine   |          |                                       |           | Smeerm      | 5 10  | 001      | ann th        |
| CO3           |     |                                                                                   | <b>1</b> |                 |        |        |         |         |           |          |                                       | rical mad | chines. (   | L4)   |          |               |
| CO4           |     |                                                                                   |          |                 |        |        |         |         |           |          | Circuits                              |           |             |       |          |               |
| CO5           |     |                                                                                   |          |                 |        |        |         |         |           |          |                                       | Circuits  | s. (L4)     |       |          |               |
| CO6           |     |                                                                                   |          |                 |        |        |         |         |           |          |                                       | rical M   |             | and   | Ele      | ctroni        |
|               |     |                                                                                   |          | d Circu         |        |        | 1       |         | ,         |          |                                       |           |             |       |          |               |
|               |     |                                                                                   |          |                 |        |        |         | achie   | vement    | of Pro   | ogram (                               | Dutcom    | es & Str    | engtl | h of     |               |
| corre         |     |                                                                                   |          | gh, 2: l        |        |        | ,       |         |           |          |                                       |           |             |       | <u> </u> |               |
| 001           | P   | 01                                                                                | PO2      | PO3             | PO4    | PO5    | PO6     | PO7     | PO8       | PO9      | PO10                                  | PO11      | PO12        | PS    | 01       | PSO           |
| CO1           |     | _                                                                                 |          |                 |        |        |         |         |           |          |                                       |           |             |       |          |               |
| CO2           |     | 3                                                                                 |          |                 |        |        |         |         |           |          |                                       |           |             |       |          |               |
| CO3           |     | -                                                                                 | 3        |                 |        |        |         |         |           |          |                                       |           |             |       |          |               |
| CO4           |     | 3                                                                                 | 2        |                 |        |        |         |         |           |          |                                       |           |             | 1     | 1        |               |
| CO5<br>CO6    |     |                                                                                   | 3        |                 | 3      |        |         |         |           | 2        | 2                                     |           |             |       | 1        |               |
|               |     |                                                                                   |          |                 | 3      |        |         | Sw      | llabus    | Z        | Z                                     |           |             |       |          |               |
| Unit          |     |                                                                                   |          |                 |        |        |         | Sylla   |           |          |                                       |           |             |       | М        | apped         |
| No.           |     |                                                                                   |          |                 |        |        |         | Syna    | ous       |          |                                       |           |             |       |          | appeu<br>CO's |
| 1             |     | Ra                                                                                | sic la   | ws and          | Theor  | ems-I  | C Cir   | ·mits·  | Ohme      | aw K     | irchhoff                              | 's Laws,  | series a    | nd    |          | 20 3          |
| 1             |     |                                                                                   |          |                 |        |        |         |         |           |          |                                       | convers   |             |       | ~~       |               |
|               |     | -                                                                                 |          |                 |        |        |         |         |           |          | -                                     | theorem   |             |       |          | 1,CO2         |
|               |     |                                                                                   | •        |                 | •      |        |         |         |           |          |                                       | simple    |             |       | CC       | 03,CO         |
|               |     | (in                                                                               | deper    | ndent s         | ources | only). |         |         |           |          |                                       | _         | _           |       |          |               |
| 2             |     |                                                                                   |          |                 |        |        |         | 01      | -         |          | 0                                     | ld up, E  |             |       | CO       | 1,CO2         |
|               |     | -                                                                                 |          | · 1             | -      |        | • 1     | ofexc   | itation,  | types of | of dc ma                              | chines,   | necessit    | у     |          | 1,CO2         |
|               |     |                                                                                   |          | r, losse        |        |        |         |         |           |          |                                       |           |             |       |          |               |
| 3             |     |                                                                                   |          |                 |        |        |         |         |           |          |                                       | , open a  | nd short    | -     | 00       |               |
|               |     |                                                                                   |          |                 | -      | -      |         |         |           |          | ficiency.                             |           | 1           |       | CC       | 01,CO         |
|               |     |                                                                                   |          |                 |        | on Mo  | tors: C | onstru  | iction, v | vorking  | rking principle of three phase CO3,CO |           |             |       |          |               |
| 4             |     |                                                                                   |          | n motor         |        | Dec D  | N Iun   | ction ( | liode     | Basic    | oneratio                              | ng princ  | inle        |       |          |               |
| 4             |     |                                                                                   |          |                 |        |        |         |         |           |          | -                                     | ectifier, | -           | c l   |          | 1,CO4         |
|               |     |                                                                                   |          | 0               |        |        |         |         | ge Regi   |          | 1 WAVE 1                              |           |             | 3     | CC       | 05,CO         |
| 5             |     |                                                                                   |          | •               |        |        |         |         |           |          | verting                               | Configu   | iration-7   | Гhe   |          |               |
| 5             |     | -                                                                                 |          |                 | -      |        |         | -       | - ·       |          | Non-inv                               | 0         | ** ut1011-1 |       | CO       | 1,CO4         |
|               |     |                                                                                   |          |                 |        |        |         | -       |           |          |                                       | of Non    | Invert      | ing   |          | 1,00<br>)5,CO |
|               |     |                                                                                   | -0       |                 |        |        |         |         |           |          |                                       |           |             |       |          | ,             |

## **Text Books**

- 1. D.P.Kothari, I.J.Nagrath, Basic Electrical and Electronics Engineering, 1<sup>st</sup> Edition, McGraw HillEducation (India) Private Limited, 2017.
- B.L.Theraja, Fundamentals of Electrical Engineering and Electronics, 1<sup>st</sup> Edition, S.ChandPublishing, New Delhi, 2006.
- 3. Millman Jacob, Halkias C Christos, Electronic Devices and Circuits, 2<sup>nd</sup> Edition, Tata Mcgrawhill Publications, 2007.

## **Reference Books**

- 1. S.K. Bhattacharya, Basic Electrical and Electronics Engineering, Pearson Education, 2011.
- 2. Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2<sup>nd</sup> Edition, Pearson Education, 2008.
- 3. R.K.Rajput, Basic Electrical and Electronics Engineering, University Science Press, New Delhi,2012.

## e- Resources & other digital material

- 1. http://202.53.81.118/course/view.php?id=122
- 2. https://nptel.ac.in/courses/108105112/

## **Problem Solving Techniques**

| Cours                                                      |                           | 20                                                                                                                                                                                                  | DES110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                               | Year                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           | Ι                                                                                                                                                                  |                                                                                                                                                        | Som                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ester                                                                                                                                     | ]                                                                                                         |                                                                                                                                             |                                                                              |
|------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Code                                                       |                           | 20                                                                                                                                                                                                  | JESTIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                               | real                                                                                                                                              | Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                           | 1                                                                                                                                                                  |                                                                                                                                                        | Sem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ester                                                                                                                                     | 1                                                                                                         |                                                                                                                                             |                                                                              |
| Cours                                                      |                           | F                                                                                                                                                                                                   | ngineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ing                                                                                                                                                             | Brai                                                                                                                                              | nch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                           | IT                                                                                                                                                                 |                                                                                                                                                        | Соц                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rse Typ                                                                                                                                   | • п                                                                                                       | Theory                                                                                                                                      |                                                                              |
| Categ                                                      |                           |                                                                                                                                                                                                     | cience                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | шg                                                                                                                                                              | Diai                                                                                                                                              | iitii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                           | 11                                                                                                                                                                 |                                                                                                                                                        | Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ise ryp                                                                                                                                   |                                                                                                           | neory                                                                                                                                       |                                                                              |
| Credi                                                      |                           | 3                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 | L-T-                                                                                                                                              | .P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                           | 3-0-0                                                                                                                                                              |                                                                                                                                                        | Prer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | equisite                                                                                                                                  | s N                                                                                                       | Jil                                                                                                                                         |                                                                              |
| Conti                                                      |                           |                                                                                                                                                                                                     | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                 | -                                                                                                                                                 | ester H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ind                                                                                                                                       | 70                                                                                                                                                                 |                                                                                                                                                        | Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                         |                                                                                                           | 00                                                                                                                                          |                                                                              |
| Interi                                                     |                           | 3 50                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                 |                                                                                                                                                   | luation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           | 10                                                                                                                                                                 |                                                                                                                                                        | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                           | 1                                                                                                         | 00                                                                                                                                          |                                                                              |
| Evalu                                                      |                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 | Lva                                                                                                                                               | luution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                    |                                                                                                                                                        | 1 <b>VIu</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11,5                                                                                                                                      |                                                                                                           |                                                                                                                                             |                                                                              |
| 11, 414                                                    |                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                           |                                                                                                                                             |                                                                              |
|                                                            |                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                   | Со                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | urse (                                                                                                                                    | Dutcom                                                                                                                                                             | nes                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                           |                                                                                                                                             |                                                                              |
| Upon                                                       | succe                     | essful co                                                                                                                                                                                           | mpletio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on of tl                                                                                                                                                        | he cou                                                                                                                                            | rse, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | stude                                                                                                                                     | nt will                                                                                                                                                            | be able                                                                                                                                                | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                           |                                                                                                           |                                                                                                                                             |                                                                              |
| CO1                                                        |                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                           |                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | owchart                                                                                                                                   | s and p                                                                                                   | roblem so                                                                                                                                   | olving                                                                       |
|                                                            |                           | nniques.                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                   | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                           | 1                                                                                                                                                                  | , U                                                                                                                                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                           | 1                                                                                                         |                                                                                                                                             | U                                                                            |
| CO2                                                        |                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | owled                                                                                                                                                           | ge of r                                                                                                                                           | nathem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | natical                                                                                                                                   | factori                                                                                                                                                            | ng met                                                                                                                                                 | hods to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | model a                                                                                                                                   | n algori                                                                                                  | thm, flov                                                                                                                                   | vchart                                                                       |
|                                                            | for                       | a given                                                                                                                                                                                             | probler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m. (L3)                                                                                                                                                         | )                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           | _                                                                                                         |                                                                                                                                             |                                                                              |
| CO3                                                        |                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                    |                                                                                                                                                        | sorting,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | searchin                                                                                                                                  | ng, text                                                                                                  | processi                                                                                                                                    | ng and                                                                       |
|                                                            |                           | ern mat                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                           |                                                                                                                                             |                                                                              |
| CO4                                                        |                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı probl                                                                                                                                                         | em to                                                                                                                                             | develo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | op an                                                                                                                                     | efficier                                                                                                                                                           | it solut                                                                                                                                               | ion usir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng sortin                                                                                                                                 | ng or pa                                                                                                  | attern sea                                                                                                                                  | urching                                                                      |
|                                                            | tech                      | nniques.                                                                                                                                                                                            | (L4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                           |                                                                                                                                             |                                                                              |
|                                                            |                           | • •                                                                                                                                                                                                 | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>A</b> (                                                                                                                                | 0.0                                                                                                       |                                                                                                                                             | 0                                                                            |
|                                                            |                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                                                                                                                                        |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                    |                                                                                                                                                        | ogrom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                           | 00 V-N4                                                                                                   |                                                                                                                                             | £                                                                            |
|                                                            |                           |                                                                                                                                                                                                     | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | achie                                                                                                                                     | evemen                                                                                                                                                             | t of Pr                                                                                                                                                | ogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Outcom                                                                                                                                    | es asi                                                                                                    | rength o                                                                                                                                    | 1                                                                            |
|                                                            | elatio                    | <b>ns</b> (3:H                                                                                                                                                                                      | igh, 2: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mediui                                                                                                                                                          | m, 1:Lo                                                                                                                                           | ow)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                    |                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                           |                                                                                                           |                                                                                                                                             | -                                                                            |
| corre                                                      | elatio<br>PO1             | <b>ns</b> (3:H                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mediui                                                                                                                                                          | m, 1:Lo                                                                                                                                           | ow)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                           | PO8                                                                                                                                                                | PO9                                                                                                                                                    | PO10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PO11                                                                                                                                      | PO12                                                                                                      | PSO1                                                                                                                                        | PSO2                                                                         |
| corre<br>CO1                                               | elation<br>PO1<br>3       | <b>ns</b> (3:H                                                                                                                                                                                      | igh, 2: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mediui                                                                                                                                                          | m, 1:Lo                                                                                                                                           | ow)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                    |                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                           |                                                                                                           | PSO1<br>1                                                                                                                                   | PSO2                                                                         |
| corre<br>CO1<br>CO2                                        | PO1<br>3<br>3             | <b>ns</b> (3:H                                                                                                                                                                                      | igh, 2: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mediui                                                                                                                                                          | m, 1:Lo                                                                                                                                           | ow)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                    |                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                           |                                                                                                           | PSO1<br>1<br>2                                                                                                                              | PSO2<br>1<br>2                                                               |
| <b>corre</b><br>CO1<br>CO2<br>CO3                          | elation<br>PO1<br>3       | ns (3:H)<br>PO2                                                                                                                                                                                     | igh, 2: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mediui                                                                                                                                                          | m, 1:Lo                                                                                                                                           | ow)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                    | PO9                                                                                                                                                    | PO10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                           |                                                                                                           | PSO1<br>1<br>2<br>2                                                                                                                         | PSO2<br>1<br>2<br>2                                                          |
| corre<br>CO1<br>CO2                                        | PO1<br>3<br>3             | <b>ns</b> (3:H                                                                                                                                                                                      | igh, 2: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mediui                                                                                                                                                          | m, 1:Lo                                                                                                                                           | ow)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                    |                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                           |                                                                                                           | PSO1<br>1<br>2                                                                                                                              | PSO2<br>1<br>2                                                               |
| <b>corre</b><br>CO1<br>CO2<br>CO3                          | PO1<br>3<br>3             | ns (3:H)<br>PO2                                                                                                                                                                                     | igh, 2: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mediui                                                                                                                                                          | m, 1:Lo                                                                                                                                           | ow)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PO7                                                                                                                                       | PO8                                                                                                                                                                | PO9                                                                                                                                                    | PO10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                           |                                                                                                           | PSO1<br>1<br>2<br>2                                                                                                                         | PSO2<br>1<br>2<br>2                                                          |
| CO1<br>CO2<br>CO3<br>CO4                                   | PO1<br>3<br>3<br>3        | ns (3:H)<br>PO2                                                                                                                                                                                     | igh, 2: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mediui                                                                                                                                                          | m, 1:Lo                                                                                                                                           | ow)<br>PO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PO7                                                                                                                                       | PO8                                                                                                                                                                | PO9                                                                                                                                                    | PO10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                           |                                                                                                           | PSO1<br>1<br>2<br>2<br>2                                                                                                                    | PSO2<br>1<br>2<br>2                                                          |
| <b>corre</b><br>CO1<br>CO2<br>CO3                          | PO1<br>3<br>3<br>3<br>No. | ns (3:H)<br>PO2                                                                                                                                                                                     | igh, 2: 1<br>PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mediun<br>PO4                                                                                                                                                   | m, 1:Lo<br>PO5                                                                                                                                    | ow)<br>PO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PO7                                                                                                                                       | PO8                                                                                                                                                                | PO9<br>3                                                                                                                                               | PO10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PO11                                                                                                                                      | PO12                                                                                                      | PSO1 1 2 2 2 2 Mappe                                                                                                                        | PSO2<br>1<br>2<br>2                                                          |
| CO1<br>CO2<br>CO3<br>CO4                                   | PO1<br>3<br>3<br>3<br>No. | ns (3:H:<br>PO2<br>3<br>Introdu                                                                                                                                                                     | igh, 2: 1<br>PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mediun<br>PO4                                                                                                                                                   | m, 1:Lo<br>PO5                                                                                                                                    | ow)<br>PO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PO7<br>Syllab<br>a Co                                                                                                                     | PO8<br>abus<br>us                                                                                                                                                  | PO9<br>3                                                                                                                                               | PO10<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PO11                                                                                                                                      | PO12                                                                                                      | PSO1 1 2 2 2 2 Mappe                                                                                                                        | PSO2<br>1<br>2<br>2                                                          |
| CO1<br>CO2<br>CO3<br>CO4                                   | PO1 3 3 3 No.             | ns (3:H<br>PO2<br>3<br>Introdu<br>Algorith                                                                                                                                                          | igh, 2: I<br>PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mediun<br>PO4<br>Comj<br>nd Flo                                                                                                                                 | m, 1:Lo<br>PO5                                                                                                                                    | ow)<br>PO6<br>s of<br>ts. Fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PO7<br>Syll<br>Syllab<br>a Co<br>ndame                                                                                                    | PO8<br>abus<br>us<br>ompute<br>ental A                                                                                                                             | PO9<br>3<br>r Syst<br>lgorith                                                                                                                          | PO10<br>3<br>tem, Ir<br>ms: Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PO11<br>troducti                                                                                                                          | PO12<br>on to g the                                                                                       | PSO1           1           2           2           2           Mapped                                                                       | PSO2<br>1<br>2<br>2<br>d CO's                                                |
| CO1<br>CO2<br>CO3<br>CO4                                   | PO1 3 3 3 No.             | ns (3:H<br>PO2<br>3<br>Introdu<br>Algorith                                                                                                                                                          | igh, 2: I<br>PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mediun<br>PO4<br>Com<br>nd Flo<br>variable                                                                                                                      | m, 1:Lo<br>PO5<br>ponent<br>wchart<br>es, Cou                                                                                                     | ow)<br>PO6<br>ts of<br>ts. Fur<br>unting,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PO7<br>Sylla<br>Syllab<br>a Co<br>ndame<br>Sumn                                                                                           | PO8<br>abus<br>us<br>ompute<br>ental A<br>nation o                                                                                                                 | PO9<br>3<br>r Syst<br>lgorith<br>of a set                                                                                                              | PO10<br>3<br>tem, Ir<br>ms: Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PO11<br>htroducti<br>changin<br>bers, Fa                                                                                                  | PO12                                                                                                      | PSO1 1 2 2 2 2 Mapper                                                                                                                       | PSO2<br>1<br>2<br>2<br>d CO's                                                |
| CO1<br>CO2<br>CO3<br>CO4                                   | PO1<br>3<br>3<br>3<br>No. | ns (3:H<br>PO2<br>3<br>Introdu<br>Algorith<br>values o<br>Comput                                                                                                                                    | igh, 2: I<br>PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mediun<br>PO4<br>Com<br>nd Flo<br>variable                                                                                                                      | m, 1:Lo<br>PO5<br>ponent<br>wchart<br>es, Cou                                                                                                     | ow)<br>PO6<br>ts of<br>ts. Fur<br>unting,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PO7<br>Sylla<br>Syllab<br>a Co<br>ndame<br>Sumn                                                                                           | PO8<br>abus<br>us<br>ompute<br>ental A<br>nation o                                                                                                                 | PO9<br>3<br>r Syst<br>lgorith<br>of a set                                                                                                              | PO10<br>3<br>tem, Ir<br>ms: Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PO11<br>troducti                                                                                                                          | PO12                                                                                                      | PSO1           1           2           2           2           Mapped                                                                       | PSO2<br>1<br>2<br>2<br>d CO's                                                |
| COT<br>CO1<br>CO2<br>CO3<br>CO4<br>Unit N<br>1             | PO1 3 3 3 No.             | ns (3:Hi<br>PO2<br>3<br>Introdu<br>Algorith<br>values o<br>Comput<br>integer.                                                                                                                       | igh, 2: I<br>PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mediun<br>PO4<br>Com<br>nd Flo<br>variable<br>Genera                                                                                                            | ponent<br>wchart<br>es, Cou                                                                                                                       | ow)<br>PO6<br>ts of<br>ts. Fur<br>unting,<br>f Fibor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PO7<br>Syll<br>Syllab<br>a Co<br>ndame<br>Summ<br>nacci s                                                                                 | PO8<br>abus<br>us<br>ompute<br>ental A<br>nation o<br>sequenc                                                                                                      | PO9<br>3<br>r Syst<br>lgorith<br>of a set<br>e, Rev                                                                                                    | PO10<br>3<br>tem, Ir<br>ms: Ex<br>of num<br>ersing t                                                                                                                                                                                                                                                                                                                                                                                                                                          | PO11<br>atroducti<br>changin<br>bers, Fa<br>he digits                                                                                     | PO12                                                                                                      | PSO1           1           2           2           2           Mapped                                                                       | PSO2<br>1<br>2<br>2<br>d CO's                                                |
| CO1<br>CO2<br>CO3<br>CO4                                   | PO1 3 3 3 No.             | ns (3:Hi<br>PO2<br>3<br>Introdu<br>Algorith<br>values o<br>Comput<br>integer.<br>Factori                                                                                                            | igh, 2: I<br>PO3<br>netion:<br>nms an<br>of two v<br>ration, C<br>ng Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mediun<br>PO4<br>Com<br>nd Flo<br>variable<br>Genera                                                                                                            | m, 1:Lo<br>PO5<br>ponent<br>wchart<br>es, Cou<br>tion of<br>Findin                                                                                | ow)<br>PO6<br>s of<br>ts. Fun<br>unting,<br>f Fibor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PO7<br>Syllab<br>a Co<br>ndame<br>Summ<br>nacci s<br>quare                                                                                | PO8<br>abus<br>us<br>ompute<br>ental A<br>nation of<br>root of                                                                                                     | PO9<br>3<br>r Syst<br>lgorith<br>of a set<br>e, Rev                                                                                                    | PO10<br>PO10<br>3<br>tem, Ir<br>ms: Ex<br>c of num<br>ersing t<br>ber, sma                                                                                                                                                                                                                                                                                                                                                                                                                    | PO11<br>troducti<br>changin<br>bers, Fa<br>he digits                                                                                      | PO12<br>on to<br>g the<br>ctorial<br>s of an<br>risor of                                                  | PSO1           1           2           2           2           Mapped                                                                       | PSO2<br>1<br>2<br>2<br>d CO's                                                |
| COT<br>CO1<br>CO2<br>CO3<br>CO4<br>Unit N<br>1             | PO1 3 3 3 No.             | ns (3:Hi<br>PO2<br>PO2<br>3<br>Introdu<br>Algorith<br>values of<br>Comput<br>integer.<br>Factori<br>an integ                                                                                        | igh, 2: I<br>PO3<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Internet<br>Interne | Mediun<br>PO4<br>Comp<br>nd Flo<br>variable<br>Genera<br>thods:<br>reatest                                                                                      | ponent<br>wchart<br>s, Cou<br>tion of<br>Findin<br>comm                                                                                           | ow)<br>PO6<br>S of<br>ts. Fur<br>unting,<br>f Fibor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PO7<br>Syllab<br>a Condame<br>Summ<br>acci s<br>quare<br>visor                                                                            | PO8<br>abus<br>us<br>ompute<br>ental A<br>nation of<br>sequenc<br>root of<br>of two                                                                                | PO9<br>3<br>r Syst<br>lgorith<br>of a set<br>e, Rev<br>a numl<br>intege                                                                                | PO10<br>3<br>tem, Ir<br>ms: Ex<br>of num<br>ersing ti<br>ber, sma<br>ers, Ger                                                                                                                                                                                                                                                                                                                                                                                                                 | PO11<br>atroducti<br>changin<br>bers, Fa<br>he digits<br>illest div<br>nerating                                                           | PO12                                                                                                      | PSO1 1 2 2 2 2 Mapped CO1,                                                                                                                  | PSO2<br>1<br>2<br>2<br>d CO's                                                |
| COT<br>CO1<br>CO2<br>CO3<br>CO4<br>Unit N<br>1             | PO1 3 3 3 No.             | Introdu<br>Algorith<br>values of<br>comput<br>integer.<br>Factori<br>an integ                                                                                                                       | igh, 2: I<br>PO3<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Continent<br>Co                                                                   | Mediun<br>PO4<br>Com<br>nd Flo<br>variable<br>Genera<br>thods:<br>reatest<br>puting                                                                             | m, 1:Lo<br>PO5<br>ponent<br>wchart<br>es, Cou<br>tion of<br>Findin<br>comm<br>Prime                                                               | ow)<br>PO6<br>To PO6<br>FOR The second | PO7<br>Syll<br>Syllab<br>a Co<br>ndame<br>Summ<br>acci s<br>quare<br>visor                                                                | PO8<br>abus<br>us<br>ompute<br>ental A<br>nation of<br>sequence<br>root of<br>of two<br>n intege                                                                   | PO9<br>3<br>r Syst<br>lgorith<br>of a set<br>e, Rev<br>a numl<br>intege                                                                                | PO10<br>3<br>tem, Ir<br>ms: Ex<br>of num<br>ersing ti<br>ber, sma<br>ers, Gen<br>eration c                                                                                                                                                                                                                                                                                                                                                                                                    | PO11<br>atroducti<br>changin<br>bers, Fa<br>he digits<br>llest div<br>herating<br>of pseudo                                               | PO12<br>on to<br>g the<br>ctorial<br>s of an<br>isor of<br>prime                                          | PSO1 1 2 2 2 2 Mapped CO1,                                                                                                                  | PSO2<br>1<br>2<br>2<br>d CO's                                                |
| COT<br>CO1<br>CO2<br>CO3<br>CO4<br>Unit N<br>1             | No.                       | Introdu<br>Algorith<br>values of<br>comput<br>integer.<br>Factori<br>an integ                                                                                                                       | igh, 2: I<br>PO3<br>Continent<br>International<br>Internation of two versions and<br>Post two version of twe version of two version of two version of twe version of two ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mediun<br>PO4<br>Com<br>nd Flo<br>variable<br>Genera<br>thods:<br>reatest<br>puting<br>ers, ra                                                                  | m, 1:Lo<br>PO5<br>ponent<br>wchart<br>es, Cou<br>tion of<br>Findin<br>comm<br>Prime                                                               | ow)<br>PO6<br>To PO6<br>For the second | PO7<br>Syll<br>Syllab<br>a Co<br>ndame<br>Summ<br>acci s<br>quare<br>visor                                                                | PO8<br>abus<br>us<br>ompute<br>ental A<br>nation of<br>sequence<br>root of<br>of two<br>n intege                                                                   | PO9<br>3<br>r Syst<br>lgorith<br>of a set<br>e, Rev<br>a numl<br>intege                                                                                | PO10<br>3<br>tem, Ir<br>ms: Ex<br>of num<br>ersing ti<br>ber, sma<br>ers, Gen<br>eration c                                                                                                                                                                                                                                                                                                                                                                                                    | PO11<br>atroducti<br>changin<br>bers, Fa<br>he digits<br>illest div<br>nerating                                                           | PO12<br>on to<br>g the<br>ctorial<br>s of an<br>isor of<br>prime                                          | PSO1 1 2 2 2 2 Mapped CO1,                                                                                                                  | PSO2<br>1<br>2<br>2<br>d CO's                                                |
| COT<br>CO1<br>CO2<br>CO3<br>CO4<br>Unit N<br>1             | PO1 3 3 3 No.             | ns (3:Hi<br>PO2<br>PO2<br>3<br>Introdu<br>Algorith<br>values of<br>Comput<br>integer.<br>Factori<br>an integ<br>numbers<br>random<br>Fibonac                                                        | igh, 2: I<br>PO3<br>Internet of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mediun<br>PO4<br>Comp<br>nd Flo<br>variable<br>Genera<br>thods:<br>reatest<br>puting<br>ers, ra<br>ber                                                          | m, 1:Lo<br>PO5<br>ponent<br>wchart<br>es, Cou<br>tion of<br>Findin<br>comm<br>Prime<br>aising                                                     | ow)<br>PO6<br>For the second    | PO7<br>Syllab<br>a Condame<br>Summ<br>acci s<br>quare<br>visor<br>s of an<br>aber t                                                       | PO8<br>abus<br>us<br>ompute<br>ental A<br>nation of<br>sequenc<br>root of<br>of two<br>n intege<br>to a la                                                         | PO9<br>3<br>r Syst<br>lgorith<br>of a set<br>e, Rev<br>a numl<br>intege<br>er, gene<br>rge po                                                          | PO10<br>3<br>tem, Ir<br>ms: Ex<br>of num<br>ersing ti<br>ber, sma<br>ers, Gen<br>eration co<br>ower, co                                                                                                                                                                                                                                                                                                                                                                                       | PO11<br>attroduction<br>changin<br>bers, Fa<br>he digits<br>illest divent<br>nerating<br>of pseudo<br>omputin                             | PO12<br>on to<br>g the<br>ctorial<br>s of an<br>risor of<br>prime<br>g nth                                | PSO1 1 2 2 2 2 Mapped CO1,                                                                                                                  | PSO2<br>1<br>2<br>2<br>d CO's                                                |
| COTIC<br>CO1<br>CO2<br>CO3<br>CO4<br>Unit N<br>1           | No.                       | ns (3:Hi<br>PO2<br>PO2<br>3<br>Introdu<br>Algorith<br>values of<br>Comput<br>integer.<br>Factori<br>an integ<br>number:<br>random<br>Fibonac<br>Array                                               | igh, 2: I<br>PO3<br>Control PO3<br>Control PO3<br>Cont                                                                                                                                                                         | Mediun<br>PO4<br>Comp<br>d Flo<br>variable<br>Genera<br>thods:<br>reatest<br>puting<br>ers, ra<br>ber<br>ques: A                                                | m, 1:Lo<br>PO5<br>ponent<br>wchart<br>es, Cou<br>tion of<br>Findin<br>comm<br>Prime<br>aising                                                     | ow)<br>PO6<br>PO6<br>s of<br>ts. Fun<br>unting,<br>f Fibor<br>of Fibor<br>a fibor<br>f Fibor<br>f Fibor<br>a nun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PO7<br>Syllab<br>a Condame<br>Summ<br>acci s<br>quare<br>visor<br>rs of an<br>aber t                                                      | PO8<br>abus<br>us<br>ompute<br>ental A<br>nation of<br>equence<br>root of<br>of two<br>n intege<br>to a la                                                         | PO9<br>3<br>r Syst<br>lgorith<br>of a set<br>e, Rev<br>a numl<br>intege<br>rge po                                                                      | PO10<br>3<br>tem, Ir<br>ms: Ex<br>of num<br>ersing t<br>ber, sma<br>ers, Gen<br>eration c<br>ower, co                                                                                                                                                                                                                                                                                                                                                                                         | PO11<br>troducti<br>changin<br>bers, Fa<br>he digits<br>llest div<br>nerating<br>of pseudo<br>omputin<br>istogran                         | PO12<br>on to<br>g the<br>ctorial<br>s of an<br>risor of<br>prime<br>g nth                                | PSO1 1 2 2 2 2 Mapped CO1,                                                                                                                  | PSO2<br>1<br>2<br>2<br>2<br>d CO's<br>CO2                                    |
| COTIC<br>CO1<br>CO2<br>CO3<br>CO4<br>Unit N<br>1           | No.                       | ns (3:Hi<br>PO2<br>PO2<br>3<br>Introdu<br>Algorith<br>values of<br>Comput<br>integer.<br>Factori<br>an integ<br>number:<br>random<br>Fibonac<br>Array                                               | igh, 2: I<br>PO3<br>PO3<br>ction:<br>mms an<br>of two v<br>ration, C<br>mg Met<br>ger, Gr<br>s, Comj<br>numbe<br>ci numb<br>fechnic<br>the max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mediun<br>PO4<br>Oom<br>Comp<br>nd Flo<br>variable<br>Genera<br>thods:<br>reatest<br>puting<br>ers, ra<br>ber<br>ques: A<br>ximum                               | m, 1:Lo<br>PO5<br>ponent<br>wchart<br>es, Cou<br>tion of<br>Findin<br>comm<br>Prime<br>aising                                                     | ow)<br>PO6<br>PO6<br>s of<br>ts. Fun<br>unting,<br>f Fibor<br>a f Fibor<br>a f Fibor<br>a nun<br>order re<br>er in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PO7<br>Syllab<br>a Condame<br>Summ<br>acci s<br>quare<br>visor<br>s of an<br>aber t<br>eversal<br>set, re                                 | PO8<br>abus<br>us<br>ompute<br>ental A<br>nation of<br>equenc<br>root of<br>of two<br>n intege<br>to a la                                                          | PO9<br>3<br>r Syst<br>lgorith<br>of a set<br>e, Reve<br>a numl<br>intege<br>r, gene<br>rge po                                                          | PO10<br>PO10<br>3<br>tem, Ir<br>ms: Ex<br>of num<br>ersing t<br>ber, sma<br>ers, Gen<br>eration co<br>ower, co<br>ing or H<br>icates fr                                                                                                                                                                                                                                                                                                                                                       | PO11<br>attroduction<br>changin<br>bers, Fa<br>he digits<br>illest divent<br>nerating<br>of pseudo<br>omputin                             | PO12<br>on to<br>g the<br>ctorial<br>s of an<br>risor of<br>prime<br>g nth                                | PSO1 1 2 2 2 2 Mapper CO1, CO1,                                                                                                             | PSO2<br>1<br>2<br>2<br>2<br>d CO's<br>CO2                                    |
| COTIC<br>CO1<br>CO2<br>CO3<br>CO4<br>Unit N<br>1           | No.                       | ns (3:Hi<br>PO2<br>PO2<br>3<br>Introdu<br>Algorith<br>values of<br>Comput<br>integer.<br>Factori<br>an integ<br>numbers<br>random<br>Fibonac<br>Array T<br>finding<br>array, p                      | igh, 2: I<br>PO3<br>PO3<br>Internet<br>PO3<br>PO3<br>PO3<br>PO3<br>PO3<br>PO3<br>PO3<br>PO3<br>PO3<br>PO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mediun<br>PO4<br>PO4<br>Comp<br>d Flo<br>variable<br>Genera<br>thods:<br>reatest<br>puting<br>ers, ra<br>ber<br>ques: A<br>ximum<br>ing an                      | m, 1:Lo<br>PO5<br>ponent<br>wchart<br>es, Cou<br>tion of<br>Findin<br>comm<br>Prime<br>aising<br>Array c<br>numb                                  | ow)<br>PO6<br>PO6<br>s of<br>ts. Fur<br>unting,<br>f Fibor<br>ng the s<br>non div<br>Factor<br>a nun<br>order re<br>er in a<br>finding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PO7<br>Syllab<br>a Condame<br>Summ<br>acci s<br>quare<br>visor<br>rs of an<br>aber t<br>eversal<br>set, re<br>g the k                     | PO8<br>abus<br>us<br>ompute<br>ental A<br>nation of<br>sequence<br>root of<br>of two<br>n intege<br>to a la                                                        | PO9<br>3<br>r Syst<br>lgorith<br>of a set<br>e, Rev<br>a numl<br>intege<br>er, gene<br>rge po<br>rcounti<br>of dupl<br>lest ele                        | PO10<br>3<br>tem, Ir<br>ms: Ex<br>of num<br>ersing ti<br>ber, sma<br>ers, Gen<br>eration co<br>ower, co<br>ing or H<br>icates fr<br>ement                                                                                                                                                                                                                                                                                                                                                     | PO11<br>troducti<br>changin<br>bers, Fa<br>he digits<br>llest div<br>nerating<br>of pseudo<br>omputin<br>istogran                         | PO12                                                                                                      | PSO1 1 2 2 2 2 Mapper CO1, CO1,                                                                                                             | PSO2<br>1<br>2<br>2<br>2<br>d CO's<br>CO2<br>CO2<br>CO2                      |
| COTTO<br>CO1<br>CO2<br>CO3<br>CO4<br>Unit N<br>1<br>2<br>2 | No.                       | ns (3:Hi<br>PO2<br>PO2<br>3<br>Introdu<br>Algorith<br>values of<br>Comput<br>integer.<br>Factori<br>an integ<br>numbers<br>random<br>Fibonac<br>Array 7<br>finding<br>array, p                      | igh, 2: I<br>PO3<br>PO3<br>ction:<br>ms an<br>of two v<br>ration, 0<br>ng Met<br>ger, Gr<br>s, Comp<br>number<br>ci number<br>ci number<br>ci number<br>ci number<br>ci number<br>ger, Gr<br>s, Comp<br>number<br>ci number<br>ci                                                           | Mediun<br>PO4<br>PO4<br>Comp<br>d Flo<br>variable<br>Genera<br>thods:<br>reatest<br>puting<br>ers, ra<br>ber<br>ques: A<br>ximum<br>ing an<br>ing an            | m, 1:Lo<br>PO5<br>ponent<br>wchart<br>es, Cou<br>tion of<br>Findin<br>comm<br>Prime<br>aising<br>Array c<br>numb<br>array,<br>d Sear              | ow)<br>PO6<br>PO6<br>s of<br>ts. Fun<br>unting,<br>f Fibor<br>a finding<br>rching:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PO7<br>Syllab<br>a Condame<br>Summacci s<br>quare<br>visor<br>rs of an<br>aber t<br>eversal<br>set, re<br>g the kr                        | PO8<br>abus<br>us<br>ompute<br>ental A<br>nation of<br>equence<br>root of<br>of two<br>n intege<br>to a la<br>l, Array<br>moval of<br>th smal<br>wo-wa             | PO9<br>3<br>r Syst<br>lgorith<br>of a set<br>e, Rev<br>a numl<br>intege<br>rge po<br>r counti<br>of dupl<br>lest ele<br>y merg                         | PO10<br>3<br>tem, Ir<br>ms: Ex<br>of num<br>ersing t<br>ber, sma<br>ers, Gen<br>eration c<br>ower, cu<br>ing or H<br>icates fr<br>ement<br>e, sortin                                                                                                                                                                                                                                                                                                                                          | PO11<br>atroducti<br>changin<br>bers, Fa<br>he digits<br>illest div<br>nerating<br>of pseudo<br>omputin<br>istogran<br>om an o            | PO12<br>on to<br>g the<br>ctorial<br>s of an<br>risor of<br>prime<br>g nth<br>mming,<br>rdered<br>ection, | PSO1         1         2         2         2         2         2         0         CO1,         CO1,         CO1,         CO1,         CO1, | PSO2<br>1<br>2<br>2<br>2<br>d CO's<br>CO2<br>CO2<br>CO2                      |
| COTTO<br>CO1<br>CO2<br>CO3<br>CO4<br>Unit N<br>1<br>2<br>2 | PO1 3 3 3 No.             | ns (3:Hi<br>PO2<br>PO2<br>3<br>Introdu<br>Algorith<br>values of<br>Comput<br>integer.<br>Factori<br>an integ<br>numbers<br>random<br>Fibonac<br>Array 7<br>finding<br>array, p<br>Mergin<br>sorting | igh, 2: I<br>PO3<br>PO3<br>retion:<br>mms an<br>of two v<br>ation, O<br>ng Met<br>ger, Gr<br>s, Comp<br>numbo<br>ci numbo<br>rechnic<br>the may<br>artitioni<br>g, Sort<br>by exch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mediun<br>PO4<br>PO4<br>Comp<br>d Flo<br>variable<br>Genera<br>thods:<br>reatest<br>puting<br>ers, ra<br>ber<br>ques: A<br>ximum<br>ing an<br>ing an<br>ange, s | m, 1:Lo<br>PO5<br>ponent<br>wchart<br>es, Cou<br>tion of<br>Findin<br>comm<br>Prime<br>aising<br>Array of<br>anumb<br>array,<br>d Sear<br>sorting | ow)<br>PO6<br>PO6<br>s of<br>ts. Fun<br>unting,<br>f Fibor<br>og the s<br>non div<br>Factor<br>a nun<br>order re<br>er in a<br>finding<br><b>rching</b> :<br>by Ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PO7<br>Syllab<br>a Condame<br>Summ<br>acci s<br>quare<br>visor<br>s of an<br>aber t<br>eversal<br>set, re<br>g the k<br>c The t<br>ertion | PO8<br>abus<br>us<br>ompute<br>ental A<br>nation of<br>equenc<br>root of<br>of two<br>n intege<br>to a la<br>l, Array<br>moval of<br>th smal<br>two-wa<br>, Linear | PO9<br>3<br>r Syst<br>lgorith<br>of a set<br>e, Reve<br>a numl<br>intege<br>r, gene<br>rge po<br>r counti<br>of dupl<br>lest ele<br>y merg<br>r search | PO10<br>PO10<br>3<br>tem, Ir<br>ms: Ex<br>tof num<br>ersing times<br>ber, sma<br>ers, Gen<br>eration construction<br>ber, sortin<br>h, binary | PO11<br>troducti<br>changin<br>bers, Fa<br>he digits<br>llest div<br>nerating<br>of pseudo<br>omputin<br>istogram<br>om an o<br>g by selo | PO12<br>on to<br>g the<br>ctorial<br>s of an<br>isor of<br>prime<br>g nth<br>mming,<br>rdered<br>ection,  | PSO1         1         2         2         2         2         2         0         CO1,         CO1,         CO1,         CO1,         CO1, | PSO2<br>1<br>2<br>2<br>2<br>d CO's<br>CO2<br>CO2<br>CO2<br>CO3<br>CO3,<br>D4 |

## **Text Books**

1. How to Solve it by Computer, R.G. Dromey, First Edition, 2006, Pearson

## **Reference Books**

- 1. Fundamentals of Computers, Reema Thareja, Oxford University Press.
- 2. Flowchart and Algorithm Basics: The Art of Programming, A B Chaudhuri, 2020, Mercury Learning and Information.
- 3. Algorithms Unlocked, Thomas H. Coremen, 2013, The MIT Press.
- 4. An Introduction to Programming and Problem Solving with Pascal, Michael Schneider, Steven W. Weingart, David M. Perlman, Second Edition, 2011, Wiley India

## e- Resources & other digital material

- 1. https://onlinecourses.swayam2.ac.in/nou20\_cs03/preview
- 2. https://www.coursera.org/learn/problem-solving?#about
- 3. https://www.udemy.com/course/flowchartingcourse/
- 4. https://raptor.martincarlisle.com/

## **Communicative English I Lab**

| Course<br>Code                       | 20HS1151   | Year                       | Ι     | Semester      | Ι   |
|--------------------------------------|------------|----------------------------|-------|---------------|-----|
| Course<br>Category                   | Humanities | Branch                     | IT    | Course Type   | Lab |
| Credits                              | 1.5        | L-T-P                      | 0-0-3 | Prerequisites | Nil |
| Continuous<br>Internal<br>Evaluation | 15         | Semester End<br>Evaluation | 35    | Total Marks   | 50  |

## **Course Outcomes**

| Upon s | successful completion of the course, the student will be able to               |
|--------|--------------------------------------------------------------------------------|
| CO1    | Acquire communication skills through various language learning activities (L3) |
| CO2    | Construct meaningful sentences and Paragraphs(L3)                              |
| CO3    | Analyze the text to develop comprehensive ability (L4)                         |
| CO4    | Preparation of report based on the activity (L4)                               |

## Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations (3:High, 2: Medium, 1:Low)

|     |     |         |             | 0   |     |     | · · | <i>, ,</i> | ,    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|-----|---------|-------------|-----|-----|-----|-----|------------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO1 | PO2 | PO3     | PO4         | PO5 | PO6 | PO7 | PO8 | PO9        | PO10 | PO11 | PO12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PSO1 | PSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |     |         |             |     |     |     |     |            |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |     |         |             |     |     |     |     | 3          | 3    |      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |     |         |             |     |     |     |     |            | 3    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |     |         |             |     |     |     |     |            | 3    |      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |     |         |             |     |     |     |     | 3          | 3    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | PO1 | PO1 PO2 | PO1 PO2 PO3 |     |     |     |     | <u> </u>   |      |      | PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11         Image: |      | PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PO11       PO12       PS01         Image: Image of the state of |

|              | Syllabus                                                                                                                                     |                |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Expt.<br>No. | Experiments                                                                                                                                  | Mapped<br>CO's |
| 1            | Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions. | CO1,CO4        |
| 2            | Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others. | 01,004         |
| 3            | Answering a series of questions about main idea and supporting ideas after listening to audio texts.                                         | CO1,CO2,       |
| 4            | Discussion in pairs/ small groups on specific topics followed by short structured talks.                                                     | CO4            |
| 5            | Listening for global comprehension and summarizing what is listened to.                                                                      | CO1,CO3,       |
| 6            | Discussing specific topics in pairs or small groups and reporting what is discussed                                                          | C04            |
| 7            | Making predictions while listening to conversations/transactional dialogues without video; listening with video                              | CO1,CO4        |
| 8            | Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions. |                |
| 9            | Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension.                          | CO1,CO4        |
| 10           | Formal oral presentations on topics from academic contexts -without the use of PPT slides.                                                   |                |

## **Text Books**

1. Prabhavathy Y, M.Lalitha Sridevi, Ruth Z. Hauzel, "English all Round 1: Communication skills for Undergraduate students", Orient Black Swan, 2019

#### **Reference Books**

- 1. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2ndEdition, 2018.
- 2. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 3. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012

## e- Resources & other digital material

## Grammar/Listening/Writing:

1-language.com

http://www.5minuteenglish.com/

https://www.englishpractice.com/

## Listening:

https://learningenglish.voanews.com/z/361

3;

http://www.englishmedialab.com/listening.html

## Speaking:

https://www.talkenglish.com/BBC; Learning English – Pronunciation tips

Merriam-Webster – Perfect pronunciation Exercises

All Skills:

https://www.englishclub.com/;

http://www.world-english.org/

http://learnenglish.britishcouncil.org/

## **Online Dictionaries:**

Cambridge dictionary online; MacMillan dictionary; Oxford learner's dictionaries

## **Engineering Physics Lab**

| Cours<br>Code | se                        | 2       | 0BS11                                                           | 52        | Yea                                                       | r               |           | Ι         |         | Sem      | ester                | Ι          | Ι         |      |
|---------------|---------------------------|---------|-----------------------------------------------------------------|-----------|-----------------------------------------------------------|-----------------|-----------|-----------|---------|----------|----------------------|------------|-----------|------|
| Cours         | e e                       | B       | asic                                                            |           | Bra                                                       | nch             |           | IT        |         | Cou      | rse Typ              | e I        | ab        |      |
| Categ         |                           |         | cience                                                          |           | Dia                                                       | iitii           |           | 11        |         | Cou      | ise i jp             |            | ao        |      |
| Credit        |                           | 1       | .5                                                              |           | L-T                                                       | -P              |           | 0-0-3     | 3       | Prer     | requisite            | s N        | Jil       |      |
| Conti         |                           | 1       | 5                                                               |           |                                                           | ester I         |           | 35        |         | Tota     | al Marks             | s 5        | 0         |      |
| Intern        |                           |         |                                                                 |           | Evaluation                                                |                 |           |           |         |          |                      |            |           |      |
| Evalu         | ation                     |         |                                                                 |           |                                                           |                 |           |           |         |          |                      |            |           |      |
|               |                           |         |                                                                 |           |                                                           |                 |           | utcome    |         |          |                      |            |           |      |
| 1             |                           |         |                                                                 |           |                                                           |                 |           | nt will   |         |          |                      |            | FT 01     |      |
| CO1           |                           |         |                                                                 |           |                                                           |                 |           |           |         |          | agnetic p            |            |           |      |
| CO2<br>CO3    |                           |         |                                                                 |           |                                                           |                 |           |           |         |          | he energ<br>solar ce |            | gap. [L3  |      |
| CO3           |                           |         |                                                                 |           |                                                           | -               | -         |           |         |          | rying ci             |            | vith dist | ance |
| 001           |                           |         |                                                                 |           |                                                           |                 |           | thod. [I  |         |          | ijing et             | wii viit V |           | ance |
| CO5           | Estin                     | nate th | ne acce                                                         | ptance    | angle                                                     | of an o         | ptical 1  | fiber an  | ıd num  |          | oerture. [           | [L4]       |           |      |
| CO6           | Sum                       | marize  | e and ta                                                        | abulate   | the ex                                                    | perime          | ntal ob   | oservati  | ions an | d output | t                    |            |           |      |
| <b>C</b> (    | •1 4•                     | 6.6     | r                                                               | 0         |                                                           |                 |           |           | 4 P.D   |          | 0 (                  | 0          |           |      |
|               |                           |         |                                                                 |           |                                                           | wards<br>Mediun |           |           | t of Pr | ogram    | Outcom               | es &       |           |      |
|               | PO1                       | PO2     |                                                                 | PO4       | $\frac{gn, 2.1}{PO5}$                                     | PO6             | PO7       |           | PO9     | PO10     | PO11                 | PO12       | PSO1      | PSO  |
|               |                           |         |                                                                 |           |                                                           |                 |           |           |         |          |                      |            |           | 2    |
| CO1           | 3                         |         |                                                                 | 3         |                                                           |                 |           |           |         |          |                      | 2          |           |      |
| CO2           | 3                         |         |                                                                 | 3         |                                                           |                 |           |           |         |          |                      | 2          |           |      |
| CO3<br>CO4    | 3                         |         |                                                                 | 3         |                                                           |                 |           |           |         |          |                      | 2          |           |      |
| CO4           | 3                         |         |                                                                 | 3         |                                                           |                 |           |           |         |          |                      | 2          |           |      |
| CO6           | 3                         |         |                                                                 | 3         |                                                           |                 |           |           |         |          |                      | 2          |           |      |
|               | -                         |         |                                                                 | -         |                                                           |                 |           |           |         |          |                      | L          |           |      |
|               |                           |         |                                                                 |           |                                                           |                 | yllabu    |           |         |          |                      |            |           |      |
| Expt.         |                           |         |                                                                 |           |                                                           | Exp             | erimei    | nts       |         |          |                      |            | Map       |      |
| No.           | Dat                       | ormin   | tha D                                                           | ioloctri  | ia Con                                                    | stant of        | fvorio    | us Solic  | laamn   | loc      |                      |            | CC        | ) s  |
| 1             | Del                       | GIIIIII | uie D                                                           |           |                                                           | stallt O        | i vai 101 | us 2011   | 1 samp  | 105.     |                      |            | CO1,      | CO6  |
| 2             | Det                       | termine | e the M                                                         | lagneti   | c Susc                                                    | eptibili        | ty by (   | Gouy's    | Metho   | od.      |                      |            | -         |      |
|               |                           |         |                                                                 |           |                                                           |                 |           |           |         |          |                      |            |           |      |
| 3             | Det                       | termine | e the H                                                         | all Coe   | efficier                                                  | nt using        | g Hall I  | Effect e  | experin | nent.    |                      | _          | CO2,      | CO6  |
|               |                           |         | the F                                                           | n a n a 1 | Donal -                                                   | on of -         | Comi      | onder - 4 | 0.11    |          |                      |            |           | 2.20 |
| 4             | Det                       | lerinin | e the E                                                         | nergy I   | Sand g                                                    | ap of a         | Semic     | conduct   | lor.    |          |                      |            |           |      |
| 5             | 5 Study the characteristi |         |                                                                 |           | characteristic curves of a Photo Diode.                   |                 |           |           |         |          |                      |            |           |      |
| 6             | ,                         |         |                                                                 |           | strate the V-I the characteristics of P-N junction Diode. |                 |           |           |         |          |                      |            |           | CO6  |
| 7             |                           |         |                                                                 |           | V-I characteristics of a Solar Cell.                      |                 |           |           |         |          |                      |            |           | 200  |
| 8             | Det                       | termine | e The Magnetic Field along the axis of a Circular Coil carrying |           |                                                           |                 |           |           |         |          |                      | ving       |           |      |
|               | cur                       | rent.   |                                                                 | _         |                                                           |                 | -         |           |         |          | -                    | -          | - CO4,    | CO6  |
| 9             | Det                       | termine | e the R                                                         | esistivi  | ity of $\overline{S}$                                     | Semico          | nducto    | or by Fo  | our Pro | be Meth  | od.                  | _          |           | 00   |
| 10            | Det                       | termine | e the N                                                         | Numeri    | cal Ap                                                    | oerture         | of a g    | given (   | Optical | Fibre a  | nd Find              | its        | CO5,C     | 06   |
|               |                           |         | Angle                                                           |           | -                                                         |                 |           |           |         |          |                      |            | 1         |      |

## **Text Books**

1. RamaraoSri, Choudary Nityanand and Prasad Daruka, "Lab Manual of Engineering Physics"Vth ed., Excell Books, 2010

## **Reference Books**

1. Semiconductor Devices & Physics, S.M.Sze, Wiley, 2008.

## e- Resources & other digital material

- 1. https://nptel.ac.in/courses/115/105/115105120/
- 2. <u>https://nptel.ac.in/courses/115/107/115107095/</u>
- 3. https://nptel.ac.in/courses/115/104/115104109/
- 4. http://www.physicsclassroom.com/The-Laboratory
- 5. https://www.vlab.co.in/broad-area-physical-sciences
- 6. https://www.niser.ac.in/sps/teaching-laboratories

|                    |                                                 |                  |                | Bas      | ic Ele   | ctrical               |          | Electro<br>Lab                   | nics E   | ngineer  | ring        |            |                       |             |
|--------------------|-------------------------------------------------|------------------|----------------|----------|----------|-----------------------|----------|----------------------------------|----------|----------|-------------|------------|-----------------------|-------------|
| Course<br>Code     | 2                                               |                  | 20ES1          | 151      | Yea      | r                     |          | I                                |          | Sem      | ester       | Ι          |                       |             |
| Course             | e                                               |                  | Engine         | ering    | Bra      | nch                   |          | IT                               |          | Cou      | rse Typ     | <b>e</b> 1 | Lab                   |             |
| Catego             |                                                 |                  | Science        | -        |          |                       |          |                                  |          |          | • F         |            |                       |             |
| y<br>a hi          |                                                 |                  |                |          |          |                       |          | 0.0.0                            |          |          |             |            |                       |             |
| Credit             | -                                               |                  | 1.5            |          | L-T      |                       |          | 0-0-3                            |          |          | requisit    |            | Nil                   |             |
|                    | ntinuou 15 Semester 35 Total<br>ternal End Mark |                  |                |          |          |                       |          |                                  |          |          |             |            | 50                    |             |
|                    | IternalEndMarkaluationEvaluations               |                  |                |          |          |                       |          |                                  |          |          |             |            |                       |             |
| L'valua            |                                                 |                  |                |          | Lva      | iuano                 | 11       |                                  |          | 3        |             |            |                       |             |
|                    |                                                 |                  |                |          |          |                       | Cou      | irse                             |          |          |             |            |                       |             |
|                    |                                                 |                  |                |          |          |                       | Outc     |                                  |          |          |             |            |                       |             |
| 1                  |                                                 |                  |                |          |          |                       |          | ent will                         |          |          | •           |            |                       | /T          |
| CO1                |                                                 |                  |                |          |          |                       |          |                                  |          |          |             |            | problem               | 18 (L3)     |
| CO2                |                                                 | duct e<br>ratory |                | ients as | a teai   | in / 1nd              | uvidua   | ai by us                         | ing eq   | upment   | availab     | ie in th   | ie                    |             |
| CO3                |                                                 |                  |                | work th  | eorem    | ns and                | Kirch    | hoff's l                         | aws fo   | r DC ele | ectrical of | circuits   | s (L4).               |             |
| CO4                |                                                 |                  |                |          |          |                       |          |                                  |          |          |             |            | $\frac{1}{cy of sin}$ | ngle        |
|                    |                                                 |                  | sforme         |          |          |                       |          |                                  |          |          |             |            | -                     | 2           |
| CO5                |                                                 | -                |                |          | -        |                       | -        |                                  | ers of   | Electron | nic and A   | Analog     | circuits              | s. (L4)     |
| CO6                | Mak                                             | te an e          | effectiv       | e repor  | t base   | d on e                | xperin   | nents                            |          |          |             |            |                       |             |
| Contril<br>correla |                                                 |                  |                |          |          |                       | achie    | vement                           | t of Pr  | ogram    | Outcom      | es &S      | trength               | of          |
|                    | PO1                                             | PO2              | PO3            | PO4      | PO5      | PO6                   |          | PO8                              | PO9      | PO10     | PO11        | PO12       | 2 PSO1                | PSO         |
| CO1                | 3                                               |                  | +              | 3        |          |                       | 7        |                                  |          |          |             |            |                       | 2           |
| CO1<br>CO2         | 3                                               |                  |                | 3        | 3        |                       |          |                                  | 3        |          |             |            | 1                     | 1           |
| CO2<br>CO3         |                                                 | 3                |                | 3        | J        |                       |          |                                  | 5        |          |             |            | 1                     | 1           |
| CO4                |                                                 | 3                |                | 3        |          |                       |          |                                  |          |          |             |            | +                     |             |
| CO5                |                                                 | 3                |                | 3        |          |                       |          |                                  |          |          |             |            |                       |             |
| CO6                |                                                 |                  |                | 3        |          |                       |          |                                  |          | 3        |             |            | 1                     | 1           |
| Expt. 1            | No.                                             |                  |                |          |          |                       | Syll     | <b>llabus</b><br>abus<br>ict any | ten      |          |             | Ma         | apped CC              | )'s         |
|                    |                                                 |                  |                |          |          |                       | expe     | eriment                          |          |          |             |            |                       |             |
| 1                  | Verif                                           | icatio           | n of Ki        | rchhoff  | s Lav    | ws KV                 |          |                                  |          |          |             |            | CO1,CO2               | ,           |
|                    | <b>TT T T</b>                                   |                  |                |          |          |                       |          |                                  |          |          |             |            | CO3,CO                |             |
| 2                  | Verif                                           | icatio           | n of DC        | 2 Super  | positi   | on The                | eorem    | •                                |          |          |             |            | CO1, CO2              | ,           |
| 3                  | Vorif                                           | icatio           | n of Th        | avanin   | c The    | orema                 | nd Me    | orton's                          | Theore   | m        |             |            | CO3,CO0<br>CO1,CO2    |             |
| 3                  | v erm                                           | icatio           | n or th        | evenin   | 5 1 110  |                       | uiu in(  | JUIS                             | rneore   |          |             |            | CO3,CO6               | ,           |
| 4                  | Open                                            | circu            | it chara       | cteristi | cs/ma    | gnetiz                | ation of | characte                         | eristics | of DC    | shunt       |            | CO1,CO2               |             |
|                    | gener                                           |                  |                |          |          | 0                     |          |                                  |          |          |             |            | CO4,CO                | ,           |
| 5                  | 0                                               |                  | Tests          | on sing  | le pha   | se tran               | sform    | ner.                             |          |          |             | C          | CO1,CO2               | 2,          |
|                    |                                                 |                  |                | _        | _        |                       |          |                                  |          |          |             |            | CO4,CO6               |             |
| 6                  | Volta                                           | ge Cu            | $\overline{C}$ | Characte | eristics | s of a <mark>p</mark> | o-n Ju   | nction I                         | Diode.   | _        | _           |            | CO1,CO2               | ,           |
|                    | <b></b>                                         |                  | • ~            |          |          |                       | (* 1     |                                  |          |          |             |            | CO5,CO                |             |
| 7                  | Half                                            | wave             | rectifie       | r with a | and wi   | ithout                | tilter.  |                                  |          |          |             |            | CO1,CO2               | 2,          |
| '                  |                                                 |                  |                |          |          |                       |          |                                  |          |          |             | -          | CO5,CO6               | <pre></pre> |

| 8  | Full wave rectifier with and without filter.                         | CO1,CO2,<br>CO5,CO6 |
|----|----------------------------------------------------------------------|---------------------|
| 9  | Voltage Regulation with Zener Diode.                                 | C01,C02,            |
| 10 | Inverting and Non-inverting Amplifier Design with Op-amp             | CO5,CO6             |
| 11 | Verification of KCL and KVL using PSPICE.                            | CO1,CO2,            |
| 12 | Verification of Network Theorems using PSPICE                        | CO5,CO6             |
| 13 | Diode and Transistor Circuit Analysis using PSPICE                   | CO1,CO2,            |
|    | Inverting and Non-inverting Amplifier Design with Op-ampusing PSPICE | CO3,CO6             |

Text Books

- 1. D.P.Kothari, I.J.Nagrath, Basic Electrical and Electronics Engineering, 1<sup>st</sup> Edition, McGraw Hill Education (India) Private Limited, 2017.
- 2. B.L.Theraja, Fundamentals of Electrical Engineering and Electronics, 1<sup>st</sup> Edition, S.Chand Publishing, New Delhi, 2006.
- 3. Millman Jacob, Halkias C Christos, Electronic Devices and Circuits, 2<sup>nd</sup> Edition, Tata Mcgrawhill Publications, 2007.

Reference Books

- 1. S.K. Bhattacharya, Basic Electrical and Electronics Engineering, Pearson Education, 2011.
- Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2<sup>nd</sup> Edition, Pearson Education, 2008.
- 3. R.K.Rajput, Basic Electrical and Electronics Engineering, University Science Press, New Delhi, 2012.
- e- Resources & other digital material
  - 1. http://202.53.81.118/course/view.php?id=122
  - 2. https://nptel.ac.in/courses/108105112/

## Communicative English II

| Course     |            | 20HS1201            | Year                 | I                  | Semester           | II     |
|------------|------------|---------------------|----------------------|--------------------|--------------------|--------|
| Code       |            | 201101201           | 1 (a)                | 1                  | Semester           | 11     |
| Cours      | se         | Humanities          | Branch               | IT                 | <b>Course Type</b> | Theory |
| Categ      | gory       | Tumanties           | Dranch               | 11                 | Course Type        | Theory |
| Credi      | its        | 3                   | L-T-P                | 3-0-0              | Prerequisites      | Nil    |
| Continuous |            |                     | Semester End         |                    | Total              |        |
| Intern     | nal        | 30                  | Evaluation           | 70                 | Marks              | 100    |
| Evalu      | ation      |                     | Evaluation           |                    |                    |        |
|            |            |                     | ~                    |                    |                    |        |
|            |            |                     |                      | Outcomes           |                    |        |
| Upon s     | successful | completion of th    | e course, the stude  | nt will be able to | C                  |        |
| CO1        | Understa   | nd various Lingu    | istic aspects (L2)   |                    |                    |        |
| CO2        | Apply lar  | nguage to draft le  | etters for various b | usiness purposes   | s(L3)              |        |
| CO3        | Interpret  | the text for infor  | mation processing    | and effective co   | ommunication. (L3) |        |
| CO4        | Analyze    | the data for report | rt writing and préc  | is writing. (L4)   |                    |        |
| CO5        | Relate ad  | vanced writing s    | kills for better emp | ployability. (L4)  |                    |        |

| Contribution of Course Outcomes towards achievement of Program Outcomes & |
|---------------------------------------------------------------------------|
| Strength of correlations (3:High, 2: Medium, 1:Low)                       |

|     |     |     |     | 0   |     |     |     |     |     |      |      |      |      |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 |     |     |     |     |     |     |     |     |     |      |      |      |      | 1    |
| CO2 |     |     |     |     |     |     |     |     | 3   | 3    |      | 3    |      | 1    |
| CO3 |     |     |     |     |     |     |     |     | 3   | 3    |      | 3    |      | 1    |
| CO4 |     |     |     |     |     |     |     |     | 3   | 3    |      | 3    |      | 1    |
| CO5 |     |     |     |     |     |     |     |     | 3   | 3    |      | 3    |      | 1    |
|     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |

|             | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Unit<br>No. | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mapped<br>CO's       |
| 1           | <ul> <li>Reading: Reading for presenting - strategies to select, compile and synthesize information for presentation-Comprehending a wide range of texts -Reading to recognize academic style</li> <li>Reading for Writing: Paraphrasing - using quotations and in-text references; using academic style - avoiding colloquial words and phrases - Writing an essay after researching a topic - Citing the sources used</li> <li>Grammar and Vocabulary: Academic verbs in context; formal words and phrases-Awareness about Root words</li> </ul>                                                                                                                                      | CO1, CO3,<br>CO5     |
| 2           | <b>Reading:</b> Recognizing formal and informal styles -Recognizing the difference<br>between facts and opinions - Identifying and understanding different perspectives<br><b>Writing:</b> Letter writing and e mail writing - Structure, Conventions and Etiquette<br>– Informal, semi-formal and formal (enquiry, complaints, seeking permission,<br>seeking internship - Re-draft a piece of text from a different perspective - Writing<br>brief critical reviews of short texts. Communication skills-verbal /Non verbal<br><b>Grammar and Vocabulary:</b> Agreement: Subject-verb, Noun-pronoun; Editing<br>short texts - Phrasal verbs - Phrasal prepositions - Avoiding clichés | CO1,CO2,<br>CO4, CO5 |
| 3           | <ul> <li>Reading: Identifying claims, evidences, views/opinions, purpose, and stance/position -Understand the correlation between a talk and a reading text based on inferences made.</li> <li>Writing: Writing structured analytical and argumentative essays on general topics using suitable claims and evidences with the sources cited-Peer review of</li> </ul>                                                                                                                                                                                                                                                                                                                   | CO1,<br>CO3, CO5     |

|                    | the essays written                                                                                                         |                |
|--------------------|----------------------------------------------------------------------------------------------------------------------------|----------------|
|                    | Grammar and Vocabulary: Language for different functions such as stating a                                                 |                |
|                    | point, expressing opinion, Agreeing/disagreeing, Adding information to what                                                |                |
|                    | someone has stated, and asking for clarification - Modifiers and misplaced                                                 |                |
|                    | modifiers. Corporate grooming                                                                                              |                |
| 4                  | Reading: Reading varied text types - Structure and contents of a formal report -                                           |                |
|                    | Sections in a report and understanding the purpose of each section- Significance                                           |                |
|                    | of references                                                                                                              | CO1, CO3       |
|                    | Writing: Writing reports                                                                                                   | CO4, CO5       |
|                    | <b>Grammar and Vocabulary:</b> Active and passive voice - Use of passive verbs in academic writing- <b>Precise writing</b> |                |
| 5                  | Reading: Reading for inferential comprehension                                                                             |                |
|                    | Writing: Writing one's CV and cover letter - Applying for a job/internship                                                 |                |
|                    | Grammar and Vocabulary: Reinforcing learning - Edit one's writing to correct                                               | CO1, CO2,      |
|                    | common errors in grammar and usage - Use appropriate vocabulary for speaking                                               | CO5            |
|                    | and writing – Various purposes, Jumbled sentences                                                                          |                |
|                    | I                                                                                                                          |                |
| Text B             | Learning Resources                                                                                                         |                |
|                    | Prabhavathy Y, M.Lalitha Sridevi "English all Round2: Communication skills for U                                           | Indergraduate  |
| 1.                 | students", Orient Black Swan, 2020                                                                                         | lidergradaad   |
| Refere             | nce Books                                                                                                                  |                |
| 1.                 | Bailey, Stephen. Academic writing: A handbook for international students. Routledg                                         | ge, 2014.      |
|                    | Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Education                                            |                |
| 3.                 | Hewings, Martin. Cambridge Academic English (B2). CUP, 2012(Student Book,                                                  | Teacher        |
|                    | Resource Book, CD & DVD)                                                                                                   |                |
|                    | ources & other digital material                                                                                            |                |
|                    | mar/Listening/Writing:                                                                                                     |                |
| 0                  | uage.com; http://www.5minuteenglish.com/ https://www.englishpractice.                                                      | .com/          |
|                    | mar/Vocabulary:                                                                                                            |                |
| 0                  | h Language Learning Online; http://www.bbc.co.uk/learningenglish/                                                          |                |
|                    | www.better-english.com/; http://www.nonstopenglish.com/                                                                    |                |
| 1                  | /www.vocabulary.com/; BBC Vocabulary Games                                                                                 |                |
|                    | ice Vocabulary Game                                                                                                        |                |
| Readin             | 0                                                                                                                          | 4              |
| -                  | /www.usingenglish.com/comprehension/; https://www.englishclub.com/reading/shor                                             | t-stories.ntm; |
|                    | /www.english-online.at/                                                                                                    |                |
|                    | /www.englishclub.com/; http://www.world-english.org/ http://learnenglish.britishc                                          | ouncil org/    |
| All Sk             |                                                                                                                            |                |
| https://           |                                                                                                                            | ounch.org/     |
| https://<br>Online | e <b>Dictionaries</b> :<br>Fidge dictionary online; MacMillan dictionary; Oxford learner's dictionaries                    | ounch.org/     |

## **Engineering Chemistry**

| Cours          |      |            | 20BS1                                                                                                                                                                                          | 202      | Year    | r                         |          |          | Ι        | Sem      | ester      |           | ]       | II             |  |
|----------------|------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------------------------|----------|----------|----------|----------|------------|-----------|---------|----------------|--|
| Code           |      |            |                                                                                                                                                                                                | <u>.</u> | _       |                           |          |          |          | ~        |            |           |         |                |  |
| Cours<br>Categ |      | 7          | Basic So                                                                                                                                                                                       | cience   | Brai    | nch                       |          |          | Т        | Cou      | rse Type   | e l       | The     | Theory         |  |
| Credi          |      |            | 3                                                                                                                                                                                              |          | L-T-    | L-T-P 3-0-0 Prerequisites |          |          |          |          |            |           | N       | Vil            |  |
| Conti          | inuc | ous        | 30                                                                                                                                                                                             |          | Sem     | ester I                   | End      | -        | 70       | Tota     | -          |           |         | 00             |  |
| Inter          | nal  |            |                                                                                                                                                                                                |          | Eval    | uatior                    | 1        |          |          | Mar      | ks         |           |         |                |  |
| Evalu          | atio | on         |                                                                                                                                                                                                |          |         |                           |          |          |          |          |            |           |         |                |  |
| <b>T</b> T     |      | <b>C</b> 1 | 1                                                                                                                                                                                              | 6.1      |         |                           |          | tcomes   | 11       |          |            |           |         |                |  |
| _              |      |            | completio                                                                                                                                                                                      |          |         |                           |          |          |          |          |            |           |         |                |  |
| CO1            | fi   | nishing    | erstand the basic principles related to renewable energy sources, energy systems,<br>ning and materials (L2)<br>y the knowledge of energy transformation principles to classify and describe t |          |         |                           |          |          |          |          |            |           |         |                |  |
| CO2            |      |            | he knowle<br>of electro                                                                                                                                                                        |          |         |                           | nsform   | ation p  | princip  | les to c | lassify a  | ind desc  | ribe t  | he             |  |
| CO3            |      |            | uitable me<br>materials (                                                                                                                                                                      |          | for me  | etal fin                  | ishing   | and ad   | vanced   | d techni | ques for   | the char  | racteri | zation         |  |
| CO4            | A    | nalyse     | the perfor<br>s and nanc                                                                                                                                                                       | mance    |         |                           |          |          |          |          | energy c   | onversio  | on syst | tems,          |  |
| CO5            |      |            | effective                                                                                                                                                                                      |          |         |                           |          |          |          |          | ated to E  | ngineeri  | ng che  | emistry.       |  |
|                |      |            | ntribution                                                                                                                                                                                     |          |         |                           |          |          |          |          |            |           |         |                |  |
|                |      |            |                                                                                                                                                                                                |          |         |                           |          |          |          |          | n, 1:Low   |           |         |                |  |
|                | PC   | D1 PC      | D2 PO3                                                                                                                                                                                         | PO4      | PO5     | PO6                       | PO7      | PO8      | PO9      | PO10     | PO11       | PO12      | PSO     | 1 PSO2         |  |
| CO1            |      |            |                                                                                                                                                                                                |          |         |                           |          |          |          |          |            |           |         |                |  |
| CO2            | 3    |            |                                                                                                                                                                                                |          |         |                           | 1        |          |          |          |            | 1         | 1       |                |  |
| CO3            | 3    |            |                                                                                                                                                                                                |          |         |                           | 1<br>1   |          |          |          |            | 1         | 1       |                |  |
| CO4<br>CO5     | 3    |            |                                                                                                                                                                                                |          |         |                           | 1        |          |          | 2        |            | 1         | 1       |                |  |
| 05             |      | ,          |                                                                                                                                                                                                |          |         |                           | Svll     | abus     |          | 2        |            | 1         | 1       |                |  |
| Unit I         | No.  |            |                                                                                                                                                                                                |          |         |                           |          | labus    |          |          |            |           |         | Mapped<br>CO's |  |
| 1              |      | ELI        | ECTROCH                                                                                                                                                                                        | IEMIC    | AL EI   | NERG                      | Y SYS    | TEMS     |          |          |            |           |         | 003            |  |
|                |      | Intr       | oduction-C                                                                                                                                                                                     | Drigin o | of elec | trode                     | potent   | ial, Ele | ctrode   | Potentia | als, Meas  | surement  | t of    | CO1,           |  |
|                |      |            | ctrode Pot                                                                                                                                                                                     |          |         | -                         |          |          | -        |          |            |           |         | CO2,           |  |
|                |      |            | es of E                                                                                                                                                                                        |          |         |                           |          | -        | -        |          |            |           |         | CO4,           |  |
|                |      |            | ctrochemic                                                                                                                                                                                     |          |         |                           |          |          | -        |          |            |           |         | CO5            |  |
|                |      |            | ventions,<br>mer mem                                                                                                                                                                           | • 1      |         |                           |          |          |          | 0        | embrane    | e electro | ode,    |                |  |
|                |      |            | sensing el                                                                                                                                                                                     |          |         |                           |          |          |          |          | 11s.       |           |         |                |  |
| 2              |      |            | TTERY T                                                                                                                                                                                        |          |         |                           | -011 011 | , co     |          |          |            |           |         |                |  |
| _              |      |            | ic concep                                                                                                                                                                                      |          |         |                           | eristic  | s, clas  | sificati | on of l  | batteries, | , Import  | ant     | CO1,           |  |
|                |      | app        | lications                                                                                                                                                                                      | of ba    | tteries | , Cla                     | ssical   | batter   | ies-dry  | /Leclan  | che cel    | l, Mod    | ern     | CO2,           |  |
|                |      |            | eries-zinc                                                                                                                                                                                     |          |         |                           |          |          |          | -        | •          |           |         | CO4,           |  |
|                |      |            | l cells- Int                                                                                                                                                                                   |          |         |                           |          |          |          |          | gen and o  | oxygen f  | uel     | CO5            |  |
| ~              |      |            | , propane a                                                                                                                                                                                    |          |         |                           |          |          | el cell. |          |            |           |         | 001            |  |
| 3              |      |            | NEWABL                                                                                                                                                                                         |          |         |                           |          |          |          |          |            |           |         | CO1,           |  |
|                |      |            | oduction- ar energy                                                                                                                                                                            |          |         |                           |          |          | Chemi    | ical pro | nerties    | of Silice | n_      | CO2,           |  |
|                |      | 501        | a energy                                                                                                                                                                                       | mil      | Juucil  | <u>- 1</u>                | nysice   |          |          | icar pro | perces     | 51 SHIC   | /11-    |                |  |

| •      |                                                                                    |          |
|--------|------------------------------------------------------------------------------------|----------|
|        |                                                                                    | CO4,CO5  |
|        | Production of Solar Grade Silicon from Quartz - Doping of Silicon- p and n         |          |
|        | type semi conductors- PV cell / solar cell- Manufacturing of Photovoltaic          |          |
|        | Cells using Chemical Vapor Deposition Technique-applications of solar energy       |          |
| 4      | METAL FINISHING                                                                    |          |
|        | Technological importance of metal finishing, methods of metal finishing,           | CO1,CO3, |
|        | manufacturing of electronic components, electrochemical techniques of forming,     | CO4,CO5  |
|        | machining and etching, electrolytic cell, principle of electroplating, nature of   |          |
|        | electrodeposits, electroplating process, Electroplating of chromium, gold etc.     |          |
|        | Electroless plating of copper, nickel                                              |          |
| 5      | POLYMERS & NANOMATERIALS                                                           |          |
|        | Polymers: Introduction thermoplastic and thermo setting resins, Preparation,       |          |
|        | properties and uses of polystyrene and Polyphosphazines., differences between      |          |
|        | Nanomaterials: Introduction to nanomaterial: nanoparticles, nanocluster, carbon    | CO1,CO3  |
|        | nanotube (CNT) and nanowires. Chemical synthesis of nanomaterials: sol-gel         | CO4,CO5  |
|        | method. Characterization: Principle and applications of scanning electron          | 004,005  |
|        | microscope (SEM) and transmission electron microscope (TEM).                       |          |
|        |                                                                                    |          |
|        | Learning Resources                                                                 |          |
| Text B |                                                                                    |          |
|        | P.C. Jain and M. Jain, Engineering Chemistry, 15/e, DhanapatRai& Sons, Delhi (2014 | ).       |
|        | B.K. Sharma, Engineering Chemistry, Krishna Prakashan, Meerut.                     |          |
| 3.     | O G Palanna, Engineering Chemistry, Tata McGraw Hill (2009).                       |          |
| Refere | nce Books                                                                          |          |
| 1.     | Sashichawla, A Textbook of Engineering Chemistry, DhanapathRai and sons, (2003)    |          |
|        | B.S Murthy and P. Shankar, A Text Book of NanoScience and NanoTechnology,          |          |
|        | UniversityPress (2013).                                                            |          |
| 3.     | S.S. Dara, A Textbook of Engineering Chemistry, S.Chand& Co, (2010)                |          |
|        | N.Krishna Murthy and Anuradha, A text book of Engineering Chemistry, M             |          |
|        | murthyPublications (2014).                                                         |          |
| 5      | K. SeshaMaheshwaramma and Mridula Chugh, Engineering Chemistry, Pearson II         | ndia Edn |
| 5.     | services,(2016).                                                                   |          |
| e Reso | burces & other digital material                                                    |          |
|        | https://nptel.ac.in/courses/105105178/                                             |          |
|        | http://202.53.81.118/course/view.php?id=82                                         |          |
| ۷.     | http://202.55.81.118/course/view.php?id=82                                         |          |
|        |                                                                                    |          |
|        |                                                                                    |          |
|        |                                                                                    |          |
|        |                                                                                    |          |
|        |                                                                                    |          |
|        |                                                                                    |          |
|        |                                                                                    |          |
|        |                                                                                    |          |
|        |                                                                                    |          |
|        |                                                                                    |          |
|        |                                                                                    |          |
|        |                                                                                    |          |
|        |                                                                                    |          |

|                   |                                               |                                                                                                                                                       |                                                                                                                                                                                   |                         | ]                | Probat                | oility a            | nd Sta              | tistics              |              |                                       | <u> </u> |                |          |  |
|-------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|-----------------------|---------------------|---------------------|----------------------|--------------|---------------------------------------|----------|----------------|----------|--|
| Cours<br>Code     | e                                             |                                                                                                                                                       | 20BS                                                                                                                                                                              | 1204                    | Yea              | r                     |                     |                     | Ι                    | Sem          | ester                                 |          | IJ             | [        |  |
| Cours<br>Categ    | -                                             |                                                                                                                                                       | Basic Science Branch                                                                                                                                                              |                         |                  |                       |                     |                     | IT                   |              | rse Typ                               |          | Theory         |          |  |
| Credi             | ts                                            |                                                                                                                                                       | 3                                                                                                                                                                                 |                         | L-T-P            |                       |                     | 3-                  | 0-0-                 | Prei         | equisite                              | es       | N              | il       |  |
| Conti             | nuou                                          | 5                                                                                                                                                     | 30                                                                                                                                                                                | )                       | Sem              | ester I               | End                 | ,                   | 70                   | Tota         |                                       |          | 10             | 0        |  |
| Interr            | al                                            |                                                                                                                                                       |                                                                                                                                                                                   |                         | Eval             | luatior               | 1                   |                     |                      | Mar          | ks                                    |          |                |          |  |
| Evalu             | ation                                         |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       |                     |                     |                      |              |                                       |          |                |          |  |
|                   |                                               |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  | ~                     |                     |                     |                      |              |                                       |          |                |          |  |
| <b>T</b> T        |                                               | C 1                                                                                                                                                   | 1                                                                                                                                                                                 | 6.1                     |                  |                       |                     | Dutcon              |                      |              |                                       |          |                |          |  |
|                   |                                               |                                                                                                                                                       | ompleti                                                                                                                                                                           |                         |                  |                       |                     |                     |                      |              |                                       |          |                |          |  |
| $\frac{CO1}{CO2}$ |                                               |                                                                                                                                                       | d the ba                                                                                                                                                                          |                         | -                | -                     |                     |                     |                      |              |                                       | 40 the   |                |          |  |
| CO2               |                                               |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       |                     |                     |                      |              | gression<br>oblem (                   |          | given          |          |  |
| CO3               |                                               |                                                                                                                                                       |                                                                                                                                                                                   |                         | -                |                       |                     |                     |                      |              | 1000000000000000000000000000000000000 |          |                |          |  |
| $\frac{CO3}{CO4}$ |                                               | •                                                                                                                                                     | -                                                                                                                                                                                 |                         |                  |                       |                     | -                   |                      | -            |                                       |          | ns (L4).       |          |  |
| $\frac{CO+}{CO5}$ |                                               |                                                                                                                                                       |                                                                                                                                                                                   | 1 1                     |                  |                       |                     |                     |                      |              | tical dec                             | 1        |                |          |  |
| CO6               |                                               |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       |                     |                     |                      |              |                                       |          | eport.(L3      | 0        |  |
| 000               | <u></u> PP                                    |                                                                                                                                                       | <u></u>                                                                                                                                                                           | <u>s or pro</u>         |                  | lej ulla              | 5000150             |                     |                      |              |                                       |          | -poin(20       | /        |  |
|                   | C                                             | ontrib                                                                                                                                                | ution of                                                                                                                                                                          | f Cours                 | e Out            | comes                 | towar               | ds ach              | ievem                | ent of P     | rogram                                | Outco    | mes &          |          |  |
|                   |                                               |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       |                     |                     |                      | edium, 1     | 0                                     |          |                |          |  |
|                   | PO1                                           | PO2                                                                                                                                                   |                                                                                                                                                                                   | PO4                     | PO5              | PO6                   |                     | PO8                 | PO9                  | PO10         | PO11                                  | PO12     | PSO1           | PSC      |  |
| CO1               |                                               |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       |                     |                     |                      |              |                                       |          | 1              |          |  |
| CO2               | 3                                             |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       |                     |                     | 2                    | 2            |                                       |          | 1              |          |  |
| CO3               | 3                                             |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       |                     |                     | 2                    | 2            |                                       |          | 1              |          |  |
| CO4               |                                               | 3                                                                                                                                                     |                                                                                                                                                                                   |                         |                  |                       |                     |                     |                      |              |                                       |          | 1              |          |  |
| CO5               |                                               | 3                                                                                                                                                     |                                                                                                                                                                                   |                         |                  |                       |                     |                     |                      |              |                                       |          | 1              |          |  |
| CO6               | 3                                             |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       |                     |                     | 2                    | 2            |                                       |          | 1              |          |  |
|                   |                                               |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       |                     | abus                |                      |              |                                       |          |                |          |  |
| Unit N            |                                               |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       | Syllab              |                     |                      |              |                                       |          | Mappe          | ed CO    |  |
| 1                 | Measures of Central Tendency and Probability: |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       |                     |                     |                      |              |                                       |          |                |          |  |
|                   |                                               | Measures of central tendency : Mean, Median, Mode                                                                                                     |                                                                                                                                                                                   |                         |                  |                       |                     |                     |                      |              |                                       |          |                | CO1,CO2, |  |
|                   |                                               | <b>Probability</b> : Probability axioms, addition law and multiplicative law of probability, conditional probability, Baye's theorem (without proof). |                                                                                                                                                                                   |                         |                  |                       |                     |                     |                      |              |                                       |          |                | 06       |  |
|                   |                                               |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       |                     |                     |                      | vithout p    | proof).                               |          |                |          |  |
| 2                 |                                               |                                                                                                                                                       | m Vari                                                                                                                                                                            |                         |                  |                       | ·                   |                     |                      |              |                                       |          |                |          |  |
|                   |                                               |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       |                     | · · •               |                      | •            | ity funct                             |          | CO1,C          | · · ·    |  |
|                   | -                                             |                                                                                                                                                       | ties (ma                                                                                                                                                                          |                         |                  |                       |                     |                     |                      | mai dis      | tributior                             | i-their  | CO4,C          | 00       |  |
| 3                 |                                               | _                                                                                                                                                     | ation,                                                                                                                                                                            |                         |                  | -                     |                     |                     |                      | <u>n 000</u> | fficient,                             | rank     |                |          |  |
| 5                 |                                               |                                                                                                                                                       | ,                                                                                                                                                                                 | 0                       |                  |                       |                     |                     |                      |              | coeff                                 |          | CO1,C          | 02       |  |
|                   |                                               |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       |                     |                     |                      |              | parabo                                |          | CO4,C          |          |  |
|                   |                                               | expone                                                                                                                                                |                                                                                                                                                                                   | use squ                 | ui es            | und o                 |                     | (                   | Strange              | . 2110,      | puluoo                                | ia ana   | 00.,0          | 00       |  |
|                   |                                               | curves                                                                                                                                                |                                                                                                                                                                                   |                         |                  |                       |                     |                     |                      |              |                                       |          |                |          |  |
| 4                 |                                               | ,                                                                                                                                                     |                                                                                                                                                                                   | ypothe                  | sis a            | nd La                 | rge Sa              | ample               | Tests                | : Form       | ilation                               | of null  |                |          |  |
|                   |                                               |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       | -                   | _                   |                      |              | ypes of                               |          | CO1,C          | 03       |  |
| I                 |                                               |                                                                                                                                                       |                                                                                                                                                                                   |                         |                  |                       |                     |                     |                      |              | oportion                              |          | C01,C          |          |  |
| ·                 |                                               |                                                                                                                                                       | nce of                                                                                                                                                                            | proport                 | tions,           | test fo               | or sing             | le mea              | an and               | differe      | nce of                                | means.   |                | 00       |  |
| ·                 | 0                                             |                                                                                                                                                       | • ,                                                                                                                                                                               | erval fo                | or para          | motor                 | in on               | e samp              | le and               | two san      | ple pro                               | blems    |                |          |  |
|                   |                                               | Confid                                                                                                                                                | <ul> <li>Confidence interval for parameters in one sample and two sample problems</li> <li>Small Sample Tests: Student t-distribution (test for single mean, two means</li> </ul> |                         |                  |                       |                     |                     |                      |              |                                       |          |                |          |  |
| 5                 | (                                             | Small                                                                                                                                                 | Sample                                                                                                                                                                            | Tests:                  | Stude            | ent t-di              | stribut             | ion (tes            | st for si            |              |                                       |          |                |          |  |
|                   |                                               | <b>Small</b><br>and pa                                                                                                                                | Sample                                                                                                                                                                            | <b>Tests:</b> est), tes | Stude<br>sting o | ent t-dis<br>of equal | stribut:<br>lity of | ion (tes<br>variand | st for si<br>ces (F- | test), χ2    | an, two<br>- test f                   |          | CO1,C<br>CO5,C |          |  |

## Text Books

1. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan Chand & Sons Publications, 2012.

2. Dr.T.K.V. Iyengar, Dr.B.Krishna Gandhi, S. Ranganatham, Dr. M.V.S.S.N. Prasad, Probability & Statistics, Publications: S.Chand, 4<sup>th</sup> Revised Edition, 2012.

## Reference Books

1. S. Ross, A First Course in Probability, Pearson Education India, 2002.

2. Miller and Freunds, Probability and Statistics for Engineers, 7/e, Pearson, 2008

e- Resources & other digital material

1. https://nptel.ac.in/courses/111/106/111106150/

2. https://nptel.ac.in/courses/111105035

3. <u>http://202.53.81.118/</u> -> PVPSIT FED-Moodle

| Cour              |          |                                                                                                                                                                                                | 20ES       | 1202                     | Year         | r                   |          |               | Ι                                     | Sem         | nester       |           | II            |               |
|-------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------|--------------|---------------------|----------|---------------|---------------------------------------|-------------|--------------|-----------|---------------|---------------|
| Code<br>Cour      |          | —                                                                                                                                                                                              | Fnoin      | ngineering <b>Branch</b> |              |                     |          | <u> </u>      | IT                                    | Cou         | rse Type     | <u> </u>  | Theory        |               |
| Categ             |          |                                                                                                                                                                                                | Scie       |                          | Dia          | lui                 |          | -             | . 1                                   | Cou         | ISC LJP      | <i>c</i>  | Theory        |               |
| Credi             |          |                                                                                                                                                                                                | 3          | ,                        | L-T-         | -P                  |          | 3-            | -0-0                                  | Prer        | requisite    | :s        | Probl         |               |
|                   |          |                                                                                                                                                                                                |            |                          |              |                     |          |               |                                       |             |              |           | Solvi         | -             |
| Cant              | inuous   |                                                                                                                                                                                                |            |                          | - Com        |                     | J        | <u> </u> ,    | 70                                    | Tote        | . 1          |           | Techni<br>100 |               |
| Conti<br>Inter    |          | ;<br>ا                                                                                                                                                                                         | 30         | J                        |              | nester F<br>luation |          | / /           | /0                                    | Tota<br>Mar |              |           | 100           | 5             |
|                   | uation   |                                                                                                                                                                                                |            |                          |              | 144040              |          |               |                                       | 1,744-      | <b>N</b> 5   |           |               |               |
|                   |          | R                                                                                                                                                                                              |            |                          |              |                     |          | L             |                                       | 1           |              | . <u></u> |               |               |
| · •               |          | <u> </u>                                                                                                                                                                                       | 1          | ·                        |              |                     |          | Outcon        |                                       |             |              |           |               |               |
| Jpon<br>CO1       |          |                                                                                                                                                                                                | -          |                          |              |                     |          | ent will l    |                                       |             | moto for     | alving    | mahlan        | (I            |
| $\frac{101}{CO2}$ |          |                                                                                                                                                                                                |            |                          |              |                     |          |               |                                       |             | plems. (L    |           | g problem     | 18. (L.       |
| CO2               |          |                                                                                                                                                                                                |            |                          |              |                     |          |               |                                       |             | solve pr     |           | . (L3)        |               |
| CO4               |          |                                                                                                                                                                                                |            |                          |              |                     |          |               |                                       |             |              |           | olutions. (   | (L4)          |
|                   |          |                                                                                                                                                                                                | ution of   | f Cours                  | se Out       | tcomes              | s towar  | rds ach       | ieveme                                | ent of P    | Program      |           |               | <u>.</u>      |
|                   |          |                                                                                                                                                                                                |            | <u> </u>                 |              |                     |          |               |                                       | edium, 1    |              | T DO 10   |               |               |
| CO1               | PO1<br>3 | PO2                                                                                                                                                                                            | PO3        | PO4                      | PO5          | PO6                 | PO7      | PO8           | PO9                                   | PO10        | PO11         | PO12      |               | PSC<br>1      |
| $\frac{CO1}{CO2}$ | 3        | +                                                                                                                                                                                              | <u> </u> ! | ──┤                      | <u> </u>     | <b> '</b>           |          |               | ───┘                                  | <u> '</u>   | <b> </b>     | <b> </b>  | 1 2           | $\frac{1}{2}$ |
| $\frac{CO2}{CO3}$ | 3        |                                                                                                                                                                                                | +'         | ┼───┤                    | [            | <b>├</b> ───′       |          | <b>├</b> ───┤ |                                       | <u> </u> '  | <del> </del> |           | 2             | 2             |
| $\frac{CO3}{CO4}$ | 5        | 3                                                                                                                                                                                              | +          | <b>├</b> ──+             | <sup>_</sup> | <b>├</b> ──′        |          |               | 3                                     | 3           | <u>├</u> ──  |           | 2             | 2             |
|                   | L        |                                                                                                                                                                                                |            | L                        |              | ·                   | <u> </u> | ·             | ·                                     | L           | <u>.</u>     | L         | L             | <u> </u>      |
|                   |          |                                                                                                                                                                                                |            |                          |              |                     | -        | labus         |                                       |             |              |           | • <u> </u>    |               |
| Unit I            |          |                                                                                                                                                                                                |            | ~                        |              |                     | Syllab   |               |                                       |             |              |           | Mappeo        | d CO          |
| 1                 |          |                                                                                                                                                                                                |            |                          |              |                     |          |               |                                       |             | , A Sim      |           |               |               |
|                   |          | 0                                                                                                                                                                                              |            |                          |              | •                   | • 1      |               |                                       |             | Input / (    | Jutput    |               | - CO          |
|                   |          |                                                                                                                                                                                                |            |                          |              |                     |          | and Typ       |                                       |             | Statemen     | ute and   | CO1, CO2      |               |
|                   |          | Switch                                                                                                                                                                                         |            | J1 an                    | പ്പട്ടം      | laum                | шь       | 1, 11         | 30, 11 -                              | 2130-11 ~   | natomen      | to una    |               |               |
| 2                 |          |                                                                                                                                                                                                |            | ements                   | : while      | e. do-w             | vhile a  | nd for 1      | oops, l                               | Nested 1    | loops, br    | eak       |               |               |
|                   |          | <b>Iterative Statements:</b> while, do-while and for loops, Nested loops, break and continue statements.                                                                                       |            |                          |              |                     |          |               |                                       |             |              |           |               |               |
|                   | I        | Arrays                                                                                                                                                                                         | : Decla    | rations                  | CO1, CO2     |                     |          |               |                                       |             |              |           |               |               |
|                   |          | <ul><li>Arrays: Declaration, Accessing array elements, Storing values, Operations on arrays, Multi-dimensional arrays.</li><li>Strings: Introduction, String manipulation functions.</li></ul> |            |                          |              |                     |          |               |                                       |             |              |           |               |               |
|                   |          |                                                                                                                                                                                                |            |                          |              |                     |          |               |                                       | · 1.6       | ·····        |           | <b> </b>      |               |
| 3                 |          |                                                                                                                                                                                                |            |                          | ,            |                     |          | ,             | ,                                     |             | finition a   |           |               |               |
|                   |          |                                                                                                                                                                                                |            | . 1                      |              | ,                   |          | 1             | 0,                                    | rgument     | ; arrays to  | )         |               | I, CO         |
| 4                 |          |                                                                                                                                                                                                |            |                          |              |                     |          |               |                                       |             | iables, I    | Pointer   | <del> </del>  |               |
|                   |          |                                                                                                                                                                                                |            |                          |              |                     |          |               |                                       |             | ointers, Po  |           |               |               |
|                   |          |                                                                                                                                                                                                | ictions,   |                          |              | •                   |          | -             | <i>'</i> , <i>- - - - - - - - - -</i> | ц <u>ст</u> |              | J         | 001           |               |
|                   |          |                                                                                                                                                                                                |            | •                        |              | •                   |          |               | ctive,                                | Undefir     | ning a N     | Macro,    | CO1           | , CU          |
|                   |          | -                                                                                                                                                                                              |            |                          |              |                     |          |               |                                       |             | ude Dir      |           |               |               |
|                   |          |                                                                                                                                                                                                | ional Co   | -                        |              |                     |          |               |                                       |             |              |           |               |               |
|                   |          | Jser d                                                                                                                                                                                         |            | -                        |              |                     |          |               |                                       |             | ructures,    | Array     |               |               |
| 5                 |          |                                                                                                                                                                                                |            | N 4                      | has and      | 1 6                 | iona II  | iniona        | onum /                                | typedef     |              |           | 0.01          |               |
| 5                 | C        | of struc                                                                                                                                                                                       |            |                          |              |                     |          |               |                                       | • 1         |              | ~~~       | I COI         | I, CO         |
| 5                 | C<br>F   | of struc<br>F <mark>iles ir</mark>                                                                                                                                                             |            | Jsing Fi                 | iles in      | C, Re               | ead dat  |               |                                       | • 1         | g data to    | ) files,  |               | I, CC         |

#### Text Books

1. Programming in C, ReemaThareja, AICTE Edition, 2018, Oxford University Press

## Reference Books

- 1. Computer Science: A Structured Programming Approach Using C, B. A. Forouzan and R.F. Gilberg, Third Edition, 2007, Cengage Learning.
- 2. Programming in C, PradipDey, Manas Ghosh, AICTE Edition, Oxford University Press.
- 3. Programming with C, B. Gottfried, Third Edition, 2017, Schaum's outlines, McGraw Hill.
- 4. Problem Solving & Program Design in C,Jeri R. Hanly,Ellot B. Koffman,5th Edition, Pearson.

e- Resources & other digital material

- 1. http://cprogramminglanguage.net/
- 2. https://www.geeksforgeeks.org/c-programming-language/
- 3. https://www.greatlearning.in/academy/learn-for-free/courses/c-programming
- 4. https://www.udemy.com/course/the-complete-c-programming/
- 5. https://nptel.ac.in/courses/106/105/106105171/

|                 |                                                                                                                             |        |                                       |                |         | Engi           | neerin  | g Grap   | hics          |           |                      |          |           |        |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|----------------|---------|----------------|---------|----------|---------------|-----------|----------------------|----------|-----------|--------|
| Cours<br>Code   | se                                                                                                                          |        | 20ES                                  | 1204           | Yea     | U              |         |          | I             | Sem       | ester                |          | II        |        |
| Cours           |                                                                                                                             |        | Engine                                |                | Brai    | nch            |         | ]        | ΙT            | Cou       | rse Type             | e        | Theo      | ory    |
| Categ<br>Credi  |                                                                                                                             |        | Scie<br>3                             |                | L-T-    | D              |         | 1.       | 0-4           | Dror      | equisite             | <u>a</u> | Ni        | 1      |
| Creat           |                                                                                                                             | \$     | <u> </u>                              |                |         | -P<br>lester H | End     |          | 70            | Tota      |                      | S        | 10        |        |
| Interr          | nal                                                                                                                         |        | -                                     | <b>,</b>       |         | luation        |         |          | 10            | Mar       | -                    |          |           |        |
| Evalu           | ation                                                                                                                       |        |                                       |                |         |                |         |          |               |           |                      |          |           |        |
| Course Outcomes |                                                                                                                             |        |                                       |                |         |                |         |          |               |           |                      |          |           |        |
|                 |                                                                                                                             |        | ompleti                               |                |         | -              |         |          |               |           |                      |          |           |        |
| CO1             |                                                                                                                             |        | conic s                               |                |         |                |         | 0        | 01            |           | , ,                  | 1        | 4         | 1 .    |
| CO2             |                                                                                                                             |        | orthogi<br>planes.                    |                | project | ions of        | t an ot | oject w  | hen its       | positioi  | 1 IS defii           | hed with | n respect | to the |
| CO3             |                                                                                                                             |        |                                       |                |         |                |         | thograp  | hic pro       | ojections | and vic              | e versa. | (L3)      |        |
| CO4             |                                                                                                                             |        | he later                              |                |         |                |         |          | 1 40 4        |           | d-s air              | - duor   | in a in   |        |
| CO5             |                                                                                                                             |        | he appr<br>ent. (L3                   |                | com     | mands          | that a  | are use  | d to j        | prepare   | the giv              | en drav  | wing in   | CAD    |
|                 |                                                                                                                             |        | , , , , , , , , , , , , , , , , , , , | ,              |         |                |         |          | -             |           |                      | ~ .      | 0         |        |
|                 | Contribution of Course Outcomes towards achievement of Program Outco<br>Strength of correlations (3:High, 2: Medium, 1:Low) |        |                                       |                |         |                |         |          |               |           | Outcon               | nes &    |           |        |
|                 | PO1                                                                                                                         | PO2    |                                       | PO4            | PO5     |                |         | PO8      | PO9           | PO10      | PO11                 | PO12     |           | PSO2   |
| CO1             | 2                                                                                                                           | 2      |                                       |                |         |                |         |          | 2             | 2         | 2                    |          | 1         |        |
| CO2<br>CO3      | 3                                                                                                                           | 3      |                                       |                |         |                |         |          | 32            | 32        | 3                    |          | 22        |        |
| CO3             | 2                                                                                                                           | 2      |                                       |                |         |                |         |          | $\frac{2}{2}$ | 2         | 2                    |          | 2         |        |
| CO5             | 2                                                                                                                           |        |                                       |                | 2       |                |         |          | 2             | 2         | 2                    |          | 3         |        |
|                 |                                                                                                                             | ·      | ·                                     |                |         |                | Sylla   | hue      |               |           |                      |          | ·         |        |
| Unit N          | No.                                                                                                                         |        |                                       |                |         | <u> </u>       | Syllab  |          |               |           |                      |          | Mappe     | d CO's |
| 1               |                                                                                                                             |        |                                       |                | -       | eering         | Grap    | ohics:   | -             | -         | Engine               | -        | 11        |        |
|                 |                                                                                                                             |        |                                       |                |         |                |         | onventi  | ons in        | drawi     | ng, lette            | ering,   |           |        |
|                 |                                                                                                                             |        | nsioning<br><b>'onic se</b>           |                |         |                |         | llince   | naraho        | la and l  | nyperbol             | a        |           |        |
|                 |                                                                                                                             |        | ral meth                              |                |         | li uono.       |         | mpse,    | paraoo        | 14 4114 1 | Typeroor             | a        | CO        | D1     |
| I               |                                                                                                                             |        | Cycloid                               | al curv        | ves: Cy |                |         |          |               |           | id                   |          |           |        |
|                 |                                                                                                                             | c)     | Involu                                |                |         |                |         |          |               |           |                      | •        |           |        |
| 2               |                                                                                                                             |        |                                       |                |         |                |         |          |               |           | f points<br>e refere |          |           | 02     |
| I               |                                                                                                                             |        | s, findi                              |                |         |                |         |          |               |           |                      |          |           | 52     |
|                 |                                                                                                                             | Proje  | ctions o                              | of regul       | ar pla  | ne surf        | faces.  |          |               |           |                      |          |           |        |
| 3               |                                                                                                                             | -      |                                       |                |         | -              |         | -        |               |           | s cube, p            |          |           |        |
|                 |                                                                                                                             |        | nid, cyl                              |                |         | ne (11         | eatmei  | nt linnu | ed to s       | Solias ii | clined t             | o one    |           | 02     |
|                 |                                                                                                                             |        |                                       | -              | ,       | on pla         | nes ar  | nd sect  | ional v       | view of   | right re             | egular   |           | 52     |
|                 |                                                                                                                             | Solid  | s- cube                               | , prisn        | n, cyli | inder,         | pyran   | nid and  | l cone        | . True    | shape of             | of the   |           |        |
|                 |                                                                                                                             |        |                                       |                | t limit | ted to         | the so  | olids p  | erpend        | icular t  | o one o              | of the   |           |        |
|                 |                                                                                                                             | princ  | ipal pla                              | nes)           |         |                |         |          |               |           |                      |          |           |        |
| 4               |                                                                                                                             |        | graphi                                |                |         |                | of      |          | jection       |           | nversio              |          | CO        | 03     |
|                 | I                                                                                                                           | lsomet | tric view                             | <i>x</i> to or | thogra  | aphic v        | view.   | Isome    | tric Pr       | ojectio   | ns: Prin             | ciples   |           |        |
|                 |                                                                                                                             |        |                                       |                |         |                |         |          |               |           |                      |          |           |        |

|        | of Isometric projection- Isometric scale; <b>Isometric views</b> : lines, planes                                                                                                                                             |       |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|        | and solids. (Treatment is limited to simple objects only)                                                                                                                                                                    |       |
| 5      | <b>Development of surfaces:</b> Development of lateral surfaces of right regular solids-prism, cylinder, pyramid, cone and their sectional parts. (Treatment limited to solids perpendicular to one of the principal planes) | CO4   |
|        | <b>Introduction to CAD:</b> Basic drawing, editing and dimensioning                                                                                                                                                          |       |
|        | commands: line, polyline, circle, arc, polygon, ellipse, rectangle, erase,                                                                                                                                                   |       |
|        | undo, redo, snap, move, copy, rotate, scale, mirror, offset, layer, trim,                                                                                                                                                    | CO5   |
|        | extend, fillet, chamfer, array, linear and angular dimension.                                                                                                                                                                |       |
|        | Learning Resources                                                                                                                                                                                                           |       |
| Fext E | 0                                                                                                                                                                                                                            |       |
| Refere | ence Books                                                                                                                                                                                                                   |       |
| 1      | Dhanajay A Jolhe, Engineering Drawing, Tata McGraw-Hill, 2009.                                                                                                                                                               |       |
|        | Shah and Rana, Engineering Drawing, 2/e, Pearson Education, 2009.                                                                                                                                                            |       |
|        | K.Venugopal, Engineering Drawing and Graphics, 6/e, NewAgePublishers,201                                                                                                                                                     | 1     |
|        | K.C. John, Engineering Graphics, 2/e, PHI,2013.                                                                                                                                                                              |       |
|        | Basant Agarwal and C.M. Agarwal, Engineering Drawing, Tata McGrawHill, 2                                                                                                                                                     | 2008. |
|        | ources & other digital material                                                                                                                                                                                              |       |
| 1.     |                                                                                                                                                                                                                              |       |
| 1.     |                                                                                                                                                                                                                              |       |
|        | tutorial.html#isodrawing, Accessed on 01-06-2017.                                                                                                                                                                            |       |
| 2.     | -                                                                                                                                                                                                                            |       |
|        | http://www.slideshare.net, Accessed on 01-06-2017.                                                                                                                                                                           |       |

|                                                                                                                 | ourse<br>Code                                                                                                                                                           |         | 20HS                 | 1251    |          | Year    |            | Englis     | I        |           | Semeste        | r        | II            |                |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|---------|----------|---------|------------|------------|----------|-----------|----------------|----------|---------------|----------------|--|--|--|
| С                                                                                                               | ourse<br>tegory                                                                                                                                                         | v       | Huma                 | nities  |          | Brancl  | h          | I          | T        | Co        | ourse Ty       | pe       | La            | b              |  |  |  |
|                                                                                                                 | redits                                                                                                                                                                  | /       | 1.                   | 5       |          | L-T-P   | )          | 0-         | 0-3      | Pr        | erequisi       | tes      | Ni            | 1              |  |  |  |
| Con                                                                                                             | tinuo                                                                                                                                                                   | us      |                      |         |          |         | <b>F</b> 1 |            |          |           | -              |          |               |                |  |  |  |
| In                                                                                                              | ternal                                                                                                                                                                  | l       | 15                   | 5       |          | nester  |            | 3          | 35       |           | Total<br>Marka |          | 50            | )              |  |  |  |
| Eva                                                                                                             | luatio                                                                                                                                                                  | n       |                      |         | EV       | valuati | on         |            |          |           | Marks          |          |               |                |  |  |  |
|                                                                                                                 |                                                                                                                                                                         |         |                      |         |          | Co      | ourse (    | Outcon     | nes      |           |                |          |               |                |  |  |  |
| Upon successful completion of the course, the student will be able to                                           |                                                                                                                                                                         |         |                      |         |          |         |            |            |          |           |                |          |               |                |  |  |  |
| CO1Hone employability skills (L3)CO2Develop an ability of making discussions, inferences and presentations (L3) |                                                                                                                                                                         |         |                      |         |          |         |            |            |          |           |                |          |               |                |  |  |  |
| CO2                                                                                                             |                                                                                                                                                                         |         |                      |         |          |         |            |            |          |           | ations (L      | 3)       |               |                |  |  |  |
| CO3                                                                                                             |                                                                                                                                                                         |         | mmunic               |         |          |         |            |            | gies (L  | <u>A)</u> |                |          |               |                |  |  |  |
| CO4                                                                                                             | Pro                                                                                                                                                                     | cess th | e inform             | nation  | in diffe | erent c | ontext     | s (L4)     |          |           |                |          |               |                |  |  |  |
|                                                                                                                 | Contribution of Course Outcomes towards achievement of Program Outcomes<br>Strength of correlations (3:High, 2: Medium, 1:Low)PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS |         |                      |         |          |         |            |            |          |           |                |          | nes &<br>PSO1 | PSO2           |  |  |  |
| CO1                                                                                                             | 101                                                                                                                                                                     | 102     | 105                  | 10-     | 105      | 100     | 10,        | 100        | 3        | 3         | 1011           | 3        | 1001          | 1              |  |  |  |
| $\frac{CO1}{CO2}$                                                                                               |                                                                                                                                                                         |         | +                    |         |          |         |            |            | 3        | 3         |                | 3        |               | 1              |  |  |  |
| $\frac{CO2}{CO3}$                                                                                               |                                                                                                                                                                         |         | +                    |         |          |         |            |            | 3        | 3         |                | 3        |               | 1              |  |  |  |
| $\frac{CO3}{CO4}$                                                                                               |                                                                                                                                                                         |         | +                    |         |          |         |            |            | 3        | 3         |                | 3        |               | 1              |  |  |  |
| Syllabus                                                                                                        |                                                                                                                                                                         |         |                      |         |          |         |            |            |          |           |                |          |               |                |  |  |  |
| Expt.<br>No.                                                                                                    |                                                                                                                                                                         |         |                      |         |          | S       | Syllabu    | 18         |          |           |                |          |               | pped<br>O's    |  |  |  |
| 1                                                                                                               | spea                                                                                                                                                                    | aker, a | audienc              | ce, and | key p    | oints   |            |            | sweri    | ng que    | stions         | on the   |               | , CO2,<br>CO4  |  |  |  |
| 2                                                                                                               |                                                                                                                                                                         |         | esentati             |         | _        |         |            |            |          |           |                |          |               |                |  |  |  |
| 3                                                                                                               |                                                                                                                                                                         |         | a readi<br>res and o |         |          |         | k/prese    | entation   | ı — u    | nderstar  | nding d        | ifferent |               | ., CO2,<br>CO4 |  |  |  |
| 4                                                                                                               |                                                                                                                                                                         |         | am pres              |         |          |         | slides     | /audio-    | visual   | aids      |                |          | -             | .0.            |  |  |  |
| 5                                                                                                               |                                                                                                                                                                         |         |                      |         |          | -       |            |            |          |           | hile list      | ening to | COI           | , CO3,         |  |  |  |
| -                                                                                                               |                                                                                                                                                                         | ussion  |                      |         |          | · - · I |            | <i>J</i> - | · 1      |           |                | 6        |               | C04            |  |  |  |
| 6                                                                                                               | Gro                                                                                                                                                                     | up disc | cussion              | on gen  | eral to  | pics    |            |            |          |           |                |          | 1             |                |  |  |  |
| 7                                                                                                               |                                                                                                                                                                         |         |                      |         |          |         | ext clue   | es while   | e listen | ing to ta | alks/lectu     | ures     | CO1           | , CO3,         |  |  |  |
| 8                                                                                                               |                                                                                                                                                                         |         | s – peop             |         |          |         |            |            |          |           |                |          |               | 204            |  |  |  |
| 9                                                                                                               |                                                                                                                                                                         |         | g of exp<br>rom the  |         |          |         |            |            |          |           | licit info     | rmation  |               | ., CO3,<br>CO4 |  |  |  |
| 10                                                                                                              | Mo                                                                                                                                                                      | ck inte | rviews               | for job | s/interi | nships  |            |            |          |           |                |          |               |                |  |  |  |
|                                                                                                                 |                                                                                                                                                                         |         |                      |         |          | Lea     | rning      | Resou      | rces     |           |                |          | ·             |                |  |  |  |
| Text E                                                                                                          |                                                                                                                                                                         |         |                      |         |          |         |            |            |          |           |                |          |               |                |  |  |  |
| 1.                                                                                                              |                                                                                                                                                                         | ergradı | y Y,<br>uate Lea     |         |          |         |            |            |          | ound 2    | : Com          | municat  | ion ski       | lls for        |  |  |  |
|                                                                                                                 |                                                                                                                                                                         |         |                      |         |          |         |            |            |          |           |                |          |               |                |  |  |  |
| Refere                                                                                                          |                                                                                                                                                                         |         |                      |         |          |         |            |            |          |           | Thinkin        |          |               |                |  |  |  |

Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational. 2. 3. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012 e- Resources & other digital material Grammar/Listening/Writing: 1-language.com http://www.5minuteenglish.com/ https://www.englishpractice.com/ Listening: https://learningenglish.voanews.com/z/3613; http://www.englishmedialab.com/listening.html Speaking: https://www.talkenglish.com/BBC; Learning English - Pronunciation tips Merriam-Webster – Perfect pronunciation Exercises All Skills: https://www.englishclub.com/; http://www.world-english.org/ http://learnenglish.britishcouncil.org/ **Online Dictionaries:** Cambridge dictionary online; MacMillan dictionary; Oxford learner's dictionaries

|                |          |          |                      |          | E       | nginee            | ring (                         | hemist  | rv Lal  | ו         |           |           |                        |                 |
|----------------|----------|----------|----------------------|----------|---------|-------------------|--------------------------------|---------|---------|-----------|-----------|-----------|------------------------|-----------------|
| Cours<br>Code  |          |          | 20BS                 | 1251     | Year    | 0                 |                                |         | I       |           | ester     |           | II                     |                 |
| Cours<br>Categ | se       | ]        | Basic S              | cience   | Brai    | nch               |                                | ]       | Т       | Cou       | rse Typ   | e         | La                     | b               |
| Credi          |          |          | 1.                   | 5        | L-T-    | ·P                |                                | 0-      | 0-3     | Prer      | equisite  | S         | Ni                     | 1               |
|                | inuous   | ;        | 15                   | 5        |         | ester I           |                                |         | 35      | Tota      |           |           | 50                     | )               |
| Interr         |          |          |                      |          | Eval    | luation           | 1                              |         |         | Mar       | ks        |           |                        |                 |
| Evalu          | ation    |          |                      |          |         |                   |                                |         |         |           |           |           |                        |                 |
|                |          |          |                      |          |         | Cou               | rse O                          | utcome  | S       |           |           |           |                        |                 |
| Upon           | succes   | ssful co | ompleti              | on of tl | ne cou  |                   |                                |         |         | to        |           |           |                        |                 |
| CO1            | Der      | monstr   | ate the              | workin   | g of in | strume            | ents su                        | ch as p | H mete  | r and C   | onduct n  | neter.(L  | 3)                     |                 |
| CO2            |          |          |                      |          |         |                   |                                |         |         |           |           |           | n solutic              | on(L3)          |
| CO3            |          |          |                      |          |         |                   |                                |         |         | ler.(L4)  |           |           |                        |                 |
| CO4            |          | -        |                      |          |         |                   |                                |         |         | iquids(L  |           |           |                        |                 |
| CO5            |          |          |                      |          |         |                   |                                |         | eparati | on of di  | fferent p | olymers   | (L4)                   |                 |
| CO6            | Ma       | ke an e  | effectiv             | e repor  | t basec | l on ex           | perime                         | ents    |         |           |           |           |                        |                 |
|                | C        |          | tion of              | f Cour   |         | 0.0 <b>m</b> 0.00 | to                             | da oob  |         | nt of D   |           | Outcom    | <b>1</b> 00 <b>8</b> - |                 |
|                | C        | miridi   |                      |          |         |                   |                                |         |         | dium, 1   | rogram    | Outcon    | les a                  |                 |
| <u> </u>       | PO1      | PO2      | PO3                  |          |         |                   | PO7                            | PO8     |         | PO10      | PO11      | PO12      | PSO1                   | PSO2            |
| CO1            | 3        |          | 1                    |          |         |                   | 3                              |         | /       |           |           |           | 1                      |                 |
| CO2            | 3        |          | 1                    |          |         |                   | 3                              |         |         |           |           |           | 1                      |                 |
| CO3            | 3        |          | 1                    |          |         |                   | 3                              |         |         |           |           |           | 1                      |                 |
| CO4            | 3        |          | 1                    |          |         |                   | 3                              |         |         |           |           |           | 1                      |                 |
| CO5            | 3        |          | 1                    |          |         |                   | 3                              |         |         |           |           |           | 1                      |                 |
| CO6            | 3        |          | 1                    |          |         |                   | 3                              |         |         | 3         |           |           | 2                      |                 |
| Erret          | <u> </u> |          |                      |          |         |                   | <mark>Syllabı</mark><br>Syllab |         |         |           |           |           | Manag                  | d CO'a          |
| Expt.<br>No.   |          |          |                      |          |         |                   | Synau                          | us      |         |           |           |           | Mappe                  |                 |
| 1              |          | Deterr   | ninatio              | n of str | ength o | of an a           | cid by                         | pH me   | ric me  | thod      |           |           | CO1,0                  | <sup>2</sup> 06 |
| 2              |          |          | ninatio              |          |         |                   |                                | cto me  | tric me | thod      |           |           | CO1,C                  | .00             |
| 3              |          |          | ninatio              |          |         |                   | 1                              |         |         |           |           |           | <b>~</b> ~             |                 |
| 4              |          |          | ninatio              |          |         |                   |                                | _       | 1. 1    |           |           |           | CO4,0                  | 206             |
| 5              |          |          | ninatio              |          |         |                   |                                |         | aichroi | nate      |           |           | CO2,0                  | CO6             |
| <u>6</u><br>7  |          |          | nination<br>ation of |          |         |                   |                                |         | ing por | wder      |           |           | CO3,0                  | 706             |
| 8              |          |          | ation of             |          |         |                   |                                |         | ing pu  | wuul      |           |           |                        |                 |
| 9              |          | 1        | ation of             |          |         |                   | 2                              |         |         |           |           |           | CO5,0                  | 206             |
| 10             |          | 1        | ayer ch              |          |         |                   |                                |         | phy)    |           |           |           |                        |                 |
|                | <b>I</b> |          | -                    |          |         | <u> </u>          |                                | Resou   |         |           |           |           |                        |                 |
| Text E         |          |          |                      |          |         |                   |                                |         |         |           |           |           |                        |                 |
|                | Publ     | ishing   | and Su<br>Compa      |          |         | aborate           | ory M                          | anual   | on Eng  | gineering | g Chem    | istry 3/e | e, Dhanj               | patRai          |
|                | ence B   |          |                      |          |         |                   |                                |         |         |           |           |           |                        |                 |
| 1.             |          |          | I, Deni<br>Analysis  |          |         |                   |                                |         | M and   | Sivasa    | nkar B    | Vogel's   | s Quant                | itative         |
| e-Res          |          |          | ner digit            |          |         |                   |                                | ·       |         |           |           |           |                        |                 |
|                |          |          | .ac.in/c             |          |         |                   |                                |         |         |           |           |           |                        |                 |
| 2.             | http://  | /202.5   | 3.81.11              | 8/cours  | se/view | /.php?i           | id=82                          |         |         |           |           |           |                        |                 |
|                |          |          |                      |          |         |                   |                                |         |         |           |           |           |                        |                 |

| Cour                            |                                                                       |                                                                                                                                                         | 20ES                                 | 1253     | Yea      | r       |         |          | Ι          | Sem      | ester     |          | II        |       |
|---------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------|----------|---------|---------|----------|------------|----------|-----------|----------|-----------|-------|
| Code                            |                                                                       |                                                                                                                                                         | E i.                                 | <b>.</b> | D        | 1.      |         |          | ( <b>T</b> | 0        | T         |          | T         | 1.    |
| Cour<br>Cates                   |                                                                       |                                                                                                                                                         | Engine<br>Scie                       |          | Bra      | ncn     |         |          | IT         | Cou      | rse Typ   | e        | La        | D     |
| Credi                           |                                                                       |                                                                                                                                                         | 1.                                   |          | L-T      | -P      |         | 0-       | 0-3        | Prer     | equisite  | es       | Ni        | 1     |
|                                 | inuous                                                                | 5                                                                                                                                                       | 1.                                   |          |          | ester I | End     |          | 35         | Tota     | _         |          | 50        |       |
| Inter                           |                                                                       |                                                                                                                                                         |                                      |          | Eva      | luatior | 1       |          |            | Mar      | ·ks       |          |           |       |
| Evalu                           | ation                                                                 |                                                                                                                                                         |                                      |          |          |         |         |          |            |          |           |          |           |       |
|                                 | Course Outcomes                                                       |                                                                                                                                                         |                                      |          |          |         |         |          |            |          |           |          |           |       |
|                                 | successful completion of the course, the student will be able to (L3) |                                                                                                                                                         |                                      |          |          |         |         |          |            |          |           |          |           |       |
| $\frac{CO1}{CO2}$               |                                                                       | Apply Structured Programming/C constructs for solving problems (L3).                                                                                    |                                      |          |          |         |         |          |            |          |           |          |           |       |
| $\frac{CO2}{CO3}$               |                                                                       | mplement programs as an individual on different IDEs/ online platforms. (L3)<br>Develop an effective report based on various programs implemented. (L3) |                                      |          |          |         |         |          |            |          |           |          |           |       |
| $\frac{CO3}{CO4}$               |                                                                       |                                                                                                                                                         |                                      |          |          |         |         |          |            |          |           |          | effectiv  | e ora |
| 04                              |                                                                       |                                                                                                                                                         | ation. (1                            |          | cuge     | 101 a   | giver   | i piùo   | iciii a    | ina cri  | 1035 W    | itii ali | cilectiv  | C 01a |
| CO5                             |                                                                       |                                                                                                                                                         | itputs u                             | ,        | ven co   | nstrain | ts/test | cases.   |            |          |           |          |           |       |
|                                 |                                                                       |                                                                                                                                                         |                                      |          |          |         |         |          | ievem      | ent of F | rogram    | Outco    | nes &     |       |
|                                 |                                                                       |                                                                                                                                                         |                                      | Streng   | th of c  | correla | tions ( | (3:High  | , 2: M     | edium, 1 |           |          |           |       |
|                                 | PO1                                                                   | PO2                                                                                                                                                     | PO3                                  | PO4      | PO5      | PO6     | PO7     | PO8      | PO9        | PO10     | PO11      | PO12     | PSO1      | PSO   |
| CO1                             | 3                                                                     |                                                                                                                                                         |                                      |          |          |         |         |          | -          |          |           | 2        | 2         | 2     |
| $\frac{\text{CO2}}{\text{CO2}}$ |                                                                       |                                                                                                                                                         |                                      |          | 3        |         |         |          | 3          | 2        |           |          | 2         | 2     |
| $\frac{\text{CO3}}{\text{CO4}}$ | 3                                                                     |                                                                                                                                                         |                                      |          |          |         |         |          |            | 3        |           |          |           |       |
| $\frac{CO4}{CO5}$               | 5                                                                     | 3                                                                                                                                                       |                                      |          |          |         |         |          |            | 3        |           |          |           |       |
| <u>co</u>                       |                                                                       | 5                                                                                                                                                       |                                      |          |          |         | Svl     | labus    |            |          |           |          |           |       |
| Expt. No.   Syllabus            |                                                                       |                                                                                                                                                         |                                      |          |          |         |         |          |            | Mappe    | d CO'     |          |           |       |
| 1                               |                                                                       | Drow                                                                                                                                                    | flowah                               | rta for  | funda    | montol  | algori  | hma      |            |          |           |          | CO1 - CO5 |       |
|                                 |                                                                       | Diaw                                                                                                                                                    | flowcha                              |          | Tunual   | memai   | algori  |          |            |          |           |          |           |       |
| 2                               |                                                                       | C Pros                                                                                                                                                  | grams to                             | o demo   | nstrate  | c-tok   | ens.    |          |            |          |           |          | CO1 - CO5 |       |
|                                 |                                                                       | 01108                                                                                                                                                   | si uni si co                         |          | listiute |         | 0115.   |          |            |          |           |          |           |       |
| 3                               |                                                                       | C Prog                                                                                                                                                  | grams o                              | n usage  | e of op  | erators | 5.      |          |            |          |           |          | CO1 - CO5 |       |
| 4                               |                                                                       |                                                                                                                                                         |                                      |          |          |         |         |          |            |          |           |          | CO1 - (   | 705   |
| -                               |                                                                       | C Prog                                                                                                                                                  | grams to                             | o demo   | nstrate  | Decis   | ion ma  | king ar  | nd bran    | ching (S | Selectior | ı)       | 01-0      | .05   |
| 5                               |                                                                       | C                                                                                                                                                       |                                      | 1        |          | 1:00    | 1       |          |            |          |           |          | CO1 - 0   | CO5   |
|                                 |                                                                       | C prog                                                                                                                                                  | grams to                             | o demo   | nstrate  | affere  | ent loo | ps.      |            |          |           |          |           |       |
| 6                               |                                                                       | C proc                                                                                                                                                  | grams to                             | , demo   | nstrate  | 1-D a   | rrave   |          |            |          |           |          | CO1 - 0   | CO5   |
|                                 |                                                                       | C prog                                                                                                                                                  | , runns to                           |          | listiute | / I D u | IIuys.  |          |            |          |           |          |           | ~~~   |
| 7                               |                                                                       | C prog                                                                                                                                                  | grams to                             | o demo   | nstrate  | multi-  | dimen   | sional a | arrays.    |          |           |          | CO1 - 0   | 205   |
| 8                               |                                                                       |                                                                                                                                                         |                                      |          |          |         |         |          | •          | na hand  | ling fun  | otions   | CO1 - 0   | 705   |
| ð                               |                                                                       | C programs to perform operations on strings with String handling function<br>and without String handling functions.                                     |                                      |          |          |         |         |          |            |          |           | 01-0     | .05       |       |
| 9                               |                                                                       |                                                                                                                                                         |                                      |          |          |         |         |          |            |          |           | CO1 - 0  | CO5       |       |
|                                 |                                                                       | C programs to demonstrate functions.                                                                                                                    |                                      |          |          |         |         |          |            |          |           |          | `         |       |
| 10                              | )                                                                     | Correct                                                                                                                                                 | trame e                              | n naint  | ore      |         |         |          |            |          |           |          | CO1 - 0   | CO5   |
|                                 |                                                                       | C programs on pointers.                                                                                                                                 |                                      |          |          |         |         |          |            |          |           |          |           |       |
| 11                              | t T                                                                   | C proc                                                                                                                                                  | C programs on structures and unions. |          |          |         |         |          |            |          |           |          |           | 205   |
|                                 |                                                                       |                                                                                                                                                         |                                      |          |          |         |         |          |            |          |           |          |           |       |
| 12                              | ,                                                                     | ( nroc                                                                                                                                                  | programs to demonstrate files.       |          |          |         |         |          |            |          |           |          | CO1 - 0   | (1)5  |

#### Text Books

1. Programming in C, Reema Thareja, AICTE Edition, 2018, Oxford University Press

#### Reference Books

- 1. Computer Science: A Structured Programming Approach Using C, B. A. Forouzan and R.F. Gilberg, Third Edition, 2007, Cengage Learning.
- 2. Programming in C, Pradip Dey, Manas Ghosh, AICTE Edition, Oxford University Press.
- 3. Programming with C, B. Gottfried, Third Edition, 2017, Schaum's outlines, McGraw Hill (India).
- 4. Problem Solving and Program Design in C, Jeri R. Hanly, Ellot B. Koffman, Fifth Edition, Pearson.

# e- Resources & other digital material

- 1. http://cprogramminglanguage.net/
- 2. https://www.geeksforgeeks.org/c-programming-language/
- 3. https://nptel.ac.in/courses/106105085/4

# Life Sciences for Engineers

|                                                           |       |          |                              |          | L         |          | inces i  | or Eng   | ,incers  |          |           |          |            |          |
|-----------------------------------------------------------|-------|----------|------------------------------|----------|-----------|----------|----------|----------|----------|----------|-----------|----------|------------|----------|
| Cours<br>Code                                             |       |          | 20MC                         | 21201    | Yea       | r        |          |          | Ι        | Sem      | lester    |          | I          | [        |
| Cour                                                      | se    |          | Mand                         | atory    | Bra       | nch      |          |          | IT       | Cou      | rse Typ   | e        | The        | ory      |
| Categ                                                     |       |          |                              |          |           |          |          |          |          |          |           |          |            | -        |
| Credi                                                     | its   |          | 0                            |          | L-T       | -P       |          | 2-       | -0-2     | Prei     | requisite | es       | N          | il       |
| Conti                                                     |       | 5        | 3                            | 0        |           | ester I  |          | ,        | 70       | Tota     |           |          | 10         | 0        |
| Inter                                                     |       |          |                              |          | Eva       | luatior  | 1        |          |          | Mai      | rks       |          |            |          |
| Evalu                                                     | ation |          |                              |          |           |          |          |          |          |          |           |          |            |          |
|                                                           |       |          |                              |          |           | Co       | urse (   | Dutcom   | es       |          |           |          |            |          |
| Upon                                                      | succe | ssful co | mpletio                      | n of the | e cours   |          |          |          |          | 0        |           |          |            |          |
| C01                                                       |       |          |                              |          |           |          |          |          |          |          | viable e  | ngineer  | ing good   | ls.((L3) |
| CO2                                                       |       |          |                              |          |           |          |          |          |          |          |           |          |            |          |
| fields from the knowledge gained from DNA technology.(L4) |       |          |                              |          |           |          |          |          |          |          |           |          |            |          |
| CO3                                                       |       |          |                              |          |           |          |          |          |          |          | societie  |          |            |          |
| CO4                                                       |       |          |                              | cnowled  | dge of    | f gene   | tics a   | nd DN    | A tec    | hnology  | for di    | sease d  | iagnostic  | es and   |
| 005                                                       |       | apy.(L3  | /                            | -1- '    |           | 1        | 1        | 1        |          | -1 - 1   | 1 1       | 1-       |            | 1. 6.    |
| CO5                                                       |       |          |                              |          |           |          |          |          | aceutic  | al, medi | ical and  | agricult | ural field | as from  |
|                                                           | the   | AIIO WIE | dge gain                     | icu mor  |           | 1 LECHIN | ology.   | (L4)     |          |          |           |          |            |          |
|                                                           | Co    | ntribu   | tion of (                    | Course   | Outco     | omes to  | oward    | s achie  | vemen    | t of Pro | ogram O   | Jutcome  | es &       |          |
|                                                           |       |          |                              |          |           |          |          |          |          | dium, 1  |           |          |            |          |
|                                                           | PO1   | PO2      |                              | PO4      | PO5       |          |          |          | PO9      |          | PO11      | PO12     | PSO1       | PSO2     |
| CO1                                                       | 3     |          |                              |          |           |          |          |          |          | 2        |           |          | 1          |          |
| CO2                                                       |       |          |                              |          | 3         |          |          |          |          | 2        |           |          | 1          |          |
| CO3                                                       |       |          |                              |          | 3         | -        |          |          |          | 2        |           |          | 1          |          |
| CO4                                                       | 2     |          |                              |          | 3         | 3        |          |          |          | 2        |           |          | 1          |          |
| CO5                                                       | 3     |          |                              |          |           | 3        |          |          |          | 2        |           |          | 1          |          |
|                                                           |       |          |                              |          |           |          | Svll     | abus     |          |          |           |          |            |          |
| Unit                                                      | No.   |          |                              |          |           |          | Syllab   |          |          |          |           |          | Mappe      | ed CO's  |
| 1                                                         |       | Intro    | luction                      | to Biol  | ogy       |          |          |          |          |          |           |          |            | 01       |
|                                                           |       |          |                              |          | 0.        | organis  | sms w    | ith mar  | nmade    | systems  | s :Eye ai | nd       |            |          |
|                                                           |       |          | -                            | g bird a | and Ai    | rcraft U | Ultra st | tructure | e of cel | l: Proka | ryotes an | nd       |            |          |
| -                                                         |       | Eukar    |                              |          |           |          |          |          |          |          |           |          | ~          | 0.1      |
| 2                                                         |       |          | olecules                     |          | nacf      | motoin   | a (ant   | hodian   | Ctores   |          | function  | <b>n</b> |            | 01       |
|                                                           |       |          | ure and<br>leic acic         |          | -         | -        |          |          |          |          | function  | 115      |            | 02       |
| 3                                                         |       |          | ergetics                     |          |           |          |          | •        | is and l |          | anon      |          |            |          |
| 5                                                         |       |          | anism of                     |          |           | -        |          |          |          |          |           |          | C          | 03       |
|                                                           |       |          | cycle Ele                    | -        | •         | •        | •        |          | ve pho   | sphoryl  | ation.    |          |            |          |
|                                                           |       | <b>C</b> | ing 14                       | 1.1, 1   |           |          |          |          |          |          |           |          |            |          |
| 4                                                         |       |          | t <b>ics</b> Men<br>e gene d |          |           | -        | ping     |          |          |          |           |          | C          | 03       |
|                                                           |       | Single   | e gene u                     | 1301001  | 5 III IIU | 1110115  |          |          |          |          |           |          | CO3<br>CO4 |          |
| 5                                                         |       | Recon    | nbinant                      | DNA      | Techn     | ology    |          |          |          |          |           |          |            | <u> </u> |
| U                                                         |       |          |                              |          |           | 0.       | micro    | bes, pla | ints and | d anima  | ls. Anim  | al       | CO2        |          |
|                                                           |       |          | g, biose                     |          |           | -        |          | , I      |          |          |           |          | CO5        |          |
|                                                           |       |          |                              |          |           |          |          |          |          |          |           |          |            |          |
|                                                           |       |          |                              |          |           |          |          |          |          |          |           |          |            |          |

| Expt. No. | Name of the experiment                                                              | Mapped CO's |
|-----------|-------------------------------------------------------------------------------------|-------------|
| 1         | Dissect & mount different parts of plants using Microscope                          | CO1         |
| 2         | Estimation of Proteins by using Biuret method                                       | CO2         |
| 3         | Estimation of enzyme activity.                                                      | CO2         |
| 4         | Estimation of chlorophyll content in some selected plants.                          | CO3         |
| 5         | Nitrogen Cycle: Estimation of Nitrates /Nitrites in soil by using Spectrophotometer | CO3         |
| 6         | Mendal's laws and gene mapping                                                      | CO4, CO5    |

#### Text Books

1. Biology for Engineers-Wiley Editorial

2. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2018.

3. Biotechnology by U.Satyanarayana, Alliedand books Pvt. ltd. Kolkata

#### **Reference Books**

Alberts et al., The molecular biology of the cell, 6/e, Garland Science, 2014.
 John Enderle and Joseph Bronzino Introduction to Biomedical Engineering, 3/e, 2012

#### PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY Engineering Mathematics III (Discrete Mathematical Structures) (Common to CSE & IT)

| Course Code                | 20BS1303 | Year                        | II    | Semester      | Ι                    |
|----------------------------|----------|-----------------------------|-------|---------------|----------------------|
| Course<br>Category         | BS       | Branch                      | IT    | Course Type   | Theory               |
| Credits                    | 3        | L-T-P                       | 3-0-0 | Prerequisites | Basic<br>Mathematics |
| Continuous<br>Evaluation : | 30       | Semester End<br>Evaluation: | 70    | Total Marks:  | 100                  |

|          | Course Outcomes                                                                      |    |  |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Upon suc | Upon successful completion of the course, the student will be able to                |    |  |  |  |  |  |  |
| CO1      | Understand the fundamental concepts of discrete mathematical structures              | L2 |  |  |  |  |  |  |
| CO2      | Apply Normal forms/Rules of Inference for solving suitable problems.                 | L3 |  |  |  |  |  |  |
| CO3      | Apply the method of characteristic roots for solving different recurrence relations. | L3 |  |  |  |  |  |  |
| CO4      | Analyze various graph techniques to construct a tree.                                | L4 |  |  |  |  |  |  |

**Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)** 

|     |     | -   |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO2 | 2   |     |     |     |     |     |     |     |     | 1    |      |      |      |      |
| CO3 |     |     |     |     |     |     |     |     |     | 1    |      |      | 2    |      |
| CO4 |     | 3   |     |     |     |     |     |     | 1   | 1    |      |      |      |      |

|             | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mapped<br>CO |
| I           | Mathematical Logic: Introduction –Statements and Notations - Connectives<br>(Negation, Conjunction, Disjunction) - Statement formulas and Truth<br>Tables, Conditional and Bi-conditional, Well-Formed Formulas, Tautologies,<br>Equivalence of Formulas, Duality Law, Tautological Implication,<br>Functionally Complete Sets of Connectives, Other Connectives.<br>Normal Forms: Disjunctive Normal Forms (DNF), Conjunctive Normal<br>Forms (CNF), Principal of Disjunctive Normal Forms (PDNF), Principal<br>of ConjunctiveNormal Forms (PCNF). | CO1, CO2     |
| П           | <b>Theory of Inference for Statement Calculus:</b> Validity using Truth Tables-<br>Rules of Inference – Consistency of Premisesand Indirect Method Proof.<br><b>Predicate calculus:</b> Introduction to Predicates - Statement functions,<br>Variable and Quantifiers - Predicate Formulas - Free and Bound Variables-<br>Universe of Discourse.                                                                                                                                                                                                    | CO1,CO2      |
| III         | <b>Recurrence Relations:</b> The Method of Characteristic Recurrence Relation.<br>Roots – Solutions in Inhomogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                | CO1,CO3      |
| IV          | <b>Relations and Directed Graphs:</b> Special Properties of Binary Relations-<br>Equivalence Relations- Ordering Relations, Lattices, and Enumerations-<br>Operations on Relations- Paths and Closures-Directed Graphs and Adjacency<br>Matrices.                                                                                                                                                                                                                                                                                                   | CO1,CO4      |
| V           | <b>Graphs:</b> Basic Concepts- Isomorphism's and Sub graphs-Trees and Their Properties - Spanning Trees-Planar Graphs-Euler's Formula- Multi-graphs and Euler Circuits-Hamiltonian Graphs- Chromatic Numbers.                                                                                                                                                                                                                                                                                                                                       | CO1,CO4      |

#### **Text Books**

1.Discrete Mathematical Structures with Applications to Computer Science, J P Trembly and R Manohar, 1988, McGraw-Hill (**Unit-I,II**)

2. Discrete Mathematics for Computer Scientists & Mathematicians, Joe L. Mott. Abraham Kandel and Theodore P. Baker, Second Edition, 2017, PHI. (Unit-III,IV,V)

#### References

1. Discrete Mathematics and its Applications, Kenneth H. Rosen, Seventh Edition, 2017, McGraw-Hill.

#### e-Resources & other digital material

- 1. https://www.geeksforgeeks.org/engineering-mathematics-tutorials/
- 2. https://www.tutorialspoint.com/discrete\_mathematics/index.htm
- 3. http://www.alas.matf.bg.ac.rs/~mi10164/Materijali/DS.pdf
- 4. https://nptel.ac.in/courses/111107058/

**Data Structures** 

#### (Common to CSE & IT) **Course Code** 20ES1305 Ι Year Π Semester IT **Course Category** ES Branch **Course Type** Theory Programming for 3-0-0 Credits 3 L-T-P **Prerequisites** Problem Solving Semester Continuous 30 End 70 **Total Marks** 100 **Internal Evaluation Evaluation**

|                                                                       | Course Outcomes                                                                          |    |  |  |  |  |  |  |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Upon successful completion of the course, the student will be able to |                                                                                          |    |  |  |  |  |  |  |
| CO1                                                                   | Understand the basic concepts of algorithm complexities, recursion and data structures.  | L2 |  |  |  |  |  |  |
| CO2                                                                   | Apply suitable searching, sorting algorithms for various applications.                   | L3 |  |  |  |  |  |  |
| CO3                                                                   | Apply suitable data structure to solve the problems.                                     | L3 |  |  |  |  |  |  |
| CO4                                                                   | Analyze the problem to construct an algorithm using suitable data structure.(Assignment) | L4 |  |  |  |  |  |  |

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

|     |     |     |      |     |      |     | 0    |      |      |      |      |      |      |      |
|-----|-----|-----|------|-----|------|-----|------|------|------|------|------|------|------|------|
|     | PO1 | PO2 | PO 3 | PO4 | PO 5 | PO6 | PO 7 | PO 8 | PO 9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3   |     |      |     |      |     |      |      |      |      |      |      |      |      |
| CO2 | 3   |     |      |     |      |     |      |      | 2    | 2    |      | 3    | 3    | 3    |
| CO3 | 3   |     |      |     |      |     |      |      | 1    | 1    |      | 3    | 3    | 3    |
| CO4 |     | 3   |      |     |      |     |      |      | 1    | 1    |      | 3    | 3    | 3    |

| Unit<br>No                                                                                     | Syllabus Contents                                                                                                                                                                                                                                                                                                                                                                                                       | Mapp<br>ed<br>CO    |  |  |  |  |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|
| I                                                                                              | <ul> <li>Introduction: Algorithm Specification, Time complexity &amp; space complexity and their notations.</li> <li>Recursion: What is Recursion, Why Recursion, Format of a Recursive function, Recursion andmemory, Recursion Vs Iteration, Examples.</li> <li>Sorting and Searching: Searching- Linear and Binary search algorithms. Sorting-Bubble, Insertion, Selection, Merge, Quick sort algorithms.</li> </ul> |                     |  |  |  |  |
| II                                                                                             | <b>Linked lists:</b> Single linked list, double linked list, circular linked list, and operations on linkedlists.                                                                                                                                                                                                                                                                                                       | CO1,<br>CO3,<br>CO4 |  |  |  |  |
| III                                                                                            | <ul> <li>Stacks: Definition, operations: array implementation, linked list implementation and applications.</li> <li>Queues: Definition, operations: array implementation, linked list implementation and applications, Circular Queue.</li> </ul>                                                                                                                                                                      | CO1,<br>CO3,<br>CO4 |  |  |  |  |
| IV                                                                                             | <b>Trees:</b> Introduction- Terminology, representation of trees, binary trees abstract data type, Properties of binary trees, binary tree representation, binary tree traversals In order, preorder, post order, Binary search trees Definition, searching BST, insert into BST, delete from a BST, Height of a BST.                                                                                                   |                     |  |  |  |  |
| V                                                                                              | <b>Graphs:</b> The Graph ADT Introduction, definition, graph representation, elementary graph operations BFS, DFS, Minimum Spanning Tree – only: Prim's and Kruskal's MST.                                                                                                                                                                                                                                              | CO1,<br>CO3,<br>CO4 |  |  |  |  |
|                                                                                                | Learning Resources                                                                                                                                                                                                                                                                                                                                                                                                      |                     |  |  |  |  |
| Text I                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |  |  |  |  |
| 2. In<br>St<br>3. D                                                                            | ata Structures and Algorithm Analysis in C, Mark Allen Weiss, Second Edition, 2002, Peter<br>to the troduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, C<br>tein, Third Edition, 2010, PHI.<br>ata Structures and Algorithms Made Easy by Narasimha Karumanchi, 2020, CareerMor<br>ublications.                                                                                        | Clifford            |  |  |  |  |
| Refer                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |  |  |  |  |
| 1. <i>F</i> .<br>U                                                                             | <i>undamental of Data Structures in C</i> , Horowitz, Sahani, Anderson-Freed, Second Edition niversities Press.<br><i>lassic Data Structures</i> , Debasis Samantha, Second Edition, 2009, PHI.                                                                                                                                                                                                                         | i, 2008             |  |  |  |  |
|                                                                                                | ources & other digital material                                                                                                                                                                                                                                                                                                                                                                                         |                     |  |  |  |  |
| <ol> <li>http</li> <li>http</li> <li>http</li> <li>http</li> <li>http</li> <li>http</li> </ol> | p://cse.iitkgp.ac.in/pds/<br>p://cmpe.emu.edu.tr/bayram/courses/231/LectureNotesSlides/IQBAL/Lecture%20Notes<br>ps://www.geeksforgeeks.org/data-structures/<br>ps://www.programiz.com/dsa<br>ps://www.tutorialspoint.com/data_structures_algorithms/index.htm<br>ps://www.youtube.com/watch?v=zWg7U0OEAoE&list=PLBF3763AF2E1C572F<br>ps://www.youtube.com/watch?v=S47aSEqm_0I&list=PLgj_V-<br>KrxgFyOutPJpoLFBaQMOpK-   |                     |  |  |  |  |

# Fundamentals of Digital Logic Design

| (Common | to | CSE | & | IT) |  |
|---------|----|-----|---|-----|--|
|         |    |     |   |     |  |

| Course Code                       | 20IT3301 | Year                          | Π     | Semester      | Ι                                      |
|-----------------------------------|----------|-------------------------------|-------|---------------|----------------------------------------|
| Course Category                   | PC       | Branch                        | IT    | Course Type   | Theory                                 |
| Credits                           | 3        | L-T-P                         | 3-0-0 | Prerequisites | Basic Electrical<br>&Electronics Engg. |
| Continuous Internal<br>Evaluation | 30       | Semester<br>End<br>Evaluation | 70    | Total Marks   | 100                                    |

| Course Outcomes                                                       |                                                                                              |    |  |  |  |  |  |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| Upon successful completion of the course, the student will be able to |                                                                                              |    |  |  |  |  |  |
| CO1                                                                   | Understand the basic concepts of digital circuits.                                           | L2 |  |  |  |  |  |
| CO2                                                                   | Apply minimization techniques to simplify Boolean expressions.                               | L3 |  |  |  |  |  |
| CO3                                                                   | Apply the principles of digital electronics to design combinational and sequential circuits. | L3 |  |  |  |  |  |
| CO4                                                                   | Analyze the functionality of combinational circuits and sequential circuits.                 | L4 |  |  |  |  |  |

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO 6 | PO 7 | PO 8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|------|------|------|-----|------|------|------|------|------|
| CO1 | 3   |     |     |     |     |      |      |      |     |      |      |      |      |      |
| CO2 | 3   |     |     |     |     |      |      |      | 3   | 3    |      |      | 3    |      |
| CO3 | 3   |     |     |     |     |      |      |      | 3   | 3    |      |      | 3    |      |
| CO4 |     | 3   |     |     |     |      |      |      | 3   | 3    |      |      | 3    |      |

|                                                                                                                               | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Unit<br>No                                                                                                                    | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mapped CO        |
| I                                                                                                                             | <b>Digital Systems and Binary Numbers:</b> Digital Systems, Binary Numbers, Number Base Conversions, Octal and Hexadecimal Numbers, Complements of Numbers, Signed Binary Numbers, Binary codes and Binary Logic.                                                                                                                                                                                                                                                                                                                 | CO1              |
| п                                                                                                                             | <b>Boolean Algebra and Logic Gates:</b> Introduction, Basic Definitions, Axiomatic definition of Boolean Algebra, Basic theorems and properties of Boolean Algebra, Boolean functions, Canonical and Standard Forms.                                                                                                                                                                                                                                                                                                              |                  |
|                                                                                                                               | <b>Gate–Level Minimization :</b> Introduction, Map Method-Two variable,<br>Three variable K-map's, Four Variable K-Map, Product of Sums<br>Simplification, Don't Care Conditions,NAND and NOR implementation.                                                                                                                                                                                                                                                                                                                     | CO1,CO2          |
| ш                                                                                                                             | <b>Combinational Logic:</b> Introduction, Combinational Circuit, Analysis<br>Procedure, Design Procedure, Binary adder- sub tractor, Decimal Adder,<br>BCD to Seven Segment Display, Encoders, Decoder, Multiplexers,<br>Demultiplexers.                                                                                                                                                                                                                                                                                          | CO1,<br>CO3,CO4  |
| IV                                                                                                                            | <b>Sequential Logic:</b> Introduction, Storage Elements: Latches –SR, D Latches Storage Elements: Flip Flops–SR, JK, D and T Flip Flops, Characteristic tables, Characteristic equation, Excitation tables.                                                                                                                                                                                                                                                                                                                       | CO1, CO3,<br>CO4 |
| V                                                                                                                             | <b>Registers and Counters:</b> Registers, Shift Registers- Serial Transfer, Serial Addition, Universal Shift Register, Ripple Counters-Binary Ripple Counter, BCD Ripple Counter, Synchronous Counters-Binary Counter, Up–Down Binary Counter, BCD Counter, Binary Counter with Parallel Load Other Counters-Ring counter, Johnson counter.                                                                                                                                                                                       | CO1, CO3,<br>CO4 |
|                                                                                                                               | Learning Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| Refer           1. Swi.           Can           2. Fun           e-Rese           1. http           2. http           3. http | <i>ital Design</i> , M. Morris Mano, Michael D.Ciletti, Fifth Edition, 2013, Pearson.<br>ences<br>tching Theory and Finite Automata, Zvi. Kohavi, Niraj K. Jha, Third Edition, 20<br>hbridge, University Press.<br>damentals of Digital circuits, A. Anand Kumar, Third Edition, 2013, PHI.<br>Durces & other digital material<br>Dis://nptel.ac.in/courses/106/108/106108099/http://nptel.ac.in/courses/117106086<br>Dis://nptel.ac.in/courses/117/105/117105080/<br>ps://www.udemy.com/course/digital-electronics-logic-design/ |                  |
| 5. htt                                                                                                                        | ps://learnabout-electronics.org/Digital/dig20.php<br>ps://www.tutorialspoint.com/digital_circuits/digital_circuits_logic_gates.htm<br>ps://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/                                                                                                                                                                                                                                                                                                                      |                  |

#### SOFTWARE ENGINEERING

| Course Code                | 20IT3302 | Year         | II    | Semester      | Ι            |
|----------------------------|----------|--------------|-------|---------------|--------------|
| Course Category            | PC       | Branch       | IT    | Course Type   | Theory       |
| Credits                    | 3        | L-T-P        | 3-0-0 | Prerequisites | Basics of IT |
| <b>Continuous Internal</b> |          | Semester End |       | -             |              |
| Evaluation                 | 30       | Evaluation   | 70    | Total Marks   | 100          |

| Cours | se Outcomes                                                                | Blooms<br>Taxonomy Level |  |  |  |  |  |
|-------|----------------------------------------------------------------------------|--------------------------|--|--|--|--|--|
| Upon  | Upon Successful completion of course, the student will be able to          |                          |  |  |  |  |  |
| CO1   | Understand the process of software engineering and various process models. | L2                       |  |  |  |  |  |
| CO2   | Design the requirements of software system.                                | L3                       |  |  |  |  |  |
| CO3   | Use various design elements to prepare software system.                    | L3                       |  |  |  |  |  |
| CO4   | Analyze various testing techniques.                                        | L3                       |  |  |  |  |  |

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High, M: Medium, L:Low)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   |     |     |     |     |     | 3   |     |     |      |      |      | 3    |      |
| CO2 | 3   | 3   | 3   |     |     |     | 3   |     |     |      | 3    |      | 3    |      |
| CO3 | 3   | 3   | 3   |     |     |     | 3   |     |     |      | 3    |      | 3    |      |
| CO4 | 3   | 3   |     |     |     |     | 3   |     |     |      | 3    |      | 3    |      |

| Syllabus   |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mapped<br>CO |  |  |  |  |  |
| I          | <ul> <li>Software and Software Engineering: The Nature of Software, The Unique Nature of WebApps, Software Engineering, Software Process, Software Engineering Practice, Software Myths.</li> <li>Process Models: A Generic Process Model: Defining a frame work activity, Prescriptive Process Models: The Waterfall Model, Incremental Process Model, Evolutionary Process Model, The Unified Process, What is an Agile Process? XP Process.</li> </ul> | CO1          |  |  |  |  |  |
| II         | <ul> <li>Requirements Analysis And Specification: Requirements Gathering and Analysis, Software Requirement Specification (SRS): Characteristics of good SRS, Functional Requirements, Organization of SRS.</li> <li>Software Design: Overview of the Design Process, How to Characterize of a Design? Cohesion and Coupling, Approaches to Software Design.</li> </ul>                                                                                   | CO2,<br>CO3  |  |  |  |  |  |
| III        | <b>Function-Oriented Software Design:</b> Overview of SA/SD Methodology,<br>Structured Analysis, Structured Design, Detailed Design, Design Review.<br><b>User Interface Design:</b> Characteristics of Good User Interface, Basic<br>Concepts, Types of User Interfaces, A User Interface Design Methodology.                                                                                                                                            | CO1,<br>CO3  |  |  |  |  |  |
| IV         | <b>Coding And Testing:</b> Coding, Code Review, Software Documentation,<br>Testing, Unit Testing, Black-Box Testing, White-Box Testing, Debugging,<br>Integration Testing, System Testing.                                                                                                                                                                                                                                                                | CO1,<br>CO4  |  |  |  |  |  |
| V          | <ul> <li>Software Reliability And Quality Management: Software Reliability, Statistical Testing, Software Quality, Software Quality Management System.</li> <li>Software Maintenance: Software maintenance, Maintenance Process Models, Maintenance Cost.</li> <li>Software Reuse: what can be reused? Why almost No Reuse So Far? Basic Issues in Reuse Approach.</li> </ul>                                                                             | CO1,<br>CO4  |  |  |  |  |  |

# 1. *Software Engineering - A Practitioner's Approach*, Roger S. Pressman, Seventh Edition McGrawHill International Edition.

2. Fundamentals of Software Engineering, Rajib Mall, Third Edition, PHI.

#### References

**Text Books** 

- 1. Software Engineering : A Primer, Waman S Jawadekar, Tata McGraw-Hill,2008
- 2. Software Engineering, A Precise Approach, PankajJalote, WileyIndia, 2010.
- 3. *Software Engineering, Principles and Practices*, Deepak Jain, Oxford University Press.

### **E-Resources and other Digital Material**

1. https://nptel.ac.in/courses/106101061/

#### PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY OBJECT ORIENTED PROGRAMMING THROUGH C++ (Common to CSE & IT)

| Course Code                          | 20IT3303         | Year                       | II           | Semester      | Ι                                     |  |  |  |  |  |
|--------------------------------------|------------------|----------------------------|--------------|---------------|---------------------------------------|--|--|--|--|--|
| Course<br>Category                   | PC               | Branch                     | IT           | Course Type   | Theory                                |  |  |  |  |  |
| Credits                              | 3                | L-T-P                      | 3-0-0        | Prerequisites | Programming<br>for Problem<br>Solving |  |  |  |  |  |
| Continuous<br>Internal<br>Evaluation | 30               | Semester End<br>Evaluation | 70           | Total Marks   | 100                                   |  |  |  |  |  |
|                                      | COURSE OUTCOMES  |                            |              |               |                                       |  |  |  |  |  |
| Upon successful o                    | completion of th | e course, Student w        | vill be able | to            |                                       |  |  |  |  |  |

| - <b>r</b> | <b>-----------</b>                                                                                                               |    |
|------------|----------------------------------------------------------------------------------------------------------------------------------|----|
| CO1        | Understand the principles of OOP and the key features of C++.                                                                    | L2 |
| CO2        | Apply object oriented concepts to develop solution for the given problem.                                                        | L3 |
| CO3        | Apply functions as per the problem requirement.                                                                                  | L3 |
| CO4        | Analyze the given scenario and use appropriate generic programming aspects / exception handling mechanisms to solve the problem. | L4 |

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High, M: Medium, L:Low)

| corre | correlations (initiality), with the during (initiality) |     |      |      |      |      |      |      |      |      |      |      |      |      |
|-------|---------------------------------------------------------|-----|------|------|------|------|------|------|------|------|------|------|------|------|
|       | PO1                                                     | PO2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 3                                                       |     |      |      |      |      |      |      |      |      |      |      | 3    | 3    |
| CO2   | 3                                                       |     |      |      |      |      |      |      | 3    | 3    |      |      | 3    | 3    |
| CO3   | 3                                                       |     |      |      |      |      |      |      | 3    | 3    |      |      | 3    | 3    |
| CO4   |                                                         | 3   |      |      |      |      |      |      | 3    | 3    |      |      | 3    | 3    |

|             | SYLLABUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Unit<br>No. | CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mapped<br>CO        |
| I           | <ul> <li>Introduction: Difference between C and C++, Evolution of C++, Programming Paradigms, Key concepts of OOP, Advantages of OOP, Usage of OOP.</li> <li>I/O in C++:Pre-defined streams, stream classes, Scope access operator, Name space, memory management operators.</li> <li>Functions: Introduction, Parts of a function, Passing arguments, Return by reference, Returning more values by reference, Default arguments, const arguments, Inline functions, Function overloading.</li> </ul> | CO1,<br>CO3         |
| п           | <b>Classes and Objects :</b> classes in C++, Declaring objects, Access specifiers and their scope, Defining Member Functions, Characteristics of member functions, Outside member function as inline, rules for Inline functions, static member                                                                                                                                                                                                                                                        | CO1,<br>CO2,<br>CO3 |

|     | variables, static member functions, static objects, object as function arguments,<br>Friend Function.                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|     | <b>Constructors and Destructors:</b> Constructors and Destructors, characteristics of constructors and destructors, Applications with constructors, Parameterized constructors, Multiple constructors, copy constructors, destructors, calling constructors and destructors.                                                                                                                                                                                                                    |                             |
|     | <b>Operator Overloading:</b> The keyword operator, Overloading Unary Operators, Overloading binary operators, Rules for Overloading operators, Overloading Friend function.                                                                                                                                                                                                                                                                                                                     |                             |
| III | <ul> <li>Inheritance: Access specifiers and simple inheritance, protected data with private inheritance, Types of Inheritance: Single, Multilevel, Multiple, Hierarchical, Hybrid and Multipath, Virtual Base Classes.</li> <li>Pointers: void pointer, wild pointer, this pointer.</li> <li>Binding, Polymorphism, and Virtual Functions: Binding in C++, Pointer to Base and Derived class, Virtual Function, Rules for Virtual functions, Pure Virtual Functions, Abstract Class.</li> </ul> | CO1,<br>CO2,<br>CO3         |
| IV  | <b>Files</b> : Introduction, File stream classes, Steps for file operations, Checking for errors, Finding end of file, File opening modes, File pointers and manipulators. <b>Exception Handling:</b> Principles of Exception Handling, The Keywords try, throw and catch, Guidelines for Exception Handling, Multiple catch statements, Catching Multiple Exceptions, Re-Throwing Exceptions, Specifying Exceptions.                                                                           | CO1,<br>CO2,<br>CO3,<br>CO4 |
| V   | Generic Programming with Templates: Need for Templates, Definition of class Templates, Function Template, Working of Function Templates, Class Template with more parameters, Function Template with more parameters.<br>Standard Template Library: Introduction to STL, STL Programming model, containers, sequence container: vector, list; Associative containers: set, map; Algorithms: sort, search, find; Iterators.                                                                      | CO1,<br>CO2,<br>CO3,<br>CO4 |

#### **Text Books**

1. *Programming in C++*, Ashok N. Kamthane, 2<sup>nd</sup> Edition, 2013, Pearson.

#### References

- 1. *The C++ Programming Language*, BjarneStroustup, 4<sup>th</sup> Edition, 2013, Addison-Wesley.
- 2. Object-Oriented Programming Using C++ Paperback, Joyce Farrell, 4<sup>th</sup> Edition, 2013, Cengage.

#### e-Resources and other Digital Material

- 1. https://www.learncpp.com/
- 2. https://onlinecourses.nptel.ac.in/noc21\_cs02/preview
- 3. https://www.educative.io/courses/learn-object-oriented-programming-in-cpp
- 4. https://www.youtube.com/watch?v=wN0x9eZLix4 (Learn Object Oriented Programming in C++, Beau Carnes, February 2021)
- 5. https://www.geeksforgeeks.org/the-c-standard-template-library-stl/

#### PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY Data Structures Lab (Common to CSE & IT)

| Course Code                          | 20ES1356 | Year                       | II    | Semester      | Ι                                  |
|--------------------------------------|----------|----------------------------|-------|---------------|------------------------------------|
| Course Category                      | ES Lab   | Branch                     | IT    | Course Type   | Practical                          |
| Credits                              | 1.5      | L-T-P                      | 0-0-3 | Prerequisites | Programming for<br>Problem Solving |
| Continuous<br>Internal<br>Evaluation | 15       | Semester end<br>evaluation | 35    | Total Marks   | 50                                 |

|         | Course Outcomes                                                                                    |    |  |  |  |  |  |  |
|---------|----------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Upon su | Upon successful completion of the course, the student will be able to                              |    |  |  |  |  |  |  |
| CO1     | Apply Linear and non-linear data structures for solving problems.                                  | L2 |  |  |  |  |  |  |
| CO2     | Implement programs as an individual on different IDEs                                              | L3 |  |  |  |  |  |  |
| CO3     | Develop an effective report based on various programs implemented                                  | L3 |  |  |  |  |  |  |
| CO4     | CO4 Apply technical knowledge for a given problem and express with an effective oral communication |    |  |  |  |  |  |  |
| CO5     | Analyze outputs using given constraints/test cases                                                 | L4 |  |  |  |  |  |  |

**Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)** 

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 2   |     |     |     |     |     |     |     |     |      |      | 2    | 2    | 2    |
| CO2 |     |     |     |     | 3   |     |     |     | 3   |      |      |      |      |      |
| CO3 |     |     |     |     |     |     |     |     |     | 3    |      |      |      |      |
| CO4 | 1   |     |     |     |     |     |     |     |     | 1    |      |      |      |      |
| CO5 |     | 3   |     |     |     |     |     |     |     |      |      |      |      |      |

| Syllabus   |                                                                                         |           |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| Expt<br>No | Contents                                                                                | Mapped CO |  |  |  |  |  |  |
| 1.         | Demonstrate recursive algorithms with examples.                                         | CO1 - CO5 |  |  |  |  |  |  |
| 2.         | Implement various searching techniques.                                                 | CO1 - CO5 |  |  |  |  |  |  |
| 3.         | Develop programs for different sorting techniques                                       | CO1 - CO5 |  |  |  |  |  |  |
| 4.         | Implement and perform different operations on Single, Double and Circular Linked Lists. | CO1 - CO5 |  |  |  |  |  |  |
| 5.         | Develop a program to perform operations of a Stack using arrays and linked Lists.       | CO1 - CO5 |  |  |  |  |  |  |
| 6.         | Develop programs to implement Stack applications.                                       | CO1 - CO5 |  |  |  |  |  |  |
| 7.         | Develop a program to perform operations of Linear Queue using arrays and linked Lists.  | CO1 - CO5 |  |  |  |  |  |  |
| 8.         | Implement Circular Queues.                                                              | CO1 - CO5 |  |  |  |  |  |  |
| 9.         | Develop a program to represent a tree data structure.                                   | CO1 - CO5 |  |  |  |  |  |  |
| 10.        | Develop a program to demonstrate operations on Binary Search Tree.                      | CO1 - CO5 |  |  |  |  |  |  |
| 11.        | Demonstrate Graph Traversal Techniques.                                                 | CO1 - CO5 |  |  |  |  |  |  |
| 12.        | Develop a program to find Minimum cost Spanning tree.                                   | CO1 - CO5 |  |  |  |  |  |  |

#### **Text Books**

- 1. Data Structures and Algorithm Analysis in C, Mark Allen Weiss, Second Edition, 2002, Pearson.
- 2. *Introduction to Algorithms*, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Third Edition, 2010, PHI.
- 3. *Data Structures and Algorithms Made Easy* by Narasimha Karumanchi, 2020, CareerMonk Publications.

#### e-Resources & other digital material

- 1. https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
- 2. http://www.algomation.com/algorithm/single-linked-list-insert-delete
- 3. http://www.algomation.com/algorithm/binary-tree-insert-delete-display
- 4. https://www.youtube.com/watch?v=AfYqN3fGapc
- 5. https://www.youtube.com/watch?v=7vw2iIdqHIM
- 6. http://littlesvr.ca/dsa-html5-animations/sorting.php

#### SOFTWARE ENGINEERING LAB

| Course Code                       | 20IT3351 | Year                       | II    | Semester      | Ι   |
|-----------------------------------|----------|----------------------------|-------|---------------|-----|
| Course Category                   | PC Lab   | Branch                     | IT    | Course Type   | Lab |
| Credits                           | 1.5      | L-T-P                      | 0-0-3 | Prerequisites |     |
| Continuous Internal<br>Evaluation | 15       | Semester End<br>Evaluation | 35    | Total Marks   | 50  |

|            | Course Outcomes                                                                         |    |  |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
| Upon su    | Upon successful completion of the course, the student will be able                      |    |  |  |  |  |  |  |  |
| CO1        | To demonstrate requirement gathering techniques to analyze the problem and prepare SRS. | L4 |  |  |  |  |  |  |  |
| CO2        | To investigate a real-world problem using modern modelling tools.                       | L3 |  |  |  |  |  |  |  |
| CO3        | To estimate the cost, size, effort on a defined problem.                                | L3 |  |  |  |  |  |  |  |
| <b>CO4</b> | To formulate test cases based on requirements and design and performing testing.        | L3 |  |  |  |  |  |  |  |

| CO/<br>PO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | P011 | PO12 | PSO1 | PSO2 |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1       | 3   | 3   |     |     |     |     |     |     | 3   | 3    |      |      | 3    | 3    |
| CO2       | 3   |     | 3   |     | 3   |     |     |     | 3   | 3    |      |      | 3    | 3    |
| CO3       | 3   | 3   |     |     |     |     |     |     | 3   | 3    |      |      | 3    | 3    |
| CO4       | 3   |     |     |     | 3   |     |     |     | 3   | 3    |      |      | 3    | 3    |

| For the Case St | e <b>Content</b><br>below scenarios apply the experiments:<br>tudy 1: Banking System<br>tudy 2: Business Application |              |
|-----------------|----------------------------------------------------------------------------------------------------------------------|--------------|
| Expt.<br>No.    | Contents                                                                                                             | Mapped<br>CO |
| 1               | Performing Problem Analysis.                                                                                         | CO1          |
| 2               | Do the Requirement Analysis and Prepare SRS.                                                                         | CO1          |
| 3               | Identification of actors, use cases and construction of use case diagram.                                            | CO2          |
| 4               | Identification of classes, attributes and relationships of classes.                                                  | CO2          |
| 5               | Construction of class diagram.                                                                                       | CO2          |
| 6               | Using COCOMO model estimate effort.                                                                                  | CO3          |
| 7               | Calculate effort using FP oriented estimation model.                                                                 | CO3          |
| 8               | Design of Test cases based on requirements and design.                                                               | CO4          |
| 9               | Perform black box testing using a testing tool.                                                                      | CO4          |

#### Learning Resources Text Books

- 1. Roger S. Pressman, *Software engineering-A practitioner's Approach*, McGraw-Hill International Edition, Seventh edition, 2009.
- 2. Grady Booch , James Rumbaugh , Ivar Jacobson- *The Unified Modeling Language User Guide*, Pearson education, Second edition, 2005.

#### References

1.IanSommerville, Software engineering, Pearson education Asia, Tenth edition, 2017

#### e-Resources and other Digital Material

- 1. https://nptel.ac.in/courses/106/105/106105182/
- 2. https://nptel.ac.in/courses/106/105/106105224

# PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA

#### (AUTONOMOUS) INFORMATION TECHNOLOGY OBJECT ORIENTED PROGRAMMING THROUGH C++ Lab (Common to CSE & IT)

| Course Code                          | 201T3352 | Year                       | II    | Semester      | Ι                                  |
|--------------------------------------|----------|----------------------------|-------|---------------|------------------------------------|
| Course Category                      | PC Lab   | Branch                     | IT    | Course Type   | Lab                                |
| Credits                              | 1.5      | L-T-P                      | 0-0-3 | Prerequisites | Programming for<br>Problem Solving |
| Continuous<br>Internal<br>Evaluation | 15       | Semester End<br>Evaluation | 35    | Total Marks   | 50                                 |

|          | Course Outcomes                                                                                 |    |  |  |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Upon suc | cessful completion of the course, the student will be able to                                   |    |  |  |  |  |  |  |
| CO1      | Apply Object oriented principles/ C++ constructs for solving problems.                          | L2 |  |  |  |  |  |  |
| CO2      | Implement programs as an individual on different IDEs/ online platforms.                        | L2 |  |  |  |  |  |  |
| CO3      | Develop an effective report based on various programs implemented.                              | L2 |  |  |  |  |  |  |
| CO4      | Apply technical knowledge for a given problem and express with an effective oral communication. | L3 |  |  |  |  |  |  |
| CO5      | Analyze outputs using given constraints/test cases.                                             | L4 |  |  |  |  |  |  |

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High, M: Medium, L:Low)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 2   |     |     |     |     |     |     |     |     |      |      |      | 2    | 2    |
| CO2 |     |     |     |     | 3   |     |     |     | 3   |      |      |      | 3    | 3    |
| CO3 |     |     |     |     |     |     |     |     |     | 3    |      |      |      |      |
| CO4 | 2   |     |     |     |     |     |     |     |     | 2    |      |      | 2    |      |
| CO5 |     | 2   |     |     |     |     |     |     |     |      |      |      | 2    | 2    |

|         | SYLLABUS                                                                                           |              |
|---------|----------------------------------------------------------------------------------------------------|--------------|
| Sl. No. | CONTENTS                                                                                           | Mapped<br>CO |
| 1       | Implement programs on predefined streams.                                                          | CO1-CO5      |
| 2       | Implement programs using functions (passing arguments, overloading).                               | CO1-CO5      |
| 3       | Implement programs using class/object concepts. (Access specifiers, class members, static members) | CO1-CO5      |
| 4       | Implement programs using friend functions.                                                         | CO1-CO5      |
| 5       | Implement programs using constructor(s) and destructor.                                            | C01-C05      |
| 6       | Implement programs using operator overloading.                                                     | C01-C05      |
| 7       | Implement various types of inheritance techniques.                                                 | CO1-CO5      |
| 8       | Implement programs using virtual functions to achieve polymorphism.                                | CO1-CO5      |
| 9       | Implement programs using File Streams                                                              | CO1-CO5      |
| 10      | Implement programs on exception handling concepts.                                                 | CO1-CO5      |
| 11      | Implement programs on generic programming concept with templates.                                  | CO1-CO5      |
| 12      | Implement containers in C++ (Sequence Containers and Associative Containers).                      | C01-C05      |

# **Text Books**

1. *Programming in C++*, Ashok N. Kamthane, 2nd Edition, 2013, Pearson.

References

- 1. *The C++ Programming Language*, BjarneStroustup, 4th Edition, 2013, Addison-Wesley.
- 2. Object-Oriented Programming Using C++ Paperback, Joyce Farrell, 4th Edition, 2013, Cengage.

# e-Resources and other Digital Material

- 1. https://www.learncpp.com/
- 2. https://onlinecourses.nptel.ac.in/noc21\_cs02/preview
- 3. https://www.educative.io/courses/learn-object-oriented-programming-in-cpp
- 4. https://www.youtube.com/watch?v=wN0x9eZLix4 (Learn Object Oriented Programming in C++, Beau Carnes, February 2021)
- 5. https://www.geeksforgeeks.org/the-c-standard-template-library-stl/

#### **USER EXPERIENCE (UX) DESIGN**

| Course Code                       | 20SO8356 | Year                          | II    | Semester      | Ι   |
|-----------------------------------|----------|-------------------------------|-------|---------------|-----|
| Course Category                   | SC       | Branch                        | IT    | Course Type   | Lab |
| Credits                           | 2        | L-T-P                         | 1-0-2 | Prerequisites | -   |
| Continuous<br>Internal Evaluation | -        | Semester<br>End<br>Evaluation | 50    | Total Marks   | 50  |

|        | Course Outcomes                                                                                                          |    |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Upon S | Upon Successful completion of course, the student will be able to                                                        |    |  |  |  |  |  |  |
| CO1    | Identify the significance of user experience and interaction design and recognize various aspects of Adobe XD workspace. | L2 |  |  |  |  |  |  |
| CO2    | Use various drawing tools used in UX design.                                                                             | L3 |  |  |  |  |  |  |
| CO3    | Demonstrate various operations on Text and Images in UX design.                                                          | L3 |  |  |  |  |  |  |
| CO4    | Discover the process of UX design for Mobile                                                                             | L3 |  |  |  |  |  |  |
| CO5    | Demonstration of designing wireframes and prototypes for Mobile and Web applications.                                    | L3 |  |  |  |  |  |  |

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

|     | <b>PO1</b> | <b>PO2</b> | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|------------|------------|-----|-----|-----|------------|------------|------------|-----|------|------|------|------|------|
| CO1 | 3          |            |     |     |     |            |            |            |     |      |      |      |      | 3    |
| CO2 |            |            |     |     | 3   |            |            |            |     |      |      |      |      | 3    |
| CO3 |            |            |     | 3   |     |            |            |            |     |      |      |      |      | 3    |
| CO4 |            |            |     | 3   |     |            |            |            |     |      |      |      |      | 3    |
| CO5 |            |            | 3   |     |     |            |            |            |     |      |      |      |      | 3    |

|                           | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mapped<br>CO |
| No                        | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| I                         | <ul> <li>Overview of Web and Mobile Design Process: Challenges of Designing, designing for screens, Designing for Interaction. Introduction to Adobe (XD) Experience Design – Design and Prototype workspace in Adobe XD, Using Keyboard.</li> <li>Practical Exercises:         <ol> <li>Identify and explore Adobe XD interface, Workspaces, various panels, menus.</li> </ol> </li> </ul>                                                                                                                                                                                                           | CO1          |
| п                         | <ul> <li>Using Adobe XD's Drawing tools: Adding Shapes, Shapes and Properties, stacking order, Working with Layers, Combining Objects into symbols, Drawing objects with Pen tool</li> <li>Practical Exercises: <ol> <li>Practice different shapes available in Adobe XD and explore their properties.</li> <li>Exercise on stacking various shapes and working with layers. Exercise on combining objects to form symbols/components like Textboxes, Buttons,</li> <li>Dropdown lists, Checkboxes, Radio boxes.</li> <li>Exercise on drawing different shapes using Pen tool.</li> </ol> </li> </ul> | CO2          |
| ш                         | <ul> <li>Working with Text and Images: Understanding fonts, Formatting Text, Text bestpractices. Image File Types, Scaling and rotation, working with SVG</li> <li>Practical Exercises:</li> <li>1. Exercise on formatting text with best practices and fonts.</li> <li>2. Exercise on working with images: scaling rotation, working with SVG.</li> </ul>                                                                                                                                                                                                                                            | CO3          |
| IV                        | <ul> <li>Artboard and Content Grids: Artboard basics, creating place holders, Repeat Grid, Formatting placeholders. Designing for Mobile - Responsive web design, Creating App designs, Mobile Web designs.</li> <li>Practical Exercises: <ol> <li>Exercise on using Artboards, grids and placeholders.</li> <li>Exercise on Mobile and Responsive design.</li> </ol> </li> </ul>                                                                                                                                                                                                                     | CO4          |
| V                         | <ul> <li>Creating Interactive Prototypes: Prototype workspace, creating links –<br/>Interacting limitations, Previewing Prototypes – Desktop &amp; Mobile, Using<br/>prototypes for Usability Tests.</li> <li>Practical Exercises:         <ol> <li>Create a wireframe for any sample application (Web and Mobile).</li> <li>Create a prototype for the above designed wireframes with interactions.</li> </ol> </li> </ul>                                                                                                                                                                           | CO5          |
|                           | ing Recourses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| $\frac{\text{Text B}}{1}$ | ooks<br>Beginning Adobe Experience Design: Quickly Design and Prototype Websites and M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | obila        |
|                           | Apps, by Rob Huddleston, Apress.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oone         |
| Refere                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
|                           | ump Start Adobe XD, by Daniel Schwarz, Sitepoint.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|                           | ourses and other Digital Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| 1.<br>2.                  | The Basics of User Experience Design - Ebook, by Interaction Design<br><u>Foundation.https://www.interaction-design.org/ebook</u><br>UI/UX Design Specialization – Coursera: <u>https://www.coursera.org/specializations/www.design</u>                                                                                                                                                                                                                                                                                                                                                               | <u>1i-</u>   |
| 3.                        | UX Prototyping – edX - <u>https://www.edx.org/course/ux-prototyping</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |

#### **ENVIRONMENTAL SCIENCE**

#### (COMMON TO ALL BRANCHES)

| Course Code                       | 20MC1301 | Year                       | II    | Semester      | Ι      |
|-----------------------------------|----------|----------------------------|-------|---------------|--------|
| Course Category                   | MC       | Branch                     | IT    | Course Type   | Theory |
| Credits                           | 0        | L-T-P                      | 2-0-0 | Prerequisites |        |
| Continuous Internal<br>Evaluation | 30       | Semester End<br>Evaluation | 70    | Total Marks   | 100    |

| Upon | Course Outcomes<br>Successful completion of course, the student will be able to                                   | Blooms<br>Taxonomy<br>Level |
|------|-------------------------------------------------------------------------------------------------------------------|-----------------------------|
| CO1  | Apply advanced solutions to measure the threats and hazards in<br>environment to link with human natural systems. | L3                          |
| CO2  | Analyze the ethical, cultural and historical interactions between man and environment.                            | L4                          |
| CO3  | Analyze various environmental assets and record for better management                                             | L4                          |
| CO4  | Analyze global issues to design and evaluate policies                                                             | L4                          |
| CO5  | Apply system concepts to methodological social and environmental issues                                           | L3                          |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High, M: Medium, L:Low)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|
| CO1 | 2   |     |     |     |     |     | 2          |     |     |      |      |      |      | 1    |
| CO2 |     | 2   |     |     |     |     | 3          |     |     |      |      |      |      | 1    |
| CO3 |     | 3   |     |     |     |     | 3          |     |     |      |      |      |      | 1    |
| CO4 |     | 2   |     |     |     |     | 3          |     |     |      |      |      |      | 1    |
| CO5 | 2   |     |     |     |     |     | 2          |     |     |      |      |      |      | 1    |

| Unit | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mapp<br>ed |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| No   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COs        |
| I    | <b>INTRODUCTION TO ENVIRONMENT AND NATURAL RESOURCES:</b> Introduction to<br>environment: Definition scope importance need for public awareness. Natural resources:<br>Renewable and non renewable resources, natural resources and associated problems.<br>Forest resources: Uses, Reasons for over-exploitation, deforestation effects case studies.<br>Water resources: Use and over – utilization of surface and ground water, floods, drought,<br>conflicts over water, dams- benefits and problems. Mineral resources: Uses,<br>environmental effects of extracting and using mineral resources, case studies. Food<br>resources: World food problems, Impacts of overgrazing, effects of modern agriculture,<br>fertilizer-pesticide problems, water logging, salinity, case studies. Energy resources:<br>Growing energy needs, use of renewable and non renewable energy sources, case<br>studies. | CO2        |
| П    | ECOSYSTEMS AND BIODIVERSITY: Structure components of ecosystem: Biotic and<br>Abiotic components. Functional components of an ecosystem: Food chains, Food webs,<br>Ecological pyramids, Energy flow in the ecosystem, Ecological succession.<br>Biogeochemical cycle: Nitrogen, carbon, Phosphorus cycle.<br>Biodiversity: Definition, Levels of biodiversity: genetic, species and ecosystem<br>diversity. Bio-geographical classification of India, Values of biodiversity: consumptive<br>use, productive use, social, ethical, aesthetic and optional values. India as a mega –<br>diversity nation. Hot-spots of biodiversity. Threats to biodiversity: habitat loss,<br>poaching of wildlife, man-wildlife conflicts. Conservation of biodiversity: In– situ and<br>Ex-situ conservation of biodiversity.                                                                                            | CO1        |
| III  | <b>ENVIRONMENTAL POLLUTION AND CONTROL:</b> Environmental Pollution: Definition, causes, effects and control measures: Air Pollution, Water pollution, Soil pollution, Marine pollution, Thermal pollution, Nuclear hazards, Solid waste Management, e-waste, Pollution case studies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| IV   | <b>SOCIAL ISSUES AND GLOBAL ENVIRONMENT PROBLEMS ANDEFFORTS:</b> From<br>Unsustainable to Sustainable development. Urban problems related to energy. Water<br>conservation, rain water harvesting, watershed management, Remote sensing and<br>GIS methods. Environmental ethics: Issues and possible solutions. Green building<br>concept, Environmental Impact Assessment Environmental Management Plan, Climate<br>change: global warming, acid rain, ozone layer depletion.                                                                                                                                                                                                                                                                                                                                                                                                                             | CO4<br>CO5 |
| V    | HUMAN POPULATION AND ENVIRONMENT LEGISLATION: Population growth,<br>Environment and human health. HIV/AIDS, Value Education. Women and Child<br>Welfare. Role of Information Technology in Environment and human health.<br>Environment Legislation. Air (Prevention and Control of Pollution) Act.<br>Water (Prevention and Control of Pollution) Act. Wildlife Protection Act. Forest<br>Conservation Act. Environmental Protection Act.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |

| Le | arning Recourses                                                                      |
|----|---------------------------------------------------------------------------------------|
| Te | xt Books                                                                              |
| 1. | Anubha Kaushik and C.P. Kaushik, Text book of environmental studies, New Age          |
|    | International Publisher (2014).                                                       |
| 2. | ErachBarucha, Text book of environmental studies for undergraduates courses, UGC,     |
|    | University Press (2005)                                                               |
| 3. | AninditaBasak, Environmental Studies. Pearson (2009)                                  |
| Re | ference Books                                                                         |
| 1. | D.K. Asthana and MeeraAsthana, A Text book of Environmental Studies, S. Chand (2010). |
| 2. | P.M Cherry Solid and Hazardous waste Management, CBS Publisher (2016).                |
| 3. | Charles H. Ecclestion, Environmental Impact Assessment, CRC Press (2011).             |

#### **COMMUNITY SERVICE PROJECT**

| Course Code                         | 20IT3391 | Year                        | II    | Semester      | Ι         |
|-------------------------------------|----------|-----------------------------|-------|---------------|-----------|
| Course Category                     | PC       | Branch                      | IT    | Course Type   | Practical |
| Credits                             | 4        | L-T-P                       | 0-0-0 | Prerequisites | -         |
| Continuous Internal<br>Evaluation : | 100      | Semester End<br>Evaluation: | -     | Total Marks:  | 100       |

|      | Course Outcomes                                                                                                     | Blooms<br>Taxonomy Level |  |  |
|------|---------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|
| Upon | successful completion of the course, the student will be able to                                                    |                          |  |  |
| CO1  | Analyze Community/Societal problems and identify its requirements.                                                  | L4                       |  |  |
| CO2  | Design and document technical ideas, strategies and methodologies.                                                  | L6                       |  |  |
| CO3  | Use tools, mobile apps and latest technologies that contribute to the development of the community service project. | L3                       |  |  |
| CO4  | Role-Play as a member to present the community service project.                                                     | L6                       |  |  |

|     | Contribution of Course Outcomes towards achievement of Program Outcomes |     |     |     |              |              |              |     |     |      |              |              |      |      |
|-----|-------------------------------------------------------------------------|-----|-----|-----|--------------|--------------|--------------|-----|-----|------|--------------|--------------|------|------|
|     | P01                                                                     | P02 | PO3 | P04 | P05          | P06          | P07          | P08 | P09 | P010 | P011         | P012         | PSO1 | PSO2 |
| CO1 |                                                                         |     |     |     |              | $\checkmark$ | $\checkmark$ |     |     |      |              |              |      |      |
| CO2 |                                                                         |     |     |     |              |              |              |     |     |      |              |              |      |      |
| CO3 |                                                                         |     |     |     | $\checkmark$ |              |              |     |     |      |              |              |      |      |
| CO4 |                                                                         |     |     |     |              |              |              |     |     |      | $\checkmark$ | $\checkmark$ |      |      |

|     | Contribution of Course Outcomes towards achievement of Program Outcomes &<br>Strength of correlations (3:High, 2: Medium, 1:Low) |     |     |     |     |     |     |     |     |      |          |      |      |      |
|-----|----------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|----------|------|------|------|
|     | PO1                                                                                                                              | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | U / | PO9 | PO10 | <i>.</i> | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                                                                                                | 3   | 3   | 3   |     | 3   | 3   |     |     |      |          |      | 3    | 3    |
| CO2 |                                                                                                                                  | 3   | 3   | 3   |     |     |     | 3   |     | 3    |          |      | 3    | 3    |
| CO3 |                                                                                                                                  |     |     |     | 3   |     |     |     |     |      |          |      | 3    | 3    |
| CO4 |                                                                                                                                  |     |     |     |     |     |     |     | 3   |      | 3        | 3    | 3    | 3    |

#### TRASFORM TECHNIQUES, NUMERICAL METHODS AND NUMBER THEORY

| Course Code     | 20BS1404 | Year       | II    | Semester           | II     |
|-----------------|----------|------------|-------|--------------------|--------|
| Course Category | BS       | Branch     | IT    | Course Type        | Theory |
|                 | _        |            |       |                    | -      |
| Credits         | 3        | L-T-P      | 3-0-0 | Prerequisites      |        |
| Continuous      |          | Semester   |       |                    |        |
| Internal        |          | End        |       |                    |        |
| Evaluation      | 30       | Evaluation | 70    | <b>Total Marks</b> | 100    |

| II G     | Course Outcomes                                                                                                                            |    |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| Upon Suc | cessful completion of course, the student will be able to                                                                                  | -  |  |  |  |  |  |
| CO1      | Understand the basic concepts of Transform Techniques, Numerical Methods and Number Theory                                                 | L2 |  |  |  |  |  |
| CO2      | Determine Laplace and inverse Laplace transforms of given function &<br>Solving the linear differential Equations using Laplace transforms | L3 |  |  |  |  |  |
| CO3      | Apply different Numerical methods to solve the problems of numerical integration and ordinary differential equations                       | L3 |  |  |  |  |  |
| CO4      | Estimate the interpolated values, approximate roots and derivatives                                                                        | L4 |  |  |  |  |  |

**Contribution of Course Outcomes towards achievement of Program Outcomes Strength of correlations (3-High, 2: Medium, 1:Low)** 

|     | <b>DO1</b> |     |     | DO 4 |     | DOC |             | DOG | DOG | <b>DO10</b> | b011 | <b>DO1</b> | DCO1 |      |
|-----|------------|-----|-----|------|-----|-----|-------------|-----|-----|-------------|------|------------|------|------|
|     | PO1        | PO2 | PO3 | PO4  | PO5 | PO6 | <b>PO</b> 7 | PO8 | PO9 | POIO        | POII | PO12       | PSOI | PSO2 |
| CO1 |            |     |     |      |     |     |             |     |     |             |      |            | 1    |      |
| CO2 | 3          |     |     |      |     |     |             |     | 2   | 2           |      |            | 1    |      |
| CO3 | 3          |     |     |      |     |     |             |     | 2   | 2           |      |            | 1    |      |
| CO4 |            | 3   |     |      |     |     |             |     |     |             |      |            | 1    |      |

| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                   | Mapped<br>COs       |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| I          | <b>Laplace Transforms:</b> Definition of Laplace Transform, Transforms of elementary functions, properties of Laplace Transforms, Transforms of derivatives, Transforms of integrals, multiplication by $t_i^n$ division by $t(All theorems/properties without proofs)$<br><b>Application</b> : Evaluation of integrals.                                                                   | CO2                 |
| II         | <b>Inverse Laplace transforms:</b> Method of partial fractions, other methods of finding inverse Transform, convolution theorem.(All theorems/properties without proofs)<br><b>Application</b> : Solving differential equations using Laplace transforms.                                                                                                                                  | CO1,<br>CO2         |
| III        | Solution of Algebraic and Transcendental Equations: Bisection method,<br>method of false position and Newton-Raphson's method.<br>Finite differences and Interpolation: Relation between the operators,<br>interpolation using Newton's forward and backward difference formulae.<br>Interpolation with unequal intervals: Lagrange's formula. (All<br>theorems/properties without proofs) | CO1,<br>CO3,<br>CO4 |
| IV         | Numerical Solution of Ordinary differential equations: Picard's Method,<br>Taylor's Series Method, Euler's Method, modified Euler's Method, Runge-<br>Kutta method of fourth order for solving first order equations. (All<br>theorems/properties without proofs)                                                                                                                          | CO1,<br>CO3,<br>CO4 |
| V          | <b>Basic Concepts in Number Theory:</b> Divisibility and the Division Algorithm, The Euclidean Algorithm, Modular arithmetic, Prime numbers, Fermat's Theorem and Euler's Theorems, Testing for Primality, Chinese Remainder Theorem. (All theorems without proofs)                                                                                                                        | CO1                 |

| Learning Resources                                                                        |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Text Book(s)                                                                              |  |  |  |  |  |  |
| 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.            |  |  |  |  |  |  |
| 2. T.K.V.Iyenger, Krishna Gandhi and others, Mathematical Methods by S.Chand.             |  |  |  |  |  |  |
| 3. Cryptography and Network Security- Principles and Practice, William Stallings, Seventh |  |  |  |  |  |  |
| Edition 2017, Pearson                                                                     |  |  |  |  |  |  |
| Reference Book(s)                                                                         |  |  |  |  |  |  |
| 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.        |  |  |  |  |  |  |

# e- Resources & other digital material

- 1. https://www.nptel.ac.in/courses/111/107/111107105/ 2. https://nptel.ac.in/courses/106/105/106105162/
- 3. https://nptel.ac.in/courses/111/106/111106139/
- 4. IT Moodle

# PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA

#### (AUTONOMOUS) INFORMATION TECHNOLOGY

#### DATABASE MANAGEMENT SYSTEMS

| Course Code                | 20IT3401 | Year         | II    | Semester           | II         |
|----------------------------|----------|--------------|-------|--------------------|------------|
| Course Category            | PC       | Branch       | IT    | <b>Course Type</b> | Theory     |
|                            |          |              |       |                    | Data       |
| Credits                    | 3        | L-T-P        | 3-0-0 | Prerequisites      | Structures |
| <b>Continuous Internal</b> |          | Semester End |       |                    |            |
| Evaluation                 | 30       | Evaluation   | 70    | <b>Total Marks</b> | 100        |

| Course | Course Outcomes                                                                                                                               |    |  |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| Upon S | Upon Successful completion of course, the student will be able to                                                                             |    |  |  |  |  |  |
| CO1    | Understand the basic concepts of database management systems                                                                                  | L2 |  |  |  |  |  |
| CO2    | Apply SQL as well as Relational Algebra to find solutions to a broad range of queries                                                         | L3 |  |  |  |  |  |
| CO3    | Apply various data models for database design                                                                                                 | L3 |  |  |  |  |  |
| CO4    | Apply normalization techniques to improve database design                                                                                     | L3 |  |  |  |  |  |
| CO5    | Analyze a given database application scenario to use ER model for conceptual design of the database and make an effective report (Assignment) | L4 |  |  |  |  |  |

|          | PO1                         | PO2                                                                                                                                                                                                                                                                                                                                                                                                                                              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9    | PO10                    | PO11 | PO12 | PSO1 | PSO2 |
|----------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|--------|-------------------------|------|------|------|------|
| CO1      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |     |     |     |     |        |                         |      |      | 3    |      |
| CO2      | 3                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |     |     |     |     |        |                         |      | 3    | 3    |      |
| CO3      | 3                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |     |     |     |     |        |                         | 3    | 3    | 3    |      |
| CO4      | 3                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |     |     |     |     |        |                         | 3    | 3    | 3    |      |
| CO5      |                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |     |     |     |     | 2      | 2                       | 2    |      | 3    |      |
|          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |     |     |     | Sy  | llabus | 5                       |      |      |      |      |
| Un<br>No |                             | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |     |     |     |     |     |        | Mapped CO               |      |      |      |      |
| Ι        | Ac<br>Ar<br>Ov<br>Sc<br>Inc | Contents<br>Introduction to Databases: Characteristics of the Database Approach,<br>Advantages of using the DBMS Approach, A Brief History of Database<br>Applications.<br>Overview of Database Languages and Architectures: Data Models,<br>Schemas and Instances, Three-Schema Architecture and Data<br>Independence, Database Languages and Interfaces, Database System<br>environment, Centralized and Client-Server Architecture for DBMSs. |     |     |     |     |     |     |        | abase<br>odels,<br>Data | C01  |      |      |      |

| п  | <ul> <li>Relational Model: The Relational Model Concepts, Relational Model Constraints and Relational Database Schemas.</li> <li>SQL: Data Definition, Constraints, and Basic Queries and Updates, SQL Advanced Queries, Assertions, Triggers, and Views</li> <li>Formal Relational Languages: Relational Algebra: Unary Relational Operations: Select and Project, Relational Algebra Operations from Set Theory, Binary Relational Operations: Join and Division, Examples of Queries in Relational Algebra.</li> </ul>                                                                                | CO1,<br>CO2,<br>CO5 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| ш  | <b>Conceptual Data Modeling:</b> High-Level Conceptual Data Models for<br>Database Design, A Sample Database Application, Entity Types, Entity<br>Sets, Attributes and Keys, Relationship Types, Relationship Sets, Roles,<br>and Structural Constraints, Weak Entity Types, Refining the ER Design,<br>ER Diagrams, Naming Conventions and Design Issues, Relationship Types<br>of Degree Higher Than Two Relational Database Design Using ER-to-<br>Relational Mapping.                                                                                                                                | CO1,<br>CO3,<br>CO5 |
| IV | <b>Database Design Theory:</b> Functional Dependencies, Normal forms based<br>on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal<br>Form, Multi valued Dependencies and Fourth Normal Form, Join<br>Dependencies and Fifth Normal Form.                                                                                                                                                                                                                                                                                                                                                   | CO1,<br>CO4,<br>CO5 |
| V  | <ul> <li>Transaction Processing: Introduction, Transaction and System Concepts,<br/>Desirable Properties of Transactions, Characterizing Schedules Based on<br/>Recoverability &amp; Serializability, Transaction Support in SQL.</li> <li>Introduction to Concurrency Control: Two-Phase Locking Techniques:<br/>Types of Locks and System Lock Tables, Guaranteeing Serializability by<br/>Two-Phase Locking. Introduction to Recovery Protocols – Recovery<br/>Concepts, No-UNDO/REDO Recovery based on Deferred Update,<br/>Recovery Techniques based on Immediate Update, Shadow Paging.</li> </ul> | CO1                 |

#### Learning Recourses

**Text Books** 

1. *DATABASE SYSTEMS Models, Languages, Design and Application Programming*, Sixth Edition, Ramez Elmasri, Shamkant B. Navathe, Pearson.

#### **Reference Books**

1. Data base System Concepts, Fifth Edition, Abraham Silberschatz, Henry F Korth, S. Sudarshan, McGraw Hill.

2. Data base Management Systems, Third Edition, Raghurama Krishnan, Johannes Gehrke, TMH.

3. Introduction to Database Systems, Eighth Edition, C.J.Date, Pearson

**E-Recourses and other Digital Material** 

NPTEL VIDEO LECTURES

# PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA

# (AUTONOMOUS)

#### **INFORMATION TECHNOLOGY**

#### **COMPUTER ORGANIZATION**

| Course Code                       | 201T3402 | Year                       | II    | Semester      | II     |
|-----------------------------------|----------|----------------------------|-------|---------------|--------|
| Course Category                   | PC       | Branch                     | IT    | Course Type   | Theory |
| Credits                           | 3        | L-T-P                      | 3-0-0 | Prerequisites | FDLD   |
| Continuous Internal<br>Evaluation | 30       | Semester End<br>Evaluation | 70    | Total Marks   | 100    |

| Course Outcomes                                                       |                                                                                     |    |  |  |  |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------|----|--|--|--|--|
| Upon successful completion of the course, the student will be able to |                                                                                     |    |  |  |  |  |
| CO1                                                                   | Understand the basic functional units of a computer system and its organization.    | L2 |  |  |  |  |
| CO2                                                                   | Apply appropriate instructions for processing various types of computer operations. | L3 |  |  |  |  |
| CO3                                                                   | Apply various types of organizations on registers.                                  | L3 |  |  |  |  |
| CO4                                                                   | Analyze memory hierarchy, I/O communication and pipelining.                         | L4 |  |  |  |  |

# **Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO2 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO3 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO4 |     | 3   |     |     |     |     |     |     | 2   | 2    |      |      | 3    |      |

|            | Syllabus                                                                                                                                                                                                                                                                                                                          |         |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                          |         |  |  |  |  |
| I          | <b>Register Transfer and Micro-Operations:</b> Register Transfer Language,<br>Register Transfer, memory Transfers, Busconstruction with Multiplexers,<br>Arithmetic Micro-operations, Logic Micro-operations, Shift Micro-<br>operations, Arithmetic Logic Shift Unit.                                                            | CO1,CO2 |  |  |  |  |
| п          | <b>Basic Computer Organization:</b> Instruction codes, Computer Registers,<br>Computer Instructions, Timing and Control, Instruction Cycle, Memory-<br>Reference Instructions, Input-Output and Interrupt.                                                                                                                        |         |  |  |  |  |
| III        | <b>Central Processing Unit:</b> General registers Organization, Stack Organization, Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control.                                                                                                                                                       | CO1,CO2 |  |  |  |  |
| IV         | <ul> <li>Computer Arithmetic: Introduction, Addition and Subtraction, Booth<br/>Multiplication Algorithm.</li> <li>Memory Organization: Memory Hierarchy, Main Memory, Auxiliary<br/>memory, AssociativeMemory, Cache Memory, Virtual Memory.</li> </ul>                                                                          | CO1,CO3 |  |  |  |  |
| V          | <ul> <li>Input-Output Organization: Peripheral Devices, Input-output Interface,<br/>Asynchronous Data Transfer, Priority Interrupt, Direct Memory Access<br/>(DMA), Input-Output Processor.</li> <li>Pipeline and Parallel Processing: Parallel processing, Pipelining,<br/>Arithmetic pipeline, Instruction pipeline.</li> </ul> | CO1,CO4 |  |  |  |  |

# **Text Books**

1. Computer System Architecture, Morris M. Mano, Third Edition, 1992, Pearson.

#### References

- 1. Computer Organization and Architecture, William Stallings, Eighth Edition, 2010, PHI.
- 2. Computer Organization, Carl Hamachar, Vranesic, 2002, McGrawHill.

# e- Resources and other Digital Material

1. https://nptel.ac.in/courses/106/106/106106092/

#### PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY Design and Analysis of Algorithms

## (Common to CSE & IT)

| Course Code                          | 20IT3403 | Year                       | II    | Semester      | II                                                            |
|--------------------------------------|----------|----------------------------|-------|---------------|---------------------------------------------------------------|
| Course Category                      | PC       | Branch                     | IT    | Course Type   | Theory                                                        |
| Credits                              | 3        | L-T-P                      | 3-0-0 | Prerequisites | Discrete<br>Mathematical<br>Structures and<br>Data Structures |
| Continuous<br>Internal<br>Evaluation | 30       | Semester End<br>Evaluation | 70    | Total Marks   | 100                                                           |

|            | Course Outcomes |                                                                       |           |          |         |         |          |          |         |          |          |          |          |      |  |
|------------|-----------------|-----------------------------------------------------------------------|-----------|----------|---------|---------|----------|----------|---------|----------|----------|----------|----------|------|--|
| Upon       | succ            | essful co                                                             | mpletio   | on of th | ne cour | se, the | studen   | t will b | be able | to       |          |          |          |      |  |
| CO1        |                 | Underst<br>techniqu                                                   |           | funda    | mental  | conce   | pts of a | lgorith  | ım anal | ysis and | l design |          | L2       |      |  |
| CO2        |                 | Apply various algorithm design techniques for solving problems        |           |          |         |         |          |          |         |          |          |          | L3       |      |  |
| CO3        |                 | Analyze the performance of given problem using different algorithm L4 |           |          |         |         |          |          |         |          |          | L4       |          |      |  |
| <b>CO4</b> |                 | Analyze                                                               | e the giv | ven pro  | blem a  | and pro | vide th  | ne feasi | ble sol | ution.   |          |          | L4       |      |  |
|            |                 | ion of C<br>1s (3:Su                                                  |           |          |         |         |          |          | of Pro  | gram O   | outcome  | es & Sti | rength o | f    |  |
|            | PO              | 1 PO2                                                                 | PO3       | PO4      | PO5     | PO6     | PO7      | PO8      | PO9     | PO10     | PO11     | PO12     | PSO1     | PSO2 |  |
| CO1        | 3               |                                                                       |           |          |         |         |          |          |         |          |          |          | 3        | 3    |  |
| CO2        | 3               |                                                                       |           |          |         |         |          |          | 2       | 2        |          | 3        | 3        | 3    |  |
| CO3        |                 | 3                                                                     |           |          |         |         |          |          | 1       | 1        |          | 3        | 3        | 3    |  |
| CO4        |                 | 3                                                                     |           |          |         |         |          |          | 1       | 1        |          | 3        | 3        | 3    |  |

|            | Syllabus                                                                                                                                                                                                                                                                                                         |                     |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|--|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                         | Mapped CO           |  |  |  |  |  |  |
| I          | <b>Introduction:</b> Notion of Algorithm, Fundamentals of Algorithmic Problem<br>Solving. Fundamentals of the Analysis of Algorithm Efficiency: Analysis<br>framework and Asymptotic Notations and Basic Efficiency Classes,<br>Amortized Analysis. Introduction to Brute Force Technique, Exhaustive<br>Search. | CO1,CO2,<br>CO3     |  |  |  |  |  |  |
| II         | IIDivide and Conquer: Introduction, Merge sort, Quick sort, Binary Search,<br>Finding Maximum and Minimum, Strassen's Matrix Multiplication.                                                                                                                                                                     |                     |  |  |  |  |  |  |
| III        | <b>The Greedy Method:</b> Introduction, Huffman Trees and codes, Minimum Coin Change problem, Knapsack problem, Job sequencing with deadlines, Minimum CostSpanning Trees, Single Source Shortest paths.                                                                                                         | CO1,CO2,<br>CO3,CO4 |  |  |  |  |  |  |
| IV         | <b>Dynamic Programming:</b> Introduction, 0/1 Knapsack problem, All pairs shortest paths, OptimalBinary search trees, Travelling salesman problem.                                                                                                                                                               | CO1,CO2,<br>CO3,CO4 |  |  |  |  |  |  |
| V          | <ul> <li>Back Tracking: Introduction, n-Queens problem, Sum of subsets, Hamiltonian cycle.</li> <li>Branch and Bound: Introduction, Assignment problem, Travelling Salesman problem.</li> <li>Introduction to Complexity classes: P and NP Problems, NP-Complete Problems.</li> </ul>                            | CO1,CO2,<br>CO3,CO4 |  |  |  |  |  |  |

#### **Text Books**

- 1. Introduction to the Design & Analysis of Algorithms, Anany Levitin, Third Edition, 2011, Pearson Education.
- 2. Data Structures and Algorithm Analysis in C, Mark Allen Weiss, 2002, Pearson.
- 3. Algorithm Design Techniques, Narasimha Karumanchi, CareerMonk Publications, 2018.

#### References

- 1. *Introduction to Algorithms*, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Third Edition, 2012, MIT Press.
- 2. *Fundamentals of computer algorithms*, Ellis Horowitz, Sartaj Sahni, S. Rajasekharan, Second Edition, 2008, Universities Press.

#### e-Resources and other Digital Material

- 1. https://nptel.ac.in/courses/106/106/106106131/
- 2. https://www.cmi.ac.in/~madhavan/
- 3. https://www.coursera.org/lecture/analysis-of-algorithms/resources-jMWPy
- 4. https://www.geeksforgeeks.org/fundamentals-of-algorithms/

#### **PROGRAMMING WITH JAVA**

| Course Code                          | 20IT3404 | Year                       | II    | Semester      | II                                                           |
|--------------------------------------|----------|----------------------------|-------|---------------|--------------------------------------------------------------|
| Course Category                      | PC       | Branch                     | IT    | Course Type   | Theory                                                       |
| Credits                              | 3        | L-T-P                      | 3-0-0 | Prerequisites | Programming for<br>Problem Solving<br>and OOP<br>Through C++ |
| Continuous<br>Internal<br>Evaluation | 30       | Semester End<br>Evaluation | 70    | Total Marks   | 100                                                          |

|         | Course Outcomes                                                                                                           |    |  |  |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
| Upon su | Upon successful completion of the course, the student will be able to                                                     |    |  |  |  |  |  |  |  |
| CO1     | Illustrate the need, principles and fundamental concepts in JAVA.                                                         | L2 |  |  |  |  |  |  |  |
| CO2     | Apply the knowledge of Object Oriented Programming principles to develop applications.                                    | L3 |  |  |  |  |  |  |  |
| CO3     | Analyze the concepts of Packages, Multithreading and Exception handling to develop efficient and error free applications. | L4 |  |  |  |  |  |  |  |
| CO4     | Develop GUI based applications using JAVA constructs.                                                                     | L3 |  |  |  |  |  |  |  |

# **Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    | 3    |
| CO2 | 3   |     | 3   |     |     |     |     |     |     |      |      |      | 3    | 3    |
| CO3 |     | 3   |     |     |     |     |     |     |     |      |      |      | 3    | 3    |
| CO4 |     |     | 3   |     | 3   |     |     |     |     |      |      |      | 3    | 3    |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mapp<br>ed CO       |
| I          | <b>Java Evolution &amp; Environment:</b> History and Evaluation of Java, Overview of Java language, Java's magic code: Byte code, Java Buzzwords, Three OOP principles, simple program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| •          | Java programming environment: Data types, variables and Arrays, Operators, control statements.<br>Classes, Objects and Methods: Introduction, defining a class, declaring objects, assigning object reference variables, introducing methods, accessing class members, returning a value, constructors, parameterized constructors, this keyword, garbage collection, overloading constructors and methods, recursion, understanding static, introducing final, Using command line arguments.                                                                                                                                                                        | CO1,<br>CO2         |
| Π          | <ul> <li>Strings: String, String Buffer and String Tokenizer classes.</li> <li>Basic I/O: Data Input Stream, Data Output Stream, Buffered Reader, Input Stream Reader, Scanner classes.</li> <li>Inheritance: Basics, Using super, creating multilevel hierarchy, order of constructor execution, method overriding, dynamic method dispatch, applying method overridden, Abstract classes, Using final with inheritance, The Object class.</li> <li>Interfaces: Introduction, defining an interface, implementing interfaces. Accessing interfaces through interface references, nested interfaces, variables in interfaces, interfaces can be extended.</li> </ul> | CO1,<br>CO2         |
| ш          | <ul> <li>Package: Defining a package, CLASSPATH, Packages and member access, importing packages.</li> <li>Exception Handling: Fundamentals, types, uncaught exceptions, using try and catch, multiple catch clauses, nested try statement, throw, throws, finally, built- in exceptions, creating your own exception subclasses.</li> <li>Multi Threaded programming: Thread model, Creating a Thread: implementing runnable, extending Thread, creating multiple threads, using isAlive() and join(), Thread Priorities, synchronization.</li> </ul>                                                                                                                | CO1,<br>CO2,<br>CO3 |
| IV         | <ul> <li>Event handling: Event handling mechanisms, delegation event model, Event classes, sources of events, event listener interfaces, Handling mouse and keyboard events, adapter classes, inner class.</li> <li>Graphics Programming with AWT: Introduction, abstract window toolkit classes, Window fundamentals.</li> <li>AWT controls: AWT Control fundamentals - labels, buttons, check boxes, choice lists, lists, scroll bars, text field, text area, layout managers</li> </ul>                                                                                                                                                                           | CO1,<br>CO2,<br>CO4 |
| V          | <ul> <li>Swing: Origins, key features, MVC connection, Components and Containers</li> <li>Exploring Swing- JLabel, JTextField, JButton, JCheckBox, JRadioButton, JList, JComboBox.</li> <li>Applets: Two types of Applets, The Applet Class, Applet Architecture, An Applet Skelton, Swing Applets.</li> </ul>                                                                                                                                                                                                                                                                                                                                                       | CO1,<br>CO2,<br>CO4 |
|            | Learning Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| Text       | Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Dofor      | 1. The Java Complete Reference, Herbert Scheldt, 10/e, TMH Publications, 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 1.<br>2.   | E. Balagurusamy, Programming with JAVA, 2/e, TMH Publications, 2014.<br>Core Java: An Integrated Approach, New: Includes All Versions up-to Java 8, by F<br>Nageswara Rao, Dream-Tech Publishers.<br>Kathy Sierra, Head First Java, 2/e, Shroff Publishers, 2012                                                                                                                                                                                                                                                                                                                                                                                                     | ξ.                  |
| -          | Kathy Sierra, Head First Java, 2/e, Shroff Publishers, 2012.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
|            | courses and other Digital Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
|            | courses and other Digital Material<br>https://www.w3schools.com/java/java_intro.asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |

## PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA

#### (AUTONOMOUS) INFORMATION TECHNOLOGY

#### DATABASE MANAGEMENT STSYEMS LAB

| Course     |          |              |       |               |     |
|------------|----------|--------------|-------|---------------|-----|
| Code       | 20IT3451 | Year         | II    | Semester      | II  |
| Course     |          |              |       |               |     |
| Category   | PC Lab   | Branch       | IT    | Course Type   | Lab |
| Credits    | 1.5      | L-T-P        | 0-0-3 | Prerequisites | -   |
| Continuous |          |              |       |               |     |
| Internal   |          | Semester End |       |               |     |
| Evaluation | 15       | Evaluation   | 35    | Total Marks   | 50  |

|        | Course Outcomes                                                                                 |    |  |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
| Upon S | Upon Successful completion of course, the student will be able to                               |    |  |  |  |  |  |  |  |
| CO1    | Apply various SQL constructs for data definition, data manipulation and querying                | L3 |  |  |  |  |  |  |  |
| CO2    | Implement experiments by using modern tools like MYSQL, Oracle                                  | L2 |  |  |  |  |  |  |  |
| CO3    | Develop an effective report based on various constructs implemented.                            | L2 |  |  |  |  |  |  |  |
| CO4    | Apply technical knowledge for a given problem and express with an effective oral communication. | L3 |  |  |  |  |  |  |  |
| CO5    | Analyze solutions using database concepts for various applications                              | L4 |  |  |  |  |  |  |  |

## Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High, M: Medium, L:Low)

| corre |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 2   |     |     |     |     |     |     |     |     |      |      | 2    |      |      |
| CO2   |     |     |     |     | 3   |     |     |     | 3   |      |      |      | 3    |      |
| CO3   |     |     |     |     |     |     |     |     |     | 3    |      |      |      |      |
| CO4   | 1   |     |     |     |     |     |     |     |     | 1    |      |      | 1    |      |
| CO5   |     | 3   |     |     |     |     |     |     |     |      |      |      | 3    | 3    |

| Exercise<br>No | Course Content                                                                                                                                                                                                                                  | Mapped<br>CO |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|
| 1              | Introduction to MySQL Workbench.<br>How to use MySql Workbench to run SQL Statements.                                                                                                                                                           | CO1-CO5      |  |  |  |  |  |
| 2              | <ul> <li>Examples on</li> <li>i)DDL Commands: CREATE , ALTER, DROP and TRUNCATE a Table</li> <li>ii) Implementation of Constraints PRIMARY KEY, FOREIGN KEY, CHECK, NOT NULL, UNIQUE.</li> </ul>                                                |              |  |  |  |  |  |
| 3              | <ul> <li>i) DML Commands. INSERT, UPDATE and DELETE</li> <li>ii) DCL Commands: COMMIT, ROLLBACK and SAVEPOINT.</li> </ul>                                                                                                                       |              |  |  |  |  |  |
| 4              | Examples on retrieving data from a single table using<br>i)SELECT statement<br>ii) SELECT statement with where clause(Comparison Operators, AND,<br>OR, NOT, IN, BETWEEN,LIKE)<br>iii) ORDER BY clause(sort by column name)<br>iv) LIMIT clause | CO1-CO5      |  |  |  |  |  |
| 5              | Examples on Functions in MySQL: String, Numeric, Date, Time and Other Functions.                                                                                                                                                                |              |  |  |  |  |  |
| 6              | Examples on Summary Queries: Queries using Aggregate functions, GROUP By and Having Clauses, ROLLUP Operator.                                                                                                                                   | CO1-CO5      |  |  |  |  |  |
| 7              | Examples on Inner join, outer join using USING, NATURAL Keywords                                                                                                                                                                                | CO1-CO5      |  |  |  |  |  |
| 8              | Examples on SUB/SUMMARY Queries Using IN, ANY, SOME, ALL, EXISTS and NOT EXISTS functions                                                                                                                                                       | CO1-CO5      |  |  |  |  |  |
| 9              | Examples on<br>i)Creating INDEXES and VIEWS<br>ii) INSERT,DELETE and DROP on VIEWS                                                                                                                                                              | CO1-CO5      |  |  |  |  |  |
| 10             | Examples on<br>i)Create and Call STORED PROCEDURE (IN,OUT,INOUT<br>Parameters), Drop a STORED PROCEDURE.<br>ii) Create,call and Drop a FUNCTION.<br>iii) Create and Drop a TRIGGER                                                              | CO1-CO5      |  |  |  |  |  |
| 11             | Case Study using real world database applications                                                                                                                                                                                               | CO1-CO5      |  |  |  |  |  |

Murac's *MySQL* by Joel Murach, Shroff Publishers & Distributors Pvt.Ltd, June 2012.

**Text Books** 

#### DESIGN AND ANALYSIS OF ALGORITHMS LAB

| Course Code                       | 20IT3452 | Year                       | II    | Semester      | II                                                      |
|-----------------------------------|----------|----------------------------|-------|---------------|---------------------------------------------------------|
| Course Category                   | PC Lab   | Branch                     | IT    | Course Type   | Lab                                                     |
| Credits                           | 1.5      | L-T-P                      | 0-0-3 | Prerequisites | Data Structures ,<br>Programming for<br>Problem Solving |
| Continuous Internal<br>Evaluation | 15       | Semester End<br>Evaluation | 35    | Total Marks   | 50                                                      |

|           | Course Outcomes                                                                                 |    |
|-----------|-------------------------------------------------------------------------------------------------|----|
| Upon succ | essful completion of the course, the student will be able to                                    |    |
| CO1       | Apply different design techniques for solving problems.                                         | L3 |
| CO2       | Implement programs as an individual on different IDEs/ online platforms.                        | L3 |
| CO3       | Develop an effective report based on various programs implemented.                              | L3 |
| CO4       | Apply technical knowledge for a given problem and express with an effective oral communication. | L3 |
| CO5       | Analyze outputs using given constraints/test cases.                                             | L4 |

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

|     |      | r    |      |      |      |     |      |      |      |      |      |      |      |      |
|-----|------|------|------|------|------|-----|------|------|------|------|------|------|------|------|
|     | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO6 | PO 7 | PO 8 | PO 9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 2    |      |      |      |      |     |      |      |      |      |      | 2    | 2    | 2    |
| CO2 |      |      |      |      | 3    |     |      |      | 3    |      |      |      |      |      |
| CO3 |      |      |      |      |      |     |      |      |      | 3    |      |      |      |      |
| CO4 |      | 1    |      |      |      |     |      |      |      | 1    |      |      |      |      |
| CO5 |      | 3    |      |      |      |     |      |      |      |      |      |      |      |      |

|            | Syllabus                                                                                                                            |           |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|
| Expt<br>No | Contents                                                                                                                            | Mapped CO |  |  |  |  |  |
| 1.         | Develop and implement an algorithm using Divide and<br>Conquer strategy for a given set of problems.                                | CO1-CO5   |  |  |  |  |  |
| 2.         | Make use of Greedy method to implement a solution for a given problem.                                                              | CO1-CO5   |  |  |  |  |  |
| 3.         | Develop and implement an efficient solution using Dynamic Programming.                                                              | CO1-CO5   |  |  |  |  |  |
| 4.         | Use Backtracking design technique to implement a solution for given problem.                                                        | CO1-CO5   |  |  |  |  |  |
| 5.         | Develop and implement an algorithm using Branch and Bound technique for solving a given problem.                                    | CO1-CO5   |  |  |  |  |  |
| 6.         | Case Study-1:<br>Apply the most appropriate design technique to develop and<br>implement an efficient solution for a given problem. | CO1-CO5   |  |  |  |  |  |
| 7.         | Case Study-2:<br>Develop and implement an optimal solution for a givenproblem by<br>applying a suitable design technique.           | C01-C05   |  |  |  |  |  |

#### **Text Books**

1. *Introduction to the Design & Analysis of Algorithms*, Anany Levitin, Third Edition, 2011, Pearson Education.

- 2. Data Structures and Algorithm Analysis in C, Mark Allen Weiss, 2002, Pearson.
- 3. Algorithm Design Techniques, Narasimha Karumanchi, CareerMonk Publications, 2018.

#### e- Resources & other digital material

- 1. <u>https://www.cs.usfca.edu/~galles/visualization/Algorithms.html</u>
- 2. <u>http://littlesvr.ca/dsa-html5-animations/sorting.php</u>
- 3. <u>https://www.youtube.com/watch?v=AfYqN3fGapc</u>

#### PROGRAMMING WITH JAVA LAB

| Course Code            | 20IT3453 | Year         | II    | Semester           | II         |
|------------------------|----------|--------------|-------|--------------------|------------|
| <b>Course Category</b> | PC Lab   | Branch       | IT    | <b>Course Type</b> | Practical  |
| Credits                | 1.5      | L-T-P        | 0-0-3 | Prerequisites      | C Language |
| Continuous             |          |              |       |                    |            |
| Internal               |          | Semester End |       |                    |            |
| Evaluation             | 15       | Evaluation   | 35    | Total Marks        | 50         |

| Upon | Course Outcomes<br>Successful completion of course, the student will be able to | Blooms<br>Levels |
|------|---------------------------------------------------------------------------------|------------------|
| CO1  | Implement the programs by using basics and fundamental concepts of JAVA.        | L3               |
| CO2  | Apply the knowledge of OOP principles to develop applications                   | L3               |
| CO3  | Analyze the given Java program to identify bugs and write correct code.         | L4               |
| CO4  | Use APIs (Application Programming Interfaces) to develop applications in Java.  | L3               |

**Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)** 

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   |     |     |     | 3   |     |     |     |     |      |      |      | 3    | 3    |
| CO2 | 3   |     |     |     | 3   |     |     |     |     |      |      |      | 3    | 3    |
| CO3 |     | 3   |     |     | 3   |     |     |     |     |      |      |      | 3    | 3    |
| CO4 | 3   |     |     |     | 3   |     |     |     |     |      |      |      | 3    | 3    |

|    | EXERCISES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mapped CO |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1  | <ul> <li>a. Java Program to print largest of three numbers</li> <li>b. Java program to calculate sum of all the numbers divisible by 3 from 1 to n. Print the sum.</li> <li>c. Write a Java program to calculate the sum of first "n" even integer numbers and "n" odd integer numbers excluding 0;</li> <li>d. Write a Java program to read the size of an array from keyboard. You have to initialize the integer array and insert the elements into it. You have to find the minimum number in that array and print the same.</li> <li>e. Write a Java program to find the average of all odd numbers present in the array and print the same.</li> </ul> | CO1-CO4   |
| 2  | Implement the programs by using the concepts of<br>a. returning value from a method, b. constructors<br>c. overloading methods, d. overloading constructors<br>e. passing objects as a parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO1-CO4   |
| 3  | Develop applications using the concepts of<br>a. String class and its methods<br>b. String Buffer and its methods<br>c. String Tokenizer and its methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO1-C04   |
| 4  | Implement the programs by using the concepts of<br>a. Method overriding, b. dynamic method dispatch<br>c. Abstract class, d. Using final in inheritance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO1-CO4   |
| 5  | Implement the programs by using the concepts of<br>a. Implementing interfaces, b. Nested interfaces<br>c. Interface references, d. Extending interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO1-CO4   |
| 6  | <ul> <li>A. Create a user defined package and demonstrate different ways of importing packages.</li> <li>B. Implement the programs by using the concepts of a. multiple catch clauses, b. finally c. Creating user defined exceptions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                             | CO1-CO4   |
| 7  | Implement the programs using<br>a. Creating threads (two –ways), b. Creation of multiple threads<br>c. Thread synchronization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO1-CO4   |
| 8  | Develop applications that demonstrate by using<br>a. Key board event handling, b. Mouse event handling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO1-CO4   |
| 9  | Develop applications by using AWT controls<br>a. Buttons b. TextField and TextArea c. GridLayoutManager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO1-CO4   |
| 10 | Develop applications by using Swing components<br>a. JLabel b. JTextField c. JButton d. JComboBox.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO1-CO4   |

Text BooksThe Java Complete Reference, Herbert Scheldt, 10/e, TMH Publications, 2018.

#### References

1. E. Balagurusamy, Programming with JAVA, 6/e, TMH Publications, 2014.

2. *Core Java: An Integrated Approach*, New: Includes All Versions up-to Java 8, by R. Nageswara Rao, Dream-Tech Publishers.

3. Kathy Sierra, Head First Java, 3/e, O'Reilly Media, 2021.

## **E-Recourses and other Digital Material**

- $1. \ https://www.w3schools.com/java/java_intro.asp$
- 2. https://www.tutorialspoint.com/java/index.htm

## PYTHON PROGRAMMING

| Course Code                       | 20SO8455 | Year                       | II    | Semester      | II                           |
|-----------------------------------|----------|----------------------------|-------|---------------|------------------------------|
| Course Category                   | SC       | Branch                     | IT    | Course Type   | Practical                    |
| Credits                           | 2        | L-T-P                      | 1-0-2 | Prerequisites | Fundamentals of<br>Computers |
| Continuous<br>Internal Evaluation | -        | Semester End<br>Evaluation | 50    | Total Marks   | 50                           |

|      | Course Outcomes                                                           | Blooms<br>Taxonomy<br>Level |  |  |  |  |  |
|------|---------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|
| Upon | Upon Successful completion of course, the student will be able to         |                             |  |  |  |  |  |
| CO1  | Understand the basic concepts of Python Programming.                      | L2                          |  |  |  |  |  |
| CO2  | Apply functions, modules and string handling in Python to solve problems. | L3                          |  |  |  |  |  |
| CO3  | Analyze and choose appropriate data structure for solving problems.       | L3                          |  |  |  |  |  |
| CO4  | Analyze data using computation and visualization libraries.               | L3                          |  |  |  |  |  |

|     | ContributionofCourseOutcomestowardsachievementofProgramOutcomes&Strengthof correlations(H:High,M:Medium,L:Low) |     |     |     |     |            |            |            |            |      |      |      |      |      |
|-----|----------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|------|------|
|     | PO1                                                                                                            | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 2                                                                                                              | 2   | 1   |     | 2   |            |            |            |            |      | 1    |      | 3    | 2    |
| CO2 | 2                                                                                                              | 2   | 1   |     | 2   |            |            |            |            |      | 1    |      | 1    | 2    |
| CO3 | 3                                                                                                              | 2   | 2   |     | 2   |            |            |            |            |      | 1    |      | 2    | 3    |
| CO4 | 3                                                                                                              | 3   | 2   |     | 2   |            |            |            |            |      | 2    |      | 2    | 3    |

| Unit<br>No  | Contents                                                                                                                                                                                                                                                                                                                                                             |                            | Mappe<br>COs |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|--|--|
| 1           | <b>Introduction to Python:</b> Features of Python, Writing and Exe<br>Python Program, Literal Constants, Variables and Identifiers, Reser<br>Data Types, Input Operation, Operators and Expressions, Op<br>Strings, Type Conversion, Conditional statements and iterative state                                                                                      | rved Words,<br>erations on | CO1          |  |  |
| 2           | <b>Functions and Strings in python Functions:</b> Introduction, Bu<br>Functions,User Defined Functions: Function Call, Variable<br>Lifetime, The return statement, Lambda Functions, Modules and<br>python.<br><b>Strings:</b> Introduction, Built-in String Functions, Slice Operation,<br>Strings, Iterating String, Regular Expressions.                          | Scope and Packages in      | CO1,<br>CO2  |  |  |
| 3           | Data Structures<br>Lists: Accessing values in lists, Nested Lists, Basic List Operations<br>Tuples: Creating Tuple, Accessing values in a tuple, Basic Tuple O<br>Dictionaries: Creating and Accessing Dictionaries, Built-in Diction<br>functions, List Vs Tuple Vs Dictionary.<br>Sets: Creating a Set and set operations                                          | Operations.                | CO1,<br>CO3  |  |  |
| 4           | <ul> <li>Python data computation libraries</li> <li>Pandas: Dataframe, Data manipulation, reshaping and pivoting of dataset, merging and joining of data sets, data slicing, subsetting.</li> <li>Numpy: Creating arrays, array indexing, array slicing, array reshape, array iterating, array join, array split, array search, array sort, array filter.</li> </ul> |                            |              |  |  |
| 5           | Python data computation librariesSciPy: SciPy vs Numpy, Introduction to SciPy subpackages.                                                                                                                                                                                                                                                                           |                            |              |  |  |
|             | Course Content - Practical                                                                                                                                                                                                                                                                                                                                           |                            |              |  |  |
| Expt.<br>No | Contents                                                                                                                                                                                                                                                                                                                                                             | Mapped CC                  | )            |  |  |
| 1           | Python programs on usage of operators.                                                                                                                                                                                                                                                                                                                               | CO1                        |              |  |  |
| 2           | Python Programs to demonstrate decision making and branching (Selection)                                                                                                                                                                                                                                                                                             | CO1                        |              |  |  |
| 3           | Python programs to demonstrate iterative statements.                                                                                                                                                                                                                                                                                                                 | CO1                        |              |  |  |
| 4           | Python programs to demonstrate functions                                                                                                                                                                                                                                                                                                                             | CO2                        |              |  |  |
| 5           | Python program to demonstrate modules and packages                                                                                                                                                                                                                                                                                                                   | CO2                        |              |  |  |
| 6           | Python programs to perform operations on strings, regular expressions with built – in functions                                                                                                                                                                                                                                                                      | CO2                        |              |  |  |
| 7           | Python programs to apply List, Tuple data structures.                                                                                                                                                                                                                                                                                                                | CO3                        |              |  |  |
| 8           | Python programs to apply Set, Map data structures.                                                                                                                                                                                                                                                                                                                   | CO3                        |              |  |  |
| 9           | Installing, importing accessing and computations on a dataset<br>using Pandas library                                                                                                                                                                                                                                                                                | CO4                        |              |  |  |
| 10          | Installing, importing accessing and computations on a dataset<br>using Numpy library                                                                                                                                                                                                                                                                                 | CO4                        |              |  |  |
| 11          | Installing, importing and visualization of dataset using Pandas<br>and Matplotlib libraries.                                                                                                                                                                                                                                                                         | CO4                        |              |  |  |
| 12          | Installing, importing and visualization of dataset using Seaborn library.                                                                                                                                                                                                                                                                                            | CO4                        |              |  |  |

## **Text Books**

- 1. *Python Programming using Problem Solving Approach* by ReemaThareja, 2017, OXFORD University Press
- 2. *Python Programming: Problem Solving, Packages and Libraries* by Anurag Gupta and G.P. Biswas,2020, McGraw Hill

## References

- 1. Core Python programming by R. NageswaraRao, 2018, Dreamtech press.
- 2. Programming with python by T R Padmanabhan, 2017, Springer.

## **E-Recourses and other Digital Material**

- 1. <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-videos/</u>
- 2. <u>https://www.python.org/</u>
- 3. <u>http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/thinkcspy3.pdf</u>

## UNIVERSAL HUMAN VALUES

| Course Code                       | 20MC1401 | Year                       | II    | Semester      | II     |
|-----------------------------------|----------|----------------------------|-------|---------------|--------|
| Course Category                   | MC       | Branch                     | IT    | Course Type   | Theory |
| Credits                           | 0        | L-T-P                      | 2-0-0 | Prerequisites | -      |
| Continuous Internal<br>Evaluation | 30       | Semester End<br>Evaluation | 70    | Total Marks   | 100    |

|                                                                       | Course Outcomes                                                                                                                                          | Blooms<br>Taxonomy<br>Level |  |  |  |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|
| Upon successful completion of the course, the student will be able to |                                                                                                                                                          |                             |  |  |  |
| CO1                                                                   | Describe more aware of themselves, and their surroundings (family, society, nature)                                                                      | L2                          |  |  |  |
| CO2                                                                   | Illustrate more responsibility in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind. | L2                          |  |  |  |
| CO3                                                                   | Show better critical ability                                                                                                                             | L3                          |  |  |  |
| <b>CO4</b>                                                            | Exhibit sensitivity to their commitment towards what they have understood (human values, human relationship and human society)                           | L3                          |  |  |  |
| CO5                                                                   | Apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.       | L3                          |  |  |  |

|     | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High, M:Medium, L:Low) |     |     |     |     |     |            |            |     |      | ength |      |      |      |
|-----|------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|------------|------------|-----|------|-------|------|------|------|
|     | PO1                                                                                                                          | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 | PO11  | PO12 | PSO1 | PSO2 |
| C01 |                                                                                                                              |     |     |     |     | 2   |            | 2          |     |      |       |      |      | 1    |
| CO2 |                                                                                                                              |     |     |     |     | 2   |            | 2          |     |      |       |      |      | 1    |
| CO3 |                                                                                                                              |     |     |     |     | 2   |            | 2          |     |      |       |      |      | 1    |
| CO4 |                                                                                                                              |     |     |     |     | 2   |            | 2          |     |      |       |      |      | 1    |
| CO5 |                                                                                                                              |     |     |     |     | 2   |            | 2          |     |      |       |      |      | 1    |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mappe<br>dCO |
| I          | <b>Introduction - Need, Basic Guidelines, Content and Process for Value Education:</b> pose and motivation for the course, recapitulation from Universal Human Values-I, Self-Exploration–what is it? - Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration, Continuous Happiness and Prosperity- A look at basic Human Aspirations, Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority, Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario, Method to fulfil the above human aspirations: understanding and living in harmony at various levels.                                                                                                                                                                                                                   | CO1          |
| п          | <b>Understanding Harmony in the Human Being - Harmony in Myself!</b><br>Understanding human being as a co-existence of the sentient 'I' and the<br>material 'Body', Understanding the needs of Self ('I') and 'Body' -<br>happiness and physical facility, Understanding the Body as an instrument<br>of 'I' (I being the doer, seer and enjoyer), Understanding the characteristics and<br>activities of 'I' and harmony in 'I', Understanding the harmony of I with<br>the Body: Sanyam and Health; correct appraisal of Physical needs,<br>meaning of Prosperity in detail, Programs to ensure Sanyam and Health                                                                                                                                                                                                                                                                                                                                                                    | CO2          |
| ш          | <b>Understanding Harmony in the Family and Society- Harmony in Human-<br/>Human Relationship:</b> Understanding values in human-human relationship;<br>meaning of Justice (nine universal values in relationships) and program for<br>its fulfilment to ensure mutual happiness; Trust and Respect as the<br>foundational values of relationship. Understanding the meaning of Trust;<br>Difference between intention and competence, Understanding the meaning of<br>Respect, Difference between respect and differentiation; the other salient<br>values in relationship, Understanding the harmony in the society (society<br>being an extension of family): Resolution, Prosperity, fearlessness (trust) and<br>co- existence as comprehensive Human Goals, Visualizing a universal<br>harmonious order in society- Undivided Society, Universal Order- from<br>family to world family                                                                                             | CO3          |
| IV         | Understanding Harmony in the Nature and Existence - Whole existence as<br>Coexistence: Understanding the harmony in the Nature, Interconnectedness<br>and mutual fulfilment among the four orders of nature- recyclability and self<br>regulation in nature, Understanding Existence as Co-existence of mutually<br>interacting units in all- pervasive space, Holistic perception of harmony at<br>all levels of existence<br>Implications of the above Holistic Understanding of Harmony onProfessional                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO4          |
| V          | <b>Explications of the above Holistic Understanding of Harmony on Professional</b><br><b>Ethics:</b> Natural acceptance of human values, Definitiveness of Ethical Human<br>Conduct, Basis for Humanistic Education, Humanistic Constitution and<br>Humanistic Universal Order, Competence in professional ethics: Ability to<br>utilize the professional competence for augmenting universal human order b.<br>Ability to identify the scope and characteristics of people friendly and eco-<br>friendly production systems, c. Ability to identify and develop appropriate<br>technologies and management patterns for above production systems. Case<br>studies of typical holistic technologies, management models and production<br>systems, Strategy for transition from the present state to Universal Human<br>Order: a. At the level of individual: as socially and ecologically responsible<br>engineers, technologists and managers b. At the level of society: as mutually | CO5          |

#### **Text Books**

1. *Human Values and Professional Ethics* by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

## References

- 1. JeevanVidya: EkParichaya by ANagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.
- 2. *HumanValues* by A.N.Tripathi, NewAgeIntl.Publishers, NewDelhi, 2004.
- 3. *The Story of Stuff*(Book).

4. *TheStoryofMyExperimentswithTruth* – byMohandas Karamchand Gandhi

#### **OPERATING SYSTEMS (Minor)**

| Course Code                         | 20IT5401 | Year                        | II    | Semester      | II     |
|-------------------------------------|----------|-----------------------------|-------|---------------|--------|
| Course Category                     | Minor    | Branch                      | IT    | Course Type   | Theory |
| Credits                             | 4        | L-T-P                       | 4-0-0 | Prerequisites | -      |
| Continuous Internal<br>Evaluation : | 30       | Semester End<br>Evaluation: | 70    | Total Marks:  | 100    |

|          | Course Outcomes                                                        | Blooms Level |  |  |  |  |  |  |
|----------|------------------------------------------------------------------------|--------------|--|--|--|--|--|--|
| Upon suc | Upon successful completion of the course, the student will be able to: |              |  |  |  |  |  |  |
| CO1      | Understand the structure and functionalities of operating systems.     | L2           |  |  |  |  |  |  |
| CO2      | Apply various concepts to solve problems related to process            | L3           |  |  |  |  |  |  |
|          | synchronization, deadlocks and make an effective report.               |              |  |  |  |  |  |  |
| CO3      | Apply different algorithms of CPU scheduling, Page replacement and     | L3           |  |  |  |  |  |  |
|          | disk scheduling.                                                       |              |  |  |  |  |  |  |
| CO4      | Analyze process, memory and storage management strategies.             | L4           |  |  |  |  |  |  |

|            | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low) |     |     |     |     |            |            |            |     |      |      |      |      |      |
|------------|-------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|------------|------------|------------|-----|------|------|------|------|------|
|            | <b>PO1</b>                                                                                                                    | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| <b>CO1</b> | 3                                                                                                                             |     |     |     |     |            |            |            |     |      |      |      | 3    |      |
| CO2        |                                                                                                                               |     | 3   |     |     |            |            |            |     |      |      |      |      |      |
| CO3        |                                                                                                                               | 3   |     |     |     |            |            |            |     |      |      |      | 3    |      |
| <b>CO4</b> |                                                                                                                               | 3   |     |     |     |            |            |            |     |      |      |      |      |      |

|         | SYLLABUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Unit No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mapped CO       |
| UNIT-1  | <ul> <li>Overview: Introduction: What Operating Systems Do, Computer-System Organization, Computer-System Architecture, Operating-System Structure, Operating-System Operations</li> <li>Operating System Structures:</li> <li>Operating-System Services, User and Operating-System Interface, System Calls, Types of System Calls.</li> </ul>                                                                                                                                                                                    | CO1             |
| UNIT-2  | <ul> <li>Process Management: Process Concept, Process Scheduling,<br/>Operations on Processes, Interprocess Communication.</li> <li>Threads: Overview, Multicore Programming, Multithreading Models.</li> <li>Process Scheduling: Basic Concepts, Scheduling Criteria, Scheduling<br/>Algorithms (First-Come, First-Served Scheduling, Shortest-Job-First<br/>Scheduling, Priority Scheduling, Round-Robin Scheduling.)</li> </ul>                                                                                                | CO1,CO3,CO4     |
| UNIT-3  | <ul> <li>Process Synchronization: Background, The Critical-Section Problem,<br/>Peterson's Solution, Synchronization Hardware, Mutex Locks,<br/>Semaphores, Classic Problems of Synchronization.</li> <li>Deadlocks: System Model, Deadlock Characterization, Methods for<br/>Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance,<br/>Deadlock Detection, Recovery from Deadlock.</li> </ul>                                                                                                                             | CO1, CO2        |
| UNIT-4  | Memory Management:<br>Main Memory: Background, Swapping, Contiguous Memory<br>Allocation, Segmentation, Paging, Structure of the Page Table<br>Virtual Memory: Background, Demand Paging, Copy-on-Write, Page<br>Replacement, Basic Page Replacement, FIFO Page Replacement,<br>Optimal Page Replacement, LRU Page Replacement, LRU-<br>Approximation Page Replacement.                                                                                                                                                           | CO1,<br>CO3,CO4 |
| UNIT-5  | <ul> <li>Storage Management:</li> <li>File–System Interface: File Concept, Access Methods, Directory and Disk Structure.</li> <li>File–System Implementation: File-System Structure, File-System Implementation, Directory Implementation, Allocation Methods.</li> <li>Mass-Storage Structure: Overview of Mass-Storage Structure, Disk Structure, Disk Attachment, Disk Scheduling, FCFS Scheduling, SSTF Scheduling, SCAN Scheduling, C-SCAN Scheduling, LOOK Scheduling, Selection of a Disk-Scheduling Algorithm.</li> </ul> | CO1,<br>CO3,CO4 |

|     | Learning Resources                                                                                   |
|-----|------------------------------------------------------------------------------------------------------|
| Tex | xt book:                                                                                             |
| 1   | Operating System Concepts, Abraham Silberchatz, Peter Baer Galvin, Greg Gagne, Ninth Edition,        |
|     | 2016, Wiley India.                                                                                   |
| Ref | erences:                                                                                             |
| 1   | Operating Systems - Internal and Design Principles, William Stallings, Ninth Edition, 2018, Pearson. |
| 2   | Operating Systems - Harvey M.Deitel, Paul J Deitel and David R.Choffnes, Third Edition, 2019,        |
|     | Pearson.                                                                                             |
| 3   | Operating Systems - A Concept based Approach- D.M. Dhamdhere, Second Edition, 2010, McGraw           |
|     | Hill.                                                                                                |
| e-R | esources and other Digital Material:                                                                 |
| 1   | https://www.youtube.com/watch?v=z3Nw5o9dS7Q&list=PLsylUObW5M3CAGT6OdubyH6FztKfJ                      |
|     | CcFB                                                                                                 |
| 2   | http://www.youtube.com/watch?v=MaA0vFKtew&list=PL88oxI15Wi4Kw1aEY2bC51_4pouojjtd4                    |
|     | 86                                                                                                   |

# CYBER SECURITY AND ETHICAL HACKING (Honors)

| Course Code                | 20IT6401 | Year       | II    | Semester            | II     |
|----------------------------|----------|------------|-------|---------------------|--------|
| <b>Course Category</b>     | HONORS   | Branch     | IT    | <b>Course Type</b>  | Theory |
| Credits                    | 4        | L-T-P      | 4-0-0 | Prerequisites       |        |
|                            |          | Semester   |       |                     |        |
| <b>Continuous Internal</b> |          | End        |       |                     |        |
| <b>Evaluation :</b>        | 30       | Evaluation | 70    | <b>Total Marks:</b> | 100    |

|      | Course Outcomes                                              |    |
|------|--------------------------------------------------------------|----|
| Upon | Successful completion of course, the student will be able to |    |
| CO1  | Understand the basics of cyber security and Ethical Hacking  | L2 |
| CO2  | Illustrate diverse cyber offences                            | L3 |
| CO3  | Identify various methods and tools used in Cyber Crime.      | L2 |
| CO4  | Identify different issues and techniques in hacking          | L3 |

|     | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low) |     |     |     |     |     |            |            |     |      |      |      |      |      |
|-----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|------------|------------|-----|------|------|------|------|------|
|     | PO1                                                                                                                           | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                                                                                             |     |     |     |     |     |            |            |     |      |      |      | 2    | 2    |
| CO2 | 3                                                                                                                             |     |     |     |     |     |            |            |     |      |      |      | 2    | 2    |
| CO3 |                                                                                                                               | 3   |     |     |     |     |            |            |     |      |      |      | 2    | 2    |
| CO4 | 3                                                                                                                             |     |     |     |     | 3   |            | 3          |     |      |      |      | 2    | 2    |

|            | Syllabus                                                                                                                                                                                                                                                                                       |              |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                       | Mapped<br>CO |
| I          | <b>Introduction to Cybercrime</b> : Introduction, Cybercrime, and<br>Information Security, Who are Cybercriminals, Classifications of<br>Cybercrimes, The legal Perspectives and Indian Perspective,<br>Cybercrime and the Indian ITA 2000, A Global Perspective on<br>Cybercrimes.            | CO1          |
| Π          | <b>Cyber Offenses</b> : How Criminals Plan Them: Introduction, How Criminals plan the Attacks, Social Engineering, Cyber stalking, Cyber cafe and Cybercrimes, Botnets(The Fuel for Cybercrime), Attack Vector, and Cloud Computing.                                                           | CO1,CO2      |
| ш          | <b>Tools and Methods Used in Cybercrime</b> : Introduction, Proxy Servers<br>and Anonymizers, Phishing, Password Cracking, Key loggers and<br>Spywares, Virus and Worms, Trojan Horse and Backdoors,<br>Steganography, DoS and DDoS attacks, SQL Injection, Buffer<br>Overflow                 | C01,C03      |
| IV         | <b>Introduction to Ethical Hacking, Ethics, and Legality</b> : Defining Ethical Hacking, How to Be Ethical, Keeping It Legal, Reconnaissance, Information-Gathering Methodology                                                                                                                | CO1,CO4      |
| V          | <b>System Hacking</b> : The Simplest Way to Get a Password, Types of Passwords, Cracking a Password, Understanding Keyloggers and Other Spyware Technologies Trojans and Backdoors: Overt and Covert Channels, Types of Trojans, Viruses and Worms : Types of Viruses, Virus Detection Methods | CO1,CO4      |

#### **Text Books**

- 1. Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Prespectives, Nina Godbole and Sunil Belapure, First edition, 2011, Wiley INDIA
- 2. Certified ethical hacker study guide by Kimberly Graves, First Edition

#### References

- 1. James Graham, Richard Howard and Ryan Otson, Cyber Security Essentials, First edition, 2011, CRC Press.
- 2. Chwan-Hwa(John) Wu,J.David Irwin, Introduction to Cyber Security, First edition, 2013, CRC Press T&F Group.

#### **E-Recourses and other Digital Material**

- 1. <u>https://onlinecourses.nptel.ac.in/noc22\_cs13/preview</u>
- http://eprints.binadarma.ac.id/1000/1/KEAMANAN%20SISTEM%20INFORMASI %20MATERI%201.pdf

# **OBJECT ORIENTED MODELLING AND DESIGN** (Honors)

| Course Code                | 20IT6401 | Year               | II    | Semester            | II                     |
|----------------------------|----------|--------------------|-------|---------------------|------------------------|
| <b>Course Category</b>     | HONORS   | Branch             | IT    | <b>Course Type</b>  | Theory                 |
|                            |          |                    |       |                     | <b>Object Oriented</b> |
| Credits                    | 4        | L-T-P              | 4-0-0 | Prerequisites       | Programming            |
| <b>Continuous Internal</b> |          | Semester End       |       |                     |                        |
| Evaluation :               | 30       | <b>Evaluation:</b> | 70    | <b>Total Marks:</b> | 100                    |

| Course Outcomes                                                   |                                                                          |    |  |  |  |  |
|-------------------------------------------------------------------|--------------------------------------------------------------------------|----|--|--|--|--|
| Upon Successful completion of course, the student will be able to |                                                                          |    |  |  |  |  |
| CO1                                                               | CO1 Understand the basic concepts in modeling , analysis and design of a |    |  |  |  |  |
|                                                                   | system using Unified modeling language                                   |    |  |  |  |  |
| CO2                                                               | Identify different modeling elements for a given application using       | L3 |  |  |  |  |
|                                                                   | Unified Modeling language.                                               |    |  |  |  |  |
| CO3                                                               | Identify different techniques to analyze requirements of a given system  | L3 |  |  |  |  |
|                                                                   | using Unified Modeling language.                                         |    |  |  |  |  |
| CO4                                                               | Design or Model a system for any given application                       | L3 |  |  |  |  |

|     | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low) |     |     |     |     |            |            |            |     |      |      |      |      |      |
|-----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|------------|------------|------------|-----|------|------|------|------|------|
|     | <b>PO1</b>                                                                                                                    | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                                                                                             |     |     |     |     |            |            |            |     |      |      |      | 3    | 3    |
| CO2 |                                                                                                                               | 3   |     |     |     |            |            |            |     |      |      |      | 3    | 3    |
| CO3 |                                                                                                                               | 3   |     |     |     |            |            |            |     |      |      |      | 3    | 3    |
| CO4 |                                                                                                                               |     | 3   |     |     |            |            |            |     |      |      |      | 3    | 3    |

| Unit<br>No          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                     | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mapped CO           |
| I                   | <b>Introduction, Modeling Concepts, Class Modeling</b> :<br>What is Object Orientation? What is OO development? OO themes,<br>Evidence for usefulness of OO development, Modeling as Design<br>Technique: Modeling, Abstraction, The three models. Class Modeling:<br>Object and class concepts, Link and associations concepts, Generalization<br>and inheritance, A sample class model, Navigation of class models.                                                 | CO1,CO2             |
| п                   | Advanced Class Modeling, State Modeling:<br>Advanced object and class concepts, Association ends, N-ary associations,<br>Aggregation, Abstract classes; Multiple inheritance, Metadata, Reification,<br>Constraints, Derived data, Packages, Practical tips. State Modeling: Events,<br>States, Transitions and Conditions, State diagrams, State diagram behaviour.                                                                                                  | CO1,CO2             |
| III                 | Advanced State Modeling, Interaction Modeling:<br>Advanced State Modeling: Nested state diagrams, Nested states, Signal<br>generalization, A sample state model; Relation of class and state models.<br>Interaction Modeling: Use case models, Sequence models, Activity models.                                                                                                                                                                                      | CO1,CO2             |
| IV                  | <b>Process Overview, System Conception, Domain Analysis, Application</b><br><b>Analysis:</b> Process Overview: Development stages, Development life cycle.<br>System Conception: Devising a system concept, Preparing a problem<br>statement. Domain Analysis: Overview of analysis, Domain class model;<br>Domain state model, Domain interaction model. Application Analysis:<br>Application interaction model, Application class model, Application state<br>model | CO1,CO3             |
| V                   | <b>System Design, Implementation Modeling:</b> Overview of system design,<br>Breaking a system in to subsystems, Allocation of subsystems,<br>Implementation Modeling: Overview of implementation, Fine-tuning<br>classes, Fine-tuning generalizations, Realizing associations, Testing.                                                                                                                                                                              | CO1,CO2,CO<br>3,CO4 |
|                     | Learning Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| Text Bo             | ooks                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| Edition             | ject-Oriented Modeling and Design with UML" Michael Blaha, James Rumbaug<br>Pearson Education 2005                                                                                                                                                                                                                                                                                                                                                                    | gh Second           |
| Referen             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vm Coccerd          |
| Edition<br>2. Proje | ect Management for Business, Engineering and Technology Nicholas, J. and Ste<br>h H., ELSEVIER. 2004<br>ect Planning, Analysis, Selection, Implementation and Review Prasanna Chandr<br>belhi, Tata McGraw Hill Publications 2000                                                                                                                                                                                                                                     |                     |

**E-Recourses and other Digital Material** 

1. <u>file:///C:/Users/ide%2063/Downloads/Object%20Oriented%20Modeling%20&%20Design%20</u> <u>Using%20UML%20(%20PDFDrive%20).pdf</u>

2. https://link.springer.com/book/10.1007/978-3-319-24280-4

3. https://nptel.ac.in/courses/106105153

4. <u>https://edutechlearners.com/download/books/OOSE/OOAD.pdf</u>

#### CRYPTOGRAPHY

## (Honors)

| Course Code         | 20IT6401 | Year               | II    | Semester           | II               |
|---------------------|----------|--------------------|-------|--------------------|------------------|
| Course Category     | HONORS   | Branch             | IT    | <b>Course Type</b> | Theory           |
|                     |          |                    |       |                    | Computer Networl |
| Credits             | 4        | L-T-P              | 4-0-0 | Prerequisites      | Number Theory    |
| Continuous          |          |                    |       |                    |                  |
| Internal            |          | Semester End       |       |                    |                  |
| <b>Evaluation :</b> | 30       | <b>Evaluation:</b> | 70    | Total Marks:       | 100              |

| Course Outcomes |                                                                                                                                |    |  |  |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| Upon            | Upon Successful completion of course, the student will be able to                                                              |    |  |  |  |  |
| CO1             | Understand various attacks, types of cryptography, cryptographic data integrity algorithms and basics of Email and IP security | L2 |  |  |  |  |
| CO2             | Identify various cryptographic techniques                                                                                      | L3 |  |  |  |  |
| CO3             | Interpret various cryptographic data integrity algorithms                                                                      | L2 |  |  |  |  |
| CO4             | Apply the field of cryptography while designing security applications.                                                         | L3 |  |  |  |  |

|            | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low) |     |     |     |     |            |            |            |     |      |      |      |      |      |
|------------|-------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|------------|------------|------------|-----|------|------|------|------|------|
|            | <b>PO1</b>                                                                                                                    | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| <b>CO1</b> | 3                                                                                                                             |     |     |     |     |            |            |            |     |      |      |      | 2    | 2    |
| CO2        |                                                                                                                               | 3   |     |     |     |            |            |            |     |      |      |      | 2    | 2    |
| <b>CO3</b> | 3                                                                                                                             |     |     |     |     |            |            |            |     |      |      |      | 2    | 2    |
| <b>CO4</b> | 3                                                                                                                             |     |     |     |     |            |            |            |     |      |      |      | 2    | 2    |

|            | Syllabus                                                                                                                                                                                                                                     |                     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                     | Mapped<br>CO        |
| Ι          | <b>Security Fundamentals:</b> Security Attacks, Security Services, Security Mechanisms, A model for Network security.                                                                                                                        | CO1                 |
| II         | <b>Secret Key Cryptography:</b> Symmetric cipher model, Block and Stream ciphers, Data Encryption Standard (DES), Strength of DES, Block cipher design principles and modes of operation, Multiple encryption and Triple DES, AES Structure. | CO1,<br>CO2,<br>CO4 |
| III        | <b>Public-key Cryptography:</b> Principles of public-key crypto systems, RSA algorithm, Diffie-Hellman key exchange, Introduction to elliptic curve cryptography.                                                                            | CO1,<br>CO2,<br>CO4 |
| IV         | Hash Functions and Digital Signatures: Cryptographic hash functions,<br>Applications of cryptographic hash functions, secure hash algorithm,<br>authentication algorithms- HMAC, Digital signatures, Digital Signature<br>algorithm.         | CO1,<br>CO3,<br>CO4 |
| V          | <b>E-mail Security and IP Security:</b> E-mail Security: PGP, S/MIME. IP Security: Overview, IP Security Architecture, Authentication Header, Encapsulating Security Payload.                                                                | CO1,<br>CO4         |

| Learning Resources                                                                                   |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Text Books                                                                                           |  |  |  |  |  |  |  |
| 1. Cryptography and Network Security Principles and practice by W. Stallings 7 <sup>th</sup> edition |  |  |  |  |  |  |  |
| Pearson Education Asia 2017                                                                          |  |  |  |  |  |  |  |
| 2. Cryptography and Network Security by Behrouz A. Forouzan and Debdeep Mukhopadhyay                 |  |  |  |  |  |  |  |
| 2 <sup>nd</sup> edition Tata McGraw Hill 2013                                                        |  |  |  |  |  |  |  |
| References                                                                                           |  |  |  |  |  |  |  |
| 1 "Cryptography: Theory and Practice" Stinson D 3 <sup>rd</sup> edition Chapman & Hall/CRC 2012      |  |  |  |  |  |  |  |

"Cryptography: Theory and Practice" Stinson. D. 3<sup>rd</sup> edition Chapman & Hall/CRC 2012
 "Cryptography and Network Security" Atul Kahate Tata McGraw-Hill 2003

## E-Recourses and other Digital Material

- 1. https://nptel.ac.in/courses/106106221
- 2. <u>http://www.cs.vsb.cz/ochodkova/courses/kpb/cryptography-and-network-security</u> -principlesand-practice-7th-global-edition.pdf

## **BIO-INFORMATICS**

| (H  | onors) |
|-----|--------|
| (11 | onors  |

|                        |          | (                  | /     |                     |        |
|------------------------|----------|--------------------|-------|---------------------|--------|
| Course Code            | 20IT6401 | Year               | II    | Semester            | II     |
| <b>Course Category</b> | HONORS   | Branch             | IT    | <b>Course Type</b>  | Theory |
| Credits                | 4        | L-T-P              | 4-0-0 | Prerequisites       | -      |
| Continuous             |          |                    |       |                     |        |
| Internal               |          | Semester End       |       |                     |        |
| <b>Evaluation :</b>    | 30       | <b>Evaluation:</b> | 70    | <b>Total Marks:</b> | 100    |

| Course Outcomes                                                   |                                                                            |    |  |  |  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------|----|--|--|--|
| Upon Successful completion of course, the student will be able to |                                                                            |    |  |  |  |
| CO1                                                               | Understand the basic concepts of Bioinformatics in Biological data         | L2 |  |  |  |
|                                                                   | analysis                                                                   |    |  |  |  |
| CO2                                                               | Identify protein structures and DNA,RNA Sturctures                         | L3 |  |  |  |
| CO3                                                               | Classify different types of Biological Databases and Database Mining tools | L2 |  |  |  |
| CO4                                                               | Interpret various Database mining tools and Gnome analysis.                | L2 |  |  |  |

|     | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low) |     |     |     |     |            |            |            |            |      |      |      |      |      |
|-----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|------|------|
|     | <b>PO1</b>                                                                                                                    | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                                                                                             |     |     |     |     |            |            |            |            |      |      |      |      |      |
| CO2 |                                                                                                                               | 3   |     |     |     |            |            |            |            |      |      |      |      |      |
| CO3 | 3                                                                                                                             |     |     |     |     |            |            |            |            |      |      |      |      |      |
| CO4 | 3                                                                                                                             |     |     |     |     |            |            |            |            |      |      |      |      |      |

|            | Syllabus                                                                                                                                                                                                                         |              |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No | Contents                                                                                                                                                                                                                         | Mapped<br>CO |
| Ι          | <b>Biology and Information:</b> Bioinformatics-A Rapidly maturing science,<br>Computers in Biology and Medicine, Virtual doctor, Biological<br>macromolecules as Information carriers.                                           | CO1          |
| п          | <b>Protiens</b> : Molecular Interaction in Protein Structure, Protein functions,<br>DNA and RNA Structure, DNA Cloning and Sequencing, Genes,<br>Taxonomy and Evolution                                                          | CO1,<br>CO2  |
| ш          | <b>Biological Databases :</b> Biological Database Organization, Data<br>Annotation and Database connectivity, Public Databases-National<br>Center for BioTechnology Information(NCBI), European<br>Bioinformatics Institute(EBI) | CO1,<br>CO3  |
| IV         | <b>Database Mining Tools</b> : Sequence Similarity Search Tools :BLAST<br>and FASTA, an Overview of Database Sequence Searching, Pattern<br>Recognition Tools, Multiple Alignment and Phylogenetic Tree Analysis                 | CO1,<br>CO4  |
| v          | <b>Genome Analysis</b> : The Genomic, Organization of Genes, The Genome<br>Projects, The Human Genome, Comparative Genomes, Functional<br>Genomes, Microarray and Bioarray Technology, Genomes as Gene<br>Networks               | CO1,<br>CO4  |

#### **Text Books**

 Lukas K. Buehler, Hooman H. Rashidi, "Bioinformatics Basics" Applications in Biological Science and Medicine, 2/e, Taylor & Francis (CRC) Publications 2005

#### References

- 1. D.R. Westhead, J.H. Parish, "Bioinformatics" Viva books private limited, New Delhi (2003)
- 2. Att Wood, "Bioinformatics" Pearson Education, 2004
- 3. Bryan Bergeron, M.D, "Bioinformatics Computing" Pearson Education, 2003

#### **E-Recourses and other Digital Material**

1. https://nptel.ac.in/courses/102106065

| <b>OPERATING</b> | <b>SYSTEMS</b> |
|------------------|----------------|
|------------------|----------------|

| Course Code                         | 20IT3501 | Year                        | III   | Semester      | Ι                                                         |
|-------------------------------------|----------|-----------------------------|-------|---------------|-----------------------------------------------------------|
| Course Category                     | PC       | Branch                      | IT    | Course Type   | Theory                                                    |
| Credits                             | 3        | L-T-P                       | 3-0-0 | Prerequisites | Programming<br>for Problem<br>Solving,<br>Data structures |
| Continuous Internal<br>Evaluation : | 30       | Semester End<br>Evaluation: | 70    | Total Marks:  | 100                                                       |

|         | Course Outcomes Blooms                                                              |    |  |  |  |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|--|
| Upon su | Upon successful completion of the course, the student will be able to:              |    |  |  |  |  |  |  |  |  |
| CO1     | Understand the structure and functionalities of operating systems.                  | L2 |  |  |  |  |  |  |  |  |
| CO2     | Apply various concepts to solve problems related to process                         | L3 |  |  |  |  |  |  |  |  |
|         | synchronization, deadlocks and make an effective report.                            |    |  |  |  |  |  |  |  |  |
| CO3     | Apply different algorithms of CPU scheduling, Page replacement and disk scheduling. | L3 |  |  |  |  |  |  |  |  |
| CO4     | Analyze process, memory and storage management strategies.                          | L4 |  |  |  |  |  |  |  |  |
|         | (Assignment)                                                                        |    |  |  |  |  |  |  |  |  |

|     | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low) |     |     |     |     |            |            |            |     |      |      |      |      |      |
|-----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|------------|------------|------------|-----|------|------|------|------|------|
|     | PO1                                                                                                                           | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                                                                                             |     |     |     |     |            |            |            |     |      |      |      | 3    |      |
| CO2 |                                                                                                                               |     | 3   |     |     |            |            |            |     |      |      |      |      |      |
| CO3 |                                                                                                                               | 3   |     |     |     |            |            |            |     |      |      |      | 3    |      |
| CO4 |                                                                                                                               | 3   |     |     |     |            |            |            |     |      |      |      |      |      |

| SYLLABUS   |                                                                                                                                                                                                                                                                                                                                                                                      |                     |  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|--|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                             | Mapped<br>CO        |  |  |  |  |  |  |
| I          | Overview: Introduction - What Operating Systems Do, Computer-System<br>Organization, Computer-System Architecture, Operating-System Operations<br>Operating System Operations<br>Operating System Structures - Operating-System Services, User and Operating-<br>System Interface, System Calls, Types of System Calls.                                                              | CO1                 |  |  |  |  |  |  |
| II         | Process Management:Process Concept, Process Scheduling, Operations on<br>Processes, Interprocess Communication.Threads - Overview, Multicore Programming, Multithreading Models.Process Scheduling - Basic Concepts, Scheduling Criteria, Scheduling Algorithms(First-Come, First-Served Scheduling, Shortest-Job-First Scheduling, Priority<br>Scheduling, Round-Robin Scheduling.) | CO1,<br>CO3,<br>CO4 |  |  |  |  |  |  |

|            | Process Synchronization: Background, The Critical-Section Problem, Peterson's     |                |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|
|            | Solution, Synchronization Hardware, Mutex Locks, Semaphores, Classic Problems     |                |  |  |  |  |  |  |
|            | of Synchronization.                                                               |                |  |  |  |  |  |  |
| III        | Deadlocks - System Model, Deadlock Characterization, Methods for Handling         |                |  |  |  |  |  |  |
|            | Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection,           |                |  |  |  |  |  |  |
|            | Recovery from Deadlock.                                                           |                |  |  |  |  |  |  |
|            | Memory Management: Main Memory- Background, Swapping, Contiguous                  |                |  |  |  |  |  |  |
|            | Memory Allocation, Segmentation, Paging, Structure of the Page Table.             |                |  |  |  |  |  |  |
| IV         | Virtual Memory - Background, Demand Paging, Copy-on-Write, Page Replacement,      | CO1,<br>CO3,CO |  |  |  |  |  |  |
|            | Basic Page Replacement, FIFO Page Replacement, Optimal Page Replacement, LRU      | 4              |  |  |  |  |  |  |
|            | Page Replacement, LRU-Approximation Page Replacement.                             |                |  |  |  |  |  |  |
|            | Storage Management: File-System Interface: File Concept, Access Methods,          |                |  |  |  |  |  |  |
|            | Directory and Disk Structure.                                                     |                |  |  |  |  |  |  |
|            | File-System Implementation - File-System Structure, File-System Implementation,   |                |  |  |  |  |  |  |
| <b>T</b> 7 | Directory Implementation, Allocation Methods.                                     | CO1,           |  |  |  |  |  |  |
| V          | Mass-Storage Structure - Overview of Mass-Storage Structure, Disk Structure, Disk | CO3,CO<br>4    |  |  |  |  |  |  |
|            | Attachment, Disk Scheduling, FCFS Scheduling, SSTF Scheduling, SCAN               | 4              |  |  |  |  |  |  |
|            | Scheduling, C-SCAN Scheduling, LOOK Scheduling, Selection of a Disk-              |                |  |  |  |  |  |  |
|            | Scheduling Algorithm.                                                             |                |  |  |  |  |  |  |

|     | Learning Resources                                                                                   |
|-----|------------------------------------------------------------------------------------------------------|
| Tex | t book:                                                                                              |
| 1   | Operating System Concepts, Abraham Silberchatz, Peter Baer Galvin, Greg Gagne, Ninth Edition,        |
|     | 2016, Wiley India.                                                                                   |
| Ref | erences:                                                                                             |
| 1   | Operating Systems - Internal and Design Principles, William Stallings, Ninth Edition, 2018, Pearson. |
| 2   | Operating Systems - Harvey M.Deitel, Paul J Deitel and David R.Choffnes, Third Edition, 2019,        |
|     | Pearson.                                                                                             |
| 3   | Operating Systems - A Concept based Approach- D.M. Dhamdhere, Second Edition, 2010, McGraw           |
|     | Hill.                                                                                                |
| e-R | esources and other Digital Material:                                                                 |
| 1   | https://www.youtube.com/watch?v=z3Nw5o9dS7Q&list=PLsylUObW5M3CAGT6OdubyH6FztKfJ                      |
|     | CcFB                                                                                                 |
| 2   | http://www.youtube.com/watch?v=MaA0vFKtew&list=PL88oxI15Wi4Kw1aEY2bC51_4pouojjtd4                    |

#### WEB TECHNOLOGIES

| Course Code                         | 20IT3502 | Year                        | III   | Semester      | Ι      |
|-------------------------------------|----------|-----------------------------|-------|---------------|--------|
| Course Category                     | PC       | Branch                      | IT    | Course Type   | Theory |
| Credits                             | 3        | L-T-P                       | 3-0-0 | Prerequisites | Java   |
| Continuous Internal<br>Evaluation : | 30       | Semester End<br>Evaluation: | 70    | Total Marks:  | 100    |

|        | Course Outcomes                                                                       | Blooms<br>Taxonomy<br>Level |
|--------|---------------------------------------------------------------------------------------|-----------------------------|
| Upon s | uccessful completion of the course, the student will be able to                       |                             |
| CO1    | Understand the basic concepts in web design for efficient design of web applications. | L2                          |
| CO2    | Identify applications comprising of various web technologies with varying complexity  | L3                          |
| CO3    | Apply the concepts of JDBC and Servlets to develop dynamic web applications           | L3                          |
| CO4    | Design and Develop web applications using JSP                                         | L3                          |

|     | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight) |     |     |     |     |     |     |     |     |      |      |      |          |          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|----------|----------|
|     | PO1                                                                                                                                       | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO<br>1 | PSO<br>2 |
| CO1 | 3                                                                                                                                         |     |     |     |     |     |     |     |     |      |      | 3    | 3        | 3        |
| CO2 |                                                                                                                                           | 2   |     |     |     |     |     |     |     |      |      | 2    | 2        | 2        |
| CO3 |                                                                                                                                           |     | 3   |     |     |     |     |     |     |      |      | 3    | 3        | 3        |
| CO4 |                                                                                                                                           |     | 3   |     |     |     |     |     |     |      |      | 3    | 3        | 3        |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mapped<br>CO                |
| I          | <ul> <li>Introduction To Web Technologies :History of the web, Overview of HTTP,<br/>Introducing HTML, HTML Basic, HTML Headings, Links, Images, Tables,<br/>Frames, forms and HTML controls.</li> <li>Introducing CSS: Inline styles, external and internal style sheets, Style classes,<br/>multiple styles.</li> </ul>                                                                                                                                                                                    | CO1                         |
| П          | <b>Introducing JavaScript:</b> Embedding JavaScript in a HTML page, Handling Events, variables, Arrays, Objects, Operators, Control flow statements, functions <b>Working With XML:</b> Introduction to XML, XML Basics, Document Type Definition, XML Technologies: XHTML, DOM, SAX, Extensible HTML (XHTML), Java API for XML Processing: Document Object Model(DOM), SAX, Extensible Style Sheet Language Transformation(XSLT):XSLT Style sheet                                                           | CO1,<br>CO2                 |
| III        | <b>Working With Database:</b> Introducing JDBC, Exploring JDBC Drivers, Describing JDBC APIs, Creating a Simple Application, Working with Prepared Statement, Using Callable Statement.                                                                                                                                                                                                                                                                                                                      | CO1,<br>CO2,<br>CO3         |
| IV         | <ul> <li>Getting started with web applications: Describing Servlets, Introducing the MVC architecture.</li> <li>Working with Servlets: Introducing Servlets, Exploring Servlet API, Introducing the Servlet Life Cycle, and Configuring Servlet in web.xml, Working with Servlet Config and Servlet Context Objects. Creating simple servlet Working with Http Servlet REQUESTS &amp; RESPONSES: HTTP Servlet Request Interface, HTTP Servlet Response Interface, Understanding session tracking.</li> </ul> | CO1,<br>CO2,<br>CO3         |
| V          | <b>Working With JSP</b> : Understanding JSP, Describing the JSP Life Cycle, Creating<br>a Simple JSP pages, working with JSP basic tags and implicit objects, working<br>with Java Beans and Action tags in JSP, Working with JSP standard Tag<br>Library(JSTL): Describing JSTL core tags.                                                                                                                                                                                                                  | CO1,<br>CO2,<br>CO3,<br>CO4 |

#### Textbooks

1. Web Technologies (HTML, JavaScript, PHP, JAVA, JSP, ASP.NET, XML and AJAX), Black Book, Dreamtech Press, 2017.

#### References

- 1. JDBC, Servlets, and JSP, New Edition, Santhosh Kumar K, Kogent Learning Solutions Inc, Dreamtech Press, 2018
- 2. Web Technologies, Uttam K. Roy, Volume2, Oxford University, 2010 2.
- 3. An Introduction to Web Design and Programming–Wang-Thomson
- 4. Professional Java Server Programming, S.AllamRaju and others, Apres(dreamtech)
- 5. Java Server Programming, Ivan Bayross and others, The XTeam, SPD
- 6. Beginning Web Programming-Jon Duckett WROX.
- 7. Java Server Pages, Pekowsky, Pearson.

#### e-Resources and other Digital Material

- 1. http://nptel.ac.in/courses/106105084/13
- 2. http://www.w3schools.com/
- 3. https://www.javatpoint.com/html-tutorial

#### COMPUTER NETWORKS (Common to CSE & IT)

| Course Code                | 20IT3503 | Year                        | III   | Semester      | Ι      |
|----------------------------|----------|-----------------------------|-------|---------------|--------|
| Course<br>Category         | PC       | Branch                      | IT    | Course Type   | Theory |
| Credits                    | 3        | L-T-P                       | 3-0-0 | Prerequisites |        |
| Continuous<br>Evaluation : | 30       | Semester End<br>Evaluation: | 70    | Total Marks:  | 100    |

|          | Course Outcomes                                                                                                  |    |  |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| Upon suc | ccessful completion of the course, the student will be able to                                                   |    |  |  |  |  |
| CO1      | Understand the basic concepts and protocols of different layers.                                                 | L2 |  |  |  |  |
| CO2      | Apply Error Correction or MAC Protocol mechanism for a given scenario.                                           | L3 |  |  |  |  |
| CO3      | Apply various Addressing mechanisms /Routing protocols for a given network.                                      | L3 |  |  |  |  |
| CO4      | Apply appropriate Transport & Application layer protocol for a given context.                                    | L3 |  |  |  |  |
| CO5      | Analyze the given scenario and use appropriate methods/mechanisms/protocols for designing a network.(Assignment) | L4 |  |  |  |  |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO2 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO3 | 3   |     |     |     |     |     |     | 3   |     |      |      |      | 3    |      |
| CO4 | 3   |     |     |     |     |     |     | 3   |     |      |      |      | 3    |      |
| CO5 |     | 3   |     |     |     |     |     |     | 3   | 3    |      |      | 3    |      |

|          | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mapp                        |  |  |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|
| Unit No. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |  |  |  |  |  |
| I        | Introduction :-Networks, Network Types, Network Models :-The ProtocolLayering , TCP/IP Protocol Suite, The OSI Model.Physical Layer :-Transmission Media - Guided Media, Un-Guided MediaData-Link Layer: Introduction to Data-Link Layer - Introduction, Link-LayerAddressing.Addressing.ErrorDetectionandCorrection -Introduction, CyclicRedundancy Check.Data Link Control (DLC) - DLC Services.Media AccessControl (MAC) - Random Access, Controlled Access. | CO1,<br>CO2                 |  |  |  |  |  |
| II       | Network Layer: Introduction to Network Layer - Network-Layer Services,<br>Packet Switching, Network-Layer Performance, IPv4 Addresses, Forwarding<br>of IP Packets.<br>Next Generation IP- IPv6 Addressing, The IPv6 Protocol.                                                                                                                                                                                                                                  |                             |  |  |  |  |  |
| III      | <b>Network-Layer Protocols</b> - Internet Protocol (IP), Unicast Routing -<br>Introduction, Routing Algorithms- Distance vector and Link State Routing,<br>Unicast Routing Protocols.                                                                                                                                                                                                                                                                           | CO1,<br>CO2,<br>CO5         |  |  |  |  |  |
| IV       | <b>Transport Layer:</b> Introduction to Transport Layer-Introduction, Transport-<br>Layer Protocols. Transport Layer Protocols-Introduction, User Datagram<br>Protocol(UDP), Transmission Control Protocol(TCP)                                                                                                                                                                                                                                                 | CO1,<br>CO3,<br>CO4,<br>CO5 |  |  |  |  |  |
| V        | Application Layer: Standard Client-Server Protocols-World Wide Web and HTTP, FTP, Electronic Mail, Telnet, Secure Shell (SSH), Domain Name System (DNS)                                                                                                                                                                                                                                                                                                         | CO1,<br>CO3,<br>CO4         |  |  |  |  |  |

#### **Text Books**

1.Data Communications and Networking, Behrouz A. Forouzan, Fifth Edition, McGrawHill

#### References

- 1. Computer Networking A Top-Down Approach, James F. Kurose, Keith W. Ross, Sixth Edition, Pearson Education
- 2. Computer Networks A Systems Approach, Larry L. Peterson, Bruce S. Davie, Fifth Edition, Morgan Kaufmann.

#### e-Resources& other digital material

- 1. https://nptel.ac.in/courses/106/105/106105183/
- 2. https://nptel.ac.in/courses/106/105/106105081/
- 3. https://www.youtube.com/playlist?list=PLEAYkSg4uSQ2NMmzNNsEK5RVbhxqx0BZF

#### CYBER LAWS (Open Elective – I)

| Course Code                         | 20IT2501A | Year                        | III           | Semester      | Ι      |
|-------------------------------------|-----------|-----------------------------|---------------|---------------|--------|
| Course Category                     | OE-1      | Branch                      | Offered by IT | Course Type   | Theory |
| Credits                             | 3         | L-T-P                       | 3-0-0         | Prerequisites | -      |
| Continuous Internal<br>Evaluation : | 30        | Semester End<br>Evaluation: | 70            | Total Marks:  | 100    |

|                                                                       | Course Outcomes                                                                                                                                                        |    |  |  |  |  |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| Upon successful completion of the course, the student will be able to |                                                                                                                                                                        |    |  |  |  |  |
| CO1                                                                   | Understand the basic concepts of Section 80 of IT Act 2000, Cyber Crime, Computer Crime, Internet Theft/Fraud, Goods and Services.                                     | L2 |  |  |  |  |
| CO2                                                                   | Demonstrate the basic concepts of Cognizable and Non-Cognizable Offences,<br>Hacking, Teenage Web Vandals, Prevalence and Victimology, Consumer<br>Protection Act.     | L2 |  |  |  |  |
| CO3                                                                   | Identify the concepts of Arrest for "About to Commit" an Offence Under the IT<br>Act, A tribute to Draco, Cyber Fraud, Computer as Commodities,<br>Consumer Complaint. | L3 |  |  |  |  |
| <b>CO4</b>                                                            | Explain the concepts of Arrest, But No Punishment, Cyber Cheating, Theft of<br>Intellectual Property, Restrictive and Unfair Trade practices                           | L2 |  |  |  |  |

## Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

| `   |     |     |     |     |     |     |            |     |            |      |      |      |      |      |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|------------|------|------|------|------|------|
|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | <b>PO9</b> | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3   |     |     |     |     | 3   | 3          | 3   |            |      |      |      | 3    | 3    |
| CO2 | 3   |     |     |     |     | 3   | 3          | 3   |            |      |      |      | 3    | 3    |
| CO3 |     | 3   |     |     |     | 3   | 3          | 3   |            |      |      |      | 3    | 3    |
| CO4 | 3   |     |     |     |     | 3   | 3          | 3   |            |      |      |      | 3    | 3    |

|            | Syllabus                                                                                                                                                                                                                                                                                     |                             |  |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                     |                             |  |  |  |  |  |  |
| I          | The IT Act, 2000:A Critique: Crimes in Millennium, Section 80 of the IT Act,<br>2000-AWeapon or a Farce?, Forgetting the Line between Cognizable and Non-<br>Cognizable Offences, Arrest for "About to Commit" an Offence Under the IT Act,<br>A tribute to Draco, Arrest, But No Punishment | CO1,<br>CO2,<br>CO3,<br>CO4 |  |  |  |  |  |  |
| II         | Cyber Crime and Criminal Justice: Penalties, Adjudication and Appeals Under the IT Act, 2000: Concept of Cyber Crime and the IT Act, 2000, Hacking, Teenage Web Vandals, Cyber Fraud and Cyber Cheating.                                                                                     | CO1,<br>CO2,<br>CO3,<br>CO4 |  |  |  |  |  |  |
| ш          | <b>Traditional Computer Crime: Early Hacker and Theft of Components:</b><br>Traditional Problems, Recognizing and Defining Computer Crime, Phreakers:<br>Yesterday's Hackers, Hacking, Computer as Commodities, Theft of Intellectual<br>Property.                                           | CO1,<br>CO2,<br>CO3,<br>CO4 |  |  |  |  |  |  |
| IV         | Identity Theft and Identity Fraud: Typologies of Internet Theft/Fraud Prevalence                                                                                                                                                                                                             |                             |  |  |  |  |  |  |
| V          | <b>Protection of Cyber consumers in India:</b> Are Cyber consumers Covered under the Consumer Protection Act?, Goods and Services, Consumer Complaint, Restrictive and Unfair Trade practices                                                                                                | CO1,<br>CO2,<br>CO3,<br>CO4 |  |  |  |  |  |  |

|        | Learning Resources                                                                             |  |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Text b | ooks                                                                                           |  |  |  |  |  |  |  |
| 1.     | Vivek Sood, "Cyber Law Simplified", Tata McGraw Hill.                                          |  |  |  |  |  |  |  |
| 2.     | Marjie T. Britz, "Computer Forensics and Cyber Crime", Person.                                 |  |  |  |  |  |  |  |
| 3.     | Ferrera, "Cyber Laws Texts and Cases", Cengage.                                                |  |  |  |  |  |  |  |
| Refer  | ences                                                                                          |  |  |  |  |  |  |  |
| 1.     | Vakul Sharma, "Handbook Of Cyber Laws" Macmillan India Ltd, 2 nd Edition, PHI, 2003.           |  |  |  |  |  |  |  |
| 2.     | Justice Yatindra Singh, "Cyber Laws", Universal Law Publishing, 1 st Edition, New Delhi, 2003. |  |  |  |  |  |  |  |
| 3.     | Sharma, S.R., "Dimensions Of Cyber Crime", Annual Publications Pvt. Ltd., 1st Edition, 2004.   |  |  |  |  |  |  |  |
| 4.     | Augastine, Paul T.," Cyber Crimes And Legal Issues", Crecent Publishing Corporation, 2007      |  |  |  |  |  |  |  |

#### e-Resources and other Digital Material

- 1. https://www.coursera.org/lecture/cyber-conflicts/introduction-to-cybercrime-and-fundamentalissues-xndSq
- $3. https://www.youtube.com/watch?v=F7mH5vz1qEI&t=41s&ab\_channel=ComputingforAll$

## AIR POLLUTION AND CONTROL

## (Open Elective – I)

| Course Code                         | 20CE2501A | Year                        | III           | Semester      | Ι      |
|-------------------------------------|-----------|-----------------------------|---------------|---------------|--------|
| Course Category                     | OE-1      | Branch                      | Offered by CE | Course Type   | Theory |
| Credits                             | 3         | L-T-P                       | 3-0-0         | Prerequisites | -      |
| Continuous Internal<br>Evaluation : | 30        | Semester End<br>Evaluation: | 70            | Total Marks:  | 100    |

| Course Outcomes                                                       |                                                                                                   |    |  |  |  |  |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| Upon successful completion of the course, the student will be able to |                                                                                                   |    |  |  |  |  |  |
| CO1                                                                   | <b>CO1</b> Understand the various types of air pollutants and their effects.                      |    |  |  |  |  |  |
| CO2                                                                   | <b>Examine</b> the behavior of air pollutants with reference to meteorological parameters         | L3 |  |  |  |  |  |
| CO3                                                                   | Analyze the samples, pollutants from atmosphere                                                   | L4 |  |  |  |  |  |
| <b>CO4</b>                                                            | Identify and Understand the different methods to control the particulate matter                   | L4 |  |  |  |  |  |
| CO5                                                                   | <b>Categorize and understand</b> the methods for the control of pollutants from gaseous emissions | L4 |  |  |  |  |  |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | <b>PO9</b> | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|------------|------|------|------|------|------|
| CO1 | 2   | 2   |     |     |     | 2   | 2          |     |            |      |      |      | 2    | 2    |
| CO2 | 2   | 2   |     |     |     | 2   | 2          |     |            |      |      |      | 2    | 2    |
| CO3 | 3   | 3   | 3   |     |     | 3   | 3          |     |            |      |      |      | 3    | 3    |
| CO4 | 2   | 2   | 2   |     | 2   | 3   | 3          |     |            |      |      |      | 2    | 3    |
| CO5 | 2   | 2   | 2   |     | 2   | 3   | 3          |     |            |      |      |      | 2    | 3    |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                        |     |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
| Unit<br>No | Contents           AIR POLLUTION & EFFECTS           Air pollution - definitions-scope, significance -air pollutants -classification –natural and artificial-primary and secondary air pollutants. Effect of air pollutants on manmaterial and vegetation-global effects of air pollution greenhouse effect, acid rains and ozone layer threat. |     |  |  |  |  |  |
| I          |                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |
| II         | <b>METEROLOGY AND PLUME DISPERSION</b><br>Properties of atmosphere-heat, pressure, wind forces, moisture and relative humidity influence of meteorological phenomenon on air quality- wind rose diagram, inversions and Plume behavior, Gaussian model for plume dispersion.                                                                    |     |  |  |  |  |  |
| III        | <ul> <li>SAMPLING OF AIR POLLUTION:</li> <li>Stack sampler; Sampling Procedure- Sampling point – size – Isokinetic Conditions – Sampling of Particulate matter and Gases. Sampling methods–Indian standard methods of analysis of SO2 and NOx gases- Air Quality and Emission standards.</li> </ul>                                             |     |  |  |  |  |  |
| IV         | METHODS OF CONTROLLING AIR POLLUTION<br>Different means of control of effluent discharges into the atmosphere. Control of<br>Particulate matter by equipment -Settling chamber, inertial separators, fabric<br>filters, wet scrubbers, Electrostatic Precipitators                                                                              | CO4 |  |  |  |  |  |
| V          | <b>CONTROL OF GASEOUS POLLUTANTS:</b><br>Controlling methods of Gaseous Emissions- combustion, adsorption, absorption, closed collections and recovery systems- Control of SO <sub>2</sub> and NO <sub>x</sub> gases.                                                                                                                           | CO5 |  |  |  |  |  |

#### Text books

- 1. Air Pollution and Control by Rao M.N and Rao, H.N., Tata McGraw Hill, New Delhi 2007.
- 2. Environmental Engineering and Management, (2nd Edition) by Suresh, S. K. Kartarai & Sons, 2005.

#### References

- 1. An Introduction to Air pollution by Trivedy, R.K., B. S. Publications, 2005.
- 2. Air pollution by Wark and Warner, Addison-Wesley Publications, 1998.

#### e-Resources and other Digital Material

https://nptel.ac.in/courses/105102089/8

## SENSOR TECHNOLOGY (Open Elective – I)

| Course             | 20EC2501A | Year               | III           | Semester      | Ι      |
|--------------------|-----------|--------------------|---------------|---------------|--------|
| Code               |           |                    |               |               |        |
| Course             | OE-1      | Branch             | Offered by EC | Course Type   | Theory |
| Category           |           |                    |               |               |        |
| Credits            | 3         | L-T-P              | 3-0-0         | Prerequisites | Nil    |
| Continuous         | 30        | Semester           | 70            | Total         | 100    |
| Internal           |           | End                |               | Marks:        |        |
| <b>Evaluation:</b> |           | <b>Evaluation:</b> |               |               |        |

|            | Course Outcomes                                                                                   |  |  |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Upon       | Upon successful completion of the course, the student will be able to                             |  |  |  |  |  |  |  |
| <b>CO1</b> | CO1 Understand the concept of sensors and its characteristics. (L2)                               |  |  |  |  |  |  |  |
| CO2        | <b>CO2</b> Select the physical principles of sensing based on sensor signals and systems (L3)     |  |  |  |  |  |  |  |
| CO3        | <b>Identify</b> the sensor interfacing with various electronics circuits (L3)                     |  |  |  |  |  |  |  |
| <b>CO4</b> | <b>CO4</b> Utilize the practical approach in design of technology based on different sensors.(L3) |  |  |  |  |  |  |  |
| CO5        | List various sensor materials and technology used in designing sensors.(L4)                       |  |  |  |  |  |  |  |

| Mappi   | Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) |         |         |         |                |         |         |         |         |          |          |              |          |          |
|---------|----------------------------------------------------------------------|---------|---------|---------|----------------|---------|---------|---------|---------|----------|----------|--------------|----------|----------|
| Note:   | Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation  |         |         |         |                |         |         |         |         |          |          |              |          |          |
|         | * - Av                                                               | verage  | value   | indica  | tes co         | urse co | orrelat | tion st | rength  | with m   | apped 1  | PO           |          |          |
| COs     | Р<br>01                                                              | PO<br>2 | PO<br>3 | РО<br>4 | <b>PO</b><br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO1<br>0 | PO1<br>1 | P<br>0<br>12 | PSO<br>1 | PSO<br>2 |
| CO1     | 2                                                                    |         |         |         |                |         |         |         |         |          |          | 2            |          |          |
| CO2     | 3                                                                    |         |         |         |                |         |         |         |         |          |          |              | 3        |          |
| CO3     | 2                                                                    |         |         |         | 2              |         |         |         |         |          |          |              | 2        |          |
| CO4     | 2                                                                    |         |         |         | 2              |         |         |         |         |          |          |              | 2        |          |
| CO5     |                                                                      | 2       |         |         |                |         |         |         |         |          |          |              |          | 2        |
| Average | 3                                                                    | 2       |         |         | 2              |         |         |         |         |          |          | 2            | 3        | 2        |

|             | Syllabus                                                                                                                                                                                                                                                       |           |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Unit<br>No. | Contents                                                                                                                                                                                                                                                       | Mapped CO |
| Ι           | Sensors Fundamentals and Characteristics<br>Sensors, Signals and Systems; Sensor Classification; Units of<br>Measurements; Sensor Characteristics                                                                                                              | CO1,CO2   |
| Π           | Physical Principles of SensingElectric Charges, Fields, and Potentials; Capacitance; Magnetism;Induction; Resistance; Piezoelectric Effect; Hall Effect; Temperature andThermal Properties of Material; Heat Transfer; Light; Dynamic Modelsof Sensor Elements | CO1,CO2   |
| III         | Interface Electronic CircuitsInput Characteristics of Interface Circuits, Amplifiers, ExcitationCircuits, Analog to Digital Converters, Direct Digitization andProcessing, Bridge Circuits, Data Transmission, Batteries for Low PowerSensors                  | CO1,CO3   |
| IV          | Sensors in Different Application Area<br>Occupancy and Motion Detectors; Position, Displacement, and Level;<br>Velocity and Acceleration; Force, Strain, and Tactile Sensors; Pressure<br>Sensors, Temperature Sensors                                         | CO1,CO4   |
| V           | Sensor Materials and Technologies<br>Materials, Surface Processing, Nano-Technology                                                                                                                                                                            | C01,C05   |

#### **Text Books**

1. J. Fraden, Handbook of Modern Sensors: Physical, Designs, and Applications, AIP Press,

Springer

2. D. Patranabis, Sensors and Transducers, PHI Publication, New Delhi

#### **Reference Books**

1. Mechatronics- Ganesh S. Hegde, Published by University Science Press (An imprint of Laxmi Publication Private Limited).

## e- Resources & other digital material

1. http://www.infocobuild.com/education/audio-video-

courses/electronics/IndustrialInstrumentation-IIT-Kharagpur/lecture-34.html

## ELECTRONIC INSTRUMENTATION (Open Elective – I)

| Course             | 20EC2501B | Year               | III    | Semester      | Ι      |
|--------------------|-----------|--------------------|--------|---------------|--------|
| Code               |           |                    |        |               |        |
| Course             | OE - 1    | Branch             | Common | Course Type   | Theory |
| Category           |           |                    | to All |               |        |
| Credits            | 3         | L-T-P              | 3-0-0  | Prerequisites | Nil    |
| Continuous         | 30        | Semester           | 70     | Total         | 100    |
| Internal           |           | End                |        | Marks:        |        |
| <b>Evaluation:</b> |           | <b>Evaluation:</b> |        |               |        |

---

|      | Course Outcomes                                                                         |
|------|-----------------------------------------------------------------------------------------|
| Upon | successful completion of the course, the student will be able to                        |
| CO1  | <b>Comprehend</b> the concepts of Electronic instrumentation (L2)                       |
| CO2  | <b>Identify</b> the Performance characteristics of instruments (L3)                     |
| CO3  | <b>Illustrate</b> the different types of Signal Generator, Wave Analyzers& Bridges (L3) |
| CO4  | Analyze the various types of Oscilloscopes (L4)                                         |
| CO5  | <b>Illustrate</b> the concept of various types of Transducers.(L3)                      |

| Note: 1-   | Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)Note: 1- Weak correlation2-Medium correlation* - Average value indicates course correlation strength with mapped PO |     |     |     |     |     |            |     |     |          |          |          |      |      |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|------------|-----|-----|----------|----------|----------|------|------|
| COs        | PO1                                                                                                                                                                                     | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO1 | PSO2 |
| CO1        | 2                                                                                                                                                                                       |     |     |     |     |     |            |     |     | 2        |          |          | 2    | 2    |
| CO2        | 2                                                                                                                                                                                       |     |     |     |     |     |            |     |     | 2        |          |          | 2    | 2    |
| CO3        | 3                                                                                                                                                                                       |     |     |     |     |     |            |     |     | 2        |          |          | 2    | 2    |
| <b>CO4</b> |                                                                                                                                                                                         | 2   |     |     |     |     |            |     |     | 2        |          |          | 2    | 2    |
| CO5        | 2                                                                                                                                                                                       |     |     |     |     |     |            |     |     | 2        |          |          | 2    | 2    |
| Average    | 2                                                                                                                                                                                       | 2   |     |     |     |     |            |     |     | 2        |          |          | 2    | 2    |

---

|             | Syllabus                                                                                                                                                                                                                                                                                                                               |           |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Unit<br>No. | Contents                                                                                                                                                                                                                                                                                                                               | Mapped CO |
| I           | <b>Performance characteristics of instruments:</b> Static characteristics,<br>Errors in Measurement, Dynamic Characteristics, DC Voltmeters- Multi<br>range, Range extension, Thermo couple type RF ammeter, Ohmmeters<br>series type, shunt type, Miltimeteres for Voltage, Current and resistance<br>measurements.                   | CO1,CO2   |
| II          | <b>Signal Generator&amp; Wave Analyzers:</b> Fixed and variable signal generators, AF oscillators, Standard signal generator, AF sine and square wave signal generators, Function Generators, Basic wave analyzers, Frequency selective wave analyzers, Hetero- dyne wave analyzer, Harmonic Distortion Analyzers, Spectrum Analyzers. | CO1,CO3   |
| III         | <b>Oscilloscopes:</b> Dual trace oscilloscope, Measurement of amplitude, period and frequency, Sampling oscilloscope, storage oscilloscope, digital readout oscilloscope, digital storage oscilloscope.                                                                                                                                | CO1,CO4   |
| IV          | <b>Bridges:</b> Wheatstone Bridge, AC Bridges Measurement of inductance-<br>Maxwell's bridge, Measurement of capacitance - Schearing Bridge.<br>Wien Bridge, Q-meter.                                                                                                                                                                  | CO1,CO3   |
| V           | <b>Transducers:</b> Resistance, Capacitance, inductance, Strain gauges,<br>LVDT, Piezo Electric transducers, Resistance Thermometers,<br>Thermocouples, Thermistors, Sensistors, force, pressure, velocity,<br>humidity, moisture, speed, Data acquisition system.                                                                     | CO1,CO5   |

--

## **Text Books**

1. Electronic instrumentation, - H.S.Kalsi, Tata McGraw Hill, 2nd edition 2004.

2. Modern Electronic Instrumentation and Measurement Techniques – A.D. Helfrick and W.D. Cooper, PHI, 5th Edition, 2002.

## **Reference Books**

1. Electronic Instrumentation & Measurements - David A. Bell, PHI, 2nd Edition, 2003.

2. Electronic Test Instruments, Analog and Digital Measurements - Robert A.twitter, Pearson Education, 2nd Edition, 2004

\_\_\_

# ELECTRICAL SAFETY (Open Elective – 1)

| Course<br>Code                        | 20EE2501A | Year                           | III               | Semester        | Ι      |
|---------------------------------------|-----------|--------------------------------|-------------------|-----------------|--------|
| Course<br>Category                    | OE -I     | Branch                         | Offered<br>by EEE | Course<br>Type  | Theory |
| Credits                               | 3         | L-T-P                          | 3-0-0             | Prerequisites   | -      |
| Continuous<br>Internal<br>Evaluation: | 30        | Semester<br>End<br>Evaluation: | 70                | Total<br>Marks: | 100    |

|      | Course Outcomes                                                                   |  |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Upon | Upon successful completion of the course, the student will be able to             |  |  |  |  |  |  |  |
| CO1  | Understand the Indian power sector organization and Electricity rules, electrical |  |  |  |  |  |  |  |
|      | safety in residential, commercial, agriculture, hazardous areas and use of fire   |  |  |  |  |  |  |  |
|      | extinguishers. (L2)                                                               |  |  |  |  |  |  |  |
| CO2  | Assess the Electrical Safety measures in operation and maintenance. (L3)          |  |  |  |  |  |  |  |
| CO3  | Apply the safety measures during installation, testing and commissioning. (L3)    |  |  |  |  |  |  |  |
| CO4  | Analyze the Electrical Safety, Electric Shocks and Their Prevention. (L4)         |  |  |  |  |  |  |  |
| CO5  | Examine the hazardous areas and the fire extinguishers. (L4)                      |  |  |  |  |  |  |  |
| CO6  | Submit a report on safety measures.                                               |  |  |  |  |  |  |  |

## Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)

|     | Strength of correlations (5.111gh, 2. Weathin, 1.10w) |     |             |     |     |     |     |     |     |      |      |      |      |      |
|-----|-------------------------------------------------------|-----|-------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | PO1                                                   | PO2 | PO <u>3</u> | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 |                                                       |     |             |     |     |     |     |     |     |      |      |      |      |      |
| CO2 | 3                                                     |     |             |     |     | 1   |     | 1   |     |      |      | 1    |      |      |
| CO3 | 2                                                     |     |             |     |     |     |     | 1   |     |      |      | 1    |      |      |
| CO4 |                                                       | 3   |             |     |     | 1   |     |     |     |      |      |      |      |      |
| CO5 |                                                       | 3   |             |     |     |     |     |     |     |      |      |      |      |      |
| CO6 | 3                                                     | 3   |             |     |     |     |     | 3   | 3   | 3    |      |      |      |      |

| SYLLABUS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|
| Unit     | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mapped                     |  |  |  |  |
| No.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO                         |  |  |  |  |
| Ι        | <b>Introduction To Electrical Safety, Shocks And Their Prevention:</b> Terms and definitions, objectives of safety and security measures, Hazards associated with electric current and voltage, principles of electrical safety, Approaches to prevent Accidents. Primary and secondary electrical shocks, possibilities of getting electrical shock and its severity, medical analysis of electric shocks and its effects, shocks due to flash/ Spark over's, prevention of shocks, safety precautions against contact shocks, flash shocks, burns, residential buildings and shop. | CO1,<br>CO2<br>CO3,<br>CO4 |  |  |  |  |

| II  | Electrical Safety in Residential, Commercial and Agricultural                   |      |
|-----|---------------------------------------------------------------------------------|------|
|     | Installations: Wiring and fitting –Domestic appliances –water tap giving        | CO1, |
|     | shockshock from wet wallfan firing shockmulti-storied building                  | CO2  |
|     | Temporary installations – Agricultural pump installation –Do's and Don'ts       | CO4, |
|     | for safety in the use of domestic electrical appliances.                        | CO6  |
| III | Electrical Safety during Installation, Testing and Commissioning,               |      |
|     | <b>Operation and Maintenance</b> : Preliminary preparations –safe sequence –    | CO1, |
|     | risk of plant and equipment -safety documentation -field quality and            | CO3  |
|     | safety -personal protective equipment –safety clearance notice –safety          | CO4, |
|     | precautions –safeguards for operators –safety.                                  | CO6  |
| IV  | Electrical Safety in Hazardous Areas: Hazardous zones –class 0,1 and 2 –        |      |
|     | spark, flashovers and corona discharge and functional requirements –            | CO1, |
|     | Specifications of electrical plants, equipment's for hazardous locations        | CO2, |
|     | Equipment Earthing: Introduction, Equipment earthing, Functional                | CO5, |
|     | requirements of Earthing system, Neutral grounding, Protection against          | CO6  |
|     | energized Metal parts.                                                          |      |
| V   | Fire Extinguishers: Fundamentals of fire-initiation of fires, types;            | CO1, |
|     | extinguishing techniques, prevention of fire, types of fire extinguishers, fire | CO5, |
|     | detection and alarm system; CO <sub>2</sub> , Halogen gas and foam schemes.     | CO6  |
|     |                                                                                 |      |

#### **Text Books**

- 1. Rao, S. and Saluja, H.L., "Electrical Safety, Fire Safety Engineering and Safety Management", Khanna Publishers, 4th edition, 2020
- 2. John Codick, "Electrical safety hand book", McGraw Hill Inc., 3rd edition, 2006

## **Reference Books**

- 1. Cooper.W.F, "Electrical safety Engineering", Newnes-Butterworth Company, 3rd edition, 1998.
- 2. Kothari, D.P and Nagrath, I.J., "Power System Engineering", McGraw Hill, 3rd edition, 2019.
- 3. Wadhwa, C.L., "Electric Power Systems", New Age International, 8th edition, 2004.

# **DESIGN THINKING**

(Open Elective – 1)

| Course Code                          | 20ME2501A | Year                       | III   | Semester              | Ι      |
|--------------------------------------|-----------|----------------------------|-------|-----------------------|--------|
| Course<br>Category                   | OE-I      | Offering<br>Branch         | ME    | Course Type           | Theory |
| Credits                              | 3         | L-T-P                      | 3-0-0 | <b>Pre-requisites</b> | Nil    |
| Continuous<br>Internal<br>Evaluation | 30        | Semester End<br>Evaluation | 70    | Total<br>Marks        | 100    |

| Cours | Course Outcomes: Upon successful completion of the course, the student will be able to                                 |            |     |           |  |  |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------|------------|-----|-----------|--|--|--|--|--|--|
| CO    | Statement                                                                                                              | Skill      | BTS | Units     |  |  |  |  |  |  |
| CO1   | Understand the principles of design thinking and its approaches                                                        | Understand | L2  | 1,2,3,4,5 |  |  |  |  |  |  |
| CO2   | Apply the empathy, the Define phase and develop an idea through ideation Techniques in human-centered design problems. | Apply      | L3  | 1,2,3     |  |  |  |  |  |  |
| CO3   | Apply the design thinking techniques for innovation processes                                                          | Apply      | L3  | 1,5       |  |  |  |  |  |  |
| CO4   | Analyze the prototype and test in a design thinking context.                                                           | Analyze    | L4  | 1,4       |  |  |  |  |  |  |

|            | Contribution of Course Outcomes towards achievement of Program Outcomes&<br>Strength of correlations(3:High, 2:Moderate,1: Low) |  |  |   |   |  |   |   |   |   |   |   |   |      |
|------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|---|---|--|---|---|---|---|---|---|---|------|
|            | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2                                                                    |  |  |   |   |  |   |   |   |   |   |   |   | PSO2 |
| <b>CO1</b> | 3                                                                                                                               |  |  | 2 | 2 |  | 3 | 3 | 2 | 2 | 2 | 3 | 3 |      |
| CO2        | 3                                                                                                                               |  |  | 2 | 2 |  | 3 | 3 | 2 | 2 | 1 | 3 | 3 |      |
| <b>CO3</b> | 3                                                                                                                               |  |  | 2 | 2 |  | 3 | 3 | 3 | 2 | 1 | 3 | 3 |      |
| <b>CO4</b> | 3                                                                                                                               |  |  | 2 | 2 |  | 3 | 3 | 2 | 2 | 1 | 3 | 3 |      |

| Unit | Syllabus Contents                                                                                                                                                                                                                                                                                                                                                                                                | Mappe<br>d CO            |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| I    | <b>Introduction to Design Thinking</b><br>An insight into Design, Design Methodology, the origin of Design thinking, Design thinking Vs Engineering thinking, the importance of Design Thinking, Design Vs Design thinking, understanding Design thinking and its various process models or frameworks, Stanford process models and its five stages, features of design thinking, application of Design thinking | CO1<br>CO2<br>CO3<br>CO4 |
| Π    | <b>Empathize in Design Thinking:</b><br>Human-Centered Design (HCD) process, explanation of HCD design thinking with examples, Role of Empathy in design thinking, persona creation and its importance, tools of empathy: Empathy maps, advantages and disadvantages of empathy maps, Customer journey map and its advantages & disadvantages, Mind Maps, and its uses, understanding empathy tools.             | CO1<br>CO2               |
| ш    | <b>Define Phase and Ideation:</b><br>Explore define phase in Design Thinking, Methods of Define phase. Introduction to ideation Methods, convention methods for ideation, intuitive methods: Brainstorming, storyboard telling, select ideas from ideation Methods: Bingo Selection, Six Thinking Hats.                                                                                                          | CO1<br>CO2               |
| IV   | <b>Prototyping and Testing</b> :<br>Prototyping and methods of prototyping, Difference between low fidelity and high-<br>fidelity prototypes, paper prototyping, techniques for implementing paper<br>prototyping, Digital prototyping, user testing methods, Advantages, and<br>disadvantages of user Testing/ Validation                                                                                       | CO1<br>CO4               |
| V    | <b>Design Thinking for Innovation</b> :<br>Innovation in Design Thinking, Definition of innovation, the art of innovation, types of innovations, product innovation, process innovation, and organizational innovation, characteristics of innovation, levels of innovation, Innovation towards design, Case studies                                                                                             | CO1<br>CO3               |

## Text books:

- 1. Changebydesign, Tim Brown, 2009, HarperCollins
- 2. Engineering design, George E Dieter,4th Revisededition,2009 McGraw Hill. **Reference books**

## Kelerence books

- 1. Design Thinking for Strategic Innovation, Idris Mootee, 2013, JohnWiley&Sons
- $2. \ Design Thinking-The Guidebook-Facilitated by the Royal Civil service Commission, Bhutan$
- 3. Design Methods: A Structured Approach for DrivingInnovation in Your Organization, Vijay Kumar, FirstEdition, 2012, Wiley
- 4. Human-Centered Design Toolkit: An Open SourceToolkittoInspireNewSolutionsintheDeveloping
- 5. World, IDEO, SecondEdition, 2011, IDEO

# e- Resources & other digital material

- 1. https://www.interaction-desiqn.ora/literature/topics/desiqn-thinking
- 2. <u>https://www.interaction-desiqn.prq/literature/article/how-tq-<eve'op-anempath\capproach-in-design-thinking</u>

# LOGISTICS AND SUPPLY CHAIN MANAGEMENT

| Course Code                          | 20ME2501B | Year                          | III   | Semester       | Ι      |
|--------------------------------------|-----------|-------------------------------|-------|----------------|--------|
| Course Category                      | OE-I      | Offering<br>Branch            | ME    | Course Type    | Theory |
| Credits                              | 3         | L-T-P                         | 3-0-0 | Prerequisites  | Nil    |
| Continuous<br>Internal<br>Evaluation | 30        | Semester<br>End<br>Evaluation | 70    | Total<br>Marks | 100    |

(Open Elective – 1)

| Cours | Course Outcomes: Upon successful completion of the course, the student will be able to |            |     |           |  |  |  |  |  |  |  |
|-------|----------------------------------------------------------------------------------------|------------|-----|-----------|--|--|--|--|--|--|--|
| СО    | Statement                                                                              | Skill      | BTS | Units     |  |  |  |  |  |  |  |
| CO1   | Explain the importance of Supply Chain Management                                      | Understand | L2  | 1,2,3,4,5 |  |  |  |  |  |  |  |
| CO2   | Illustrate Inventory control techniques                                                | Apply      | L3  | 2         |  |  |  |  |  |  |  |
| CO3   | Illustrate various issues in Supply Chain Management                                   | Apply      | L3  | 5         |  |  |  |  |  |  |  |
| CO4   | Interpret supply chain strategies and procurement strategies                           | Apply      | L3  | 4         |  |  |  |  |  |  |  |
| CO5   | Design Supply Chain Networks suitable for various market conditions                    | Analyse    | L4  | 3         |  |  |  |  |  |  |  |

|            | Contribution of Course Outcomes towards achievement of Program Outcomes&                           |   |     |     |     |     |     |     |   |      |   |      |      |      |
|------------|----------------------------------------------------------------------------------------------------|---|-----|-----|-----|-----|-----|-----|---|------|---|------|------|------|
|            | Strength of correlations(3:High, 2:Moderate,1: Low)PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02 |   |     |     |     |     |     |     |   |      |   |      |      | PSO2 |
| C01        | 101                                                                                                | 2 | 105 | 101 | 100 | 100 | 10/ | 100 | 2 | 1010 | 3 | 1012 | 1001 | 1    |
| CO2        |                                                                                                    | 2 |     |     |     |     |     |     | 2 |      | 3 |      |      | 1    |
| CO3        |                                                                                                    | 2 |     |     |     |     |     |     | 2 |      | 3 |      |      | 1    |
| <b>CO4</b> |                                                                                                    | 2 |     |     |     |     |     |     | 2 |      | 3 |      |      | 1    |
| <b>CO5</b> |                                                                                                    | 2 |     |     |     |     |     |     | 2 |      | 3 |      |      | 1    |

|      | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|--|
| UNIT | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Map<br>ped<br>CO |  |  |  |  |  |  |
| I    | <b>Introduction to Supply Chain Management (SCM):</b> Concept of supply management and SCM, importance of supply chain flows, core competency, value chain, elements of supply chain efficiency, key issues in SCM, decision phases, supply chain integration, process view of a supply chain, competitive strategy and supply chain strategies, uncertainties in supply chain, supply chain drivers.                                                                                                                                     | CO1              |  |  |  |  |  |  |
| п    | <b>Inventory Management</b> : Introduction, selective control techniques, cost<br>involved in inventory system, single stage inventory control, economic lot<br>size models, application to economic production quantity, effect of demand<br>uncertainty, single period models, initial inventory, multiple order<br>opportunities, deterministic models, quantity discounts. periodic and<br>quantity review policies, mathematical modeling under known stock out<br>costs and service levels, joint replenishment for multiple items, | CO1<br>CO2       |  |  |  |  |  |  |

|    | inventory system constraints, working capital restrictions, and storage space restrictions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| ш  | <b>Designing Supply Chain Network:</b> Introduction, network design, factors influencing network design, data collection, data aggregation, transportation rates, warehouse costs, capacities and locations, models and data validation, key features of a network configuration, impact of uncertainty on network design, network design in uncertain environment, value of information: Bull whip effect, information sharing, information and supply chain trade-offs, distribution strategies, direct shipment distribution strategies, transshipment and selecting appropriate strategies. | CO1<br>CO5 |
| IV | <b>Supply Chain Integration:</b> Introduction, push-pull supply chains, identifying appropriate supply chain strategy, Sourcing and procurement, outsourcing benefits, importance of suppliers, evaluating a potential supplier, supply contracts, competitive bidding and negotiation. Purchasing, objectives of purchasing, relations with other departments, centralized and decentralized purchasing, purchasing procedure, types of orders, e-procurement, tender buying, role of business in supply chains.                                                                               | CO1<br>CO4 |
| v  | <b>Issues in Supply Chain Management:</b> Introduction, risk management,<br>managing global risk, issues in international supply chain, regional differences<br>in logistics. Local issues in supply chain, issues in natural disaster and other<br>calamities, issues for SMEs, organized retail in India, reverse logistics.                                                                                                                                                                                                                                                                  | CO1<br>CO3 |

#### Text books:

1. Simchi-Levi, D. Kaminsky, P.Simchi-Levi, E. and Ravi Shankar, Designing and Managing the Supply Chain: Concepts, Strategies and Case Studies, 3/e, Tata McGraw-Hill, 2008.

2. Chopra, S. and Meindl, Supply Chain Management: Strategy, Planning and Operations, 2/e, Pearson Education, 2004.

#### **Reference books**

1. Doebler, D.W. and Burt, D.N, Purchasing and Supply Management-Text and Cases, 6/e, McGraw-Hill, 1996.

2. Tersine, R.J, Principles of Inventory and Materials Management, 4/e, Prentice Hall, 1994.

#### E- Resources & other digital material

- 1. <u>https://ocw.mit.edu/courses/engineering-systems-division/esd-273j-logistics-and-supply-chain</u> <u>management-fall-2009/lecture-notes/</u>
- 2. <u>https://nptel.ac.in/courses/110/108/110108056/</u>

# **PROGRAMMINNG WITH C**

(Open Elective – 1)

| Course Code                | 20CS2501A | Year                        | III            | Semester      | Ι      |
|----------------------------|-----------|-----------------------------|----------------|---------------|--------|
| Course<br>Category         | OE-1      | Branch                      | offered by CSE | Course Type   | Theory |
| Credits                    | 3         | L-T-P                       | 3-0-0          | Prerequisites | -      |
| Continuous<br>Evaluation : | 30        | Semester End<br>Evaluation: | 70             | Total Marks:  | 100    |

| Course | Course Outcomes                                                                      |    |  |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
| Upon s | successful completion of the course, the student will be able to                     |    |  |  |  |  |  |  |  |
| CO1    | Understand the principles of structured programming and C constructs                 | L2 |  |  |  |  |  |  |  |
| CO2    | Apply suitable control constructs and array concepts to solve problems.              | L3 |  |  |  |  |  |  |  |
| CO3    | Apply the concept of pointers, user defined data types and files to solve problems.  | L3 |  |  |  |  |  |  |  |
| CO4    | Analyze the given problem and use modular programming approach to develop solutions. | L4 |  |  |  |  |  |  |  |

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO2 | 3   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO3 | 3   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO4 |     | 3   |     |     |     |     |     |     | 3   | 3    |      |      |      |      |

|                                | Course Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |  |  |  |  |  |  |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|--|--|
| UNIT<br>-1                     | <b>Introduction to C Programming Language</b> : variables, Data types,<br>Constants, Identifiers, Syntax and Logical Errors in compilation, object and<br>executable code, Structure of a C program: expressions and precedence,<br>Expression evaluation, type conversion, Operators( <b>Bitwise Operators</b> :<br>Logical Bitwise Operators, Shift Operators.), Storage classes (auto, extern,<br>static and register),                                                                                                                                                                                      | CO1,CO2            |  |  |  |  |  |  |  |  |
| UNIT<br>-2                     | <b>Conditional Branching:</b> Writing and evaluation of conditional statements<br>and branching with if, if-else, switch-case, ternary operator, go to statements.<br><b>IterativeStatements:</b> while,do-<br>whileandforloops,Nestedloops,breakandcontinuestatements, Other Statements<br>Related to Looping, Looping Applications, and Programming Examples.                                                                                                                                                                                                                                                 | CO1,CO2<br>CO4     |  |  |  |  |  |  |  |  |
| UNIT<br>-3                     | Arrays: Declaration, Accessing array elements, Storing values, Operations<br>on arrays. Programming Examples-Calculate Averages.CO1,CO2,<br>CO3Strings: Introduction, String Input/output functions, String manipulation<br>Functions, String conversions, Programming Examples.CO3                                                                                                                                                                                                                                                                                                                             |                    |  |  |  |  |  |  |  |  |
| UNIT<br>-4                     | <b>Functions:</b> Functions in C, Declaring a function, Parameters and return type of a function, passing parameters to functions, call by value, call by reference, User-Defined Functions, Programming Examples                                                                                                                                                                                                                                                                                                                                                                                               | C01,C02<br>C03, C0 |  |  |  |  |  |  |  |  |
| UNIT<br>-5                     | Pointers: Introduction, Declaration and Initialization of pointer variables,<br>Pointer arithmetic and Arrays, Examples on Pointers.CO1,CO2Files in C: Using Files in C, Read data from files, Writing data to files,<br>Random access to files of records, Copying the Data .CO1,CO2Structures- Introduction, Declaration and Initialization, Unions.CO1,CO2                                                                                                                                                                                                                                                   |                    |  |  |  |  |  |  |  |  |
|                                | Learning Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |  |  |  |  |  |  |  |  |
| Text<br>Books                  | 1. Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilb<br>CENGAGE, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | erg,               |  |  |  |  |  |  |  |  |
| Referer<br>ce<br>Books         | <ol> <li>ProgramminginC, ReemaThareja,AICTEEdition, 2018,OxfordUniversityPress.</li> <li>ComputerScience:AStructuredProgrammingApproachUsingC,B.A.ForouzanandR.F.<br/>Gilberg,Third Edition, 2007, CengageLearning.</li> <li>B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage<br/>Learning, (3rd Edition)</li> <li>ProgramminginC,PradipDey,ManasGhosh,AICTEEdition,OxfordUniversityPress.</li> <li>ProgrammingwithC,B. Gottfried,ThirdEdition,2017,Schaum'soutlines,McGrawHill.</li> <li>ProblemSolving&amp;ProgramDesigninC,JeriR.Hanly,EllotB.Koffman,5thEdition,Pearson</li> </ol> |                    |  |  |  |  |  |  |  |  |
| e-<br>Resourc<br>es &<br>other |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · ·          |  |  |  |  |  |  |  |  |

#### **INFORMATION SECURITY**

#### (Professional Elective – I)

| Course Code                         | 20IT4501A | Year                        | III   | Semester      | Ι                                     |
|-------------------------------------|-----------|-----------------------------|-------|---------------|---------------------------------------|
| Course Category                     | PE - 1    | Branch                      | IT    | Course Type   | Theory                                |
| Credits                             | 3         | L-T-P                       | 3-0-0 | Prerequisites | Number Theory<br>Computer<br>Networks |
| Continuous Internal<br>Evaluation : | 30        | Semester End<br>Evaluation: | 70    | Total Marks:  | 100                                   |

| Upon S | Course Outcomes                                                                                    | Blooms<br>Taxonomy<br>Level |
|--------|----------------------------------------------------------------------------------------------------|-----------------------------|
| CO1    | Understand the need of security, cryptographic mechanism and risks in computer systems and network | L2                          |
| CO2    | Apply appropriate encryption principles and security mechanism in network transmission.            | L3                          |
| CO3    | Apply network security concepts in various real world scenarios.                                   | L3                          |
| CO4    | Analyze about system security mechanisms.                                                          | L4                          |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight) PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PO1 3 CO1 3 CO2 3 3 3 CO3 3 3 3 3 3 3 CO4

|         | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Unit No | Contents                                                                                                                                                                                                                                                                                                                                                                                                            | Mapped<br>CO      |
| I       | Computer Security Concepts, Security Attacks, Security Services Mechanisms, A model for network security, Standards.                                                                                                                                                                                                                                                                                                | CO1               |
| П       | Symmetric Encryption Principles, Symmetric Block Encryption Algorithms,<br>Random and Pseudorandom Numbers, Stream Ciphers and RC4, Cipher<br>Block Modes of Operation, Approaches to Message Authentication, Secure<br>Hash Functions, Message Authentication Codes, Public-Key Cryptography<br>Principles, Public-Key Cryptography Algorithms, Digital Signatures.                                                | CO1<br>CO2        |
| ш       | Key Distribution and User Authentication, Symmetric Key Distribution<br>Using Symmetric Encryption, Kerberos, Key Distribution Using<br>Asymmetric Encryption, X.509 Certificates, Public-Key Infrastructure,<br>Federated Identity Management<br>Transport-Level Security, Web Security Considerations, Secure Socket<br>Layer and Transport Layer Security, Transport Layer Security HTTPS,<br>Secure Shell (SSH) | CO1<br>CO2<br>CO3 |
| IV      | Electronic Mail Security, Pretty Good Privacy, S/MIME, Domain Keys<br>Identified Mail, IP Security Overview, IP Security Policy, Encapsulating<br>Security Payload, Combining Security Associations, Internet Key Exchange                                                                                                                                                                                          | CO1<br>CO3        |
| v       | Intruders, Intrusion Detection, Password Management, Types of Malicious<br>Software, Viruses, Virus Countermeasures, Worms, Distributed Denial of<br>Service Attacks, The Need for Firewalls, Firewall Characteristics, Types of<br>Firewalls                                                                                                                                                                       | CO1<br>CO4        |

#### Text Books

1. Network Security Essentials Applications and Standards, William Stallings, Pearson Education. 4<sup>th</sup> Edition, 2011

#### References

1. Security in Computing, Fourth Edition, by Charles P. Pfleeger, Pearson Education

2. Cryptography And Network Security Principles And Practice, Fourth or Fifth Edition, William Stallings, Pearson

3. Modern Cryptography: Theory and Practice, by Wenbo Mao, Prentice Hall.

4. Principles of Information Security, Whitman, Thomson.5. Introduction to Cryptography, Buchmann, Springer.

## E- Resources and other Digital Material

1. https://nptel.ac.in/courses/106106129

### DISTRIBUTED SYSTEMS

#### (Professional Elective – I)

| Course Code                         | 20IT4501B | Year                        | III   | Semester      | Ι                    |
|-------------------------------------|-----------|-----------------------------|-------|---------------|----------------------|
| Course Category                     | PE -I     | Branch                      | IT    | Course Type   | Theory               |
| Credits                             | 3         | L-T-P                       | 3-0-0 | Prerequisites | Computer<br>Networks |
| Continuous Internal<br>Evaluation : | 30        | Semester End<br>Evaluation: | 70    | Total Marks:  | 100                  |

| Unon S | Course Outcomes                                                                  | Blooms<br>Taxonomy<br>Level |
|--------|----------------------------------------------------------------------------------|-----------------------------|
| Opon S | uccessful completion of course, the student will be able to                      |                             |
| CO1    | Understand the conceptual model and architectural model of a distributed system  | 112                         |
| CO2    | Apply the principles of remote invocation methods and file service architectures | _                           |
| CO3    | Use concurrency control and synchronization mechanisms in real world scenarios.  | L3                          |
| CO4    | Analyze concurrency control and synchronization mechanisms.                      | L4                          |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

|     | PO1 | PO2 | DO3 |     | DO2 | PO6  |     | DU8  |     |      | PO11 | DO12 | DSO1 | DSU) |
|-----|-----|-----|-----|-----|-----|------|-----|------|-----|------|------|------|------|------|
|     | rui | r02 | r03 | FU4 | r05 | r Ou | FU/ | r Uð | FU9 | FUIU | ron  | FU12 | 1301 | F302 |
| CO1 | 3   |     |     |     |     |      |     |      |     |      |      |      | 3    |      |
| CO2 | 3   |     |     |     |     | 3    |     |      |     |      |      |      | 3    |      |
| CO3 | 3   |     |     |     |     | 3    |     |      |     |      |      |      | 3    |      |
| CO4 |     | 3   |     |     |     | 3    |     |      |     |      |      |      | 3    |      |

|         | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |  |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|--|--|
| Unit No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |  |  |  |  |  |  |
| I       | <b>Introduction</b> : Examples of Distributed Systems, Trends in Distributed Systems, Focus on resource sharing, Challenges.<br>System Models: Introduction, physical model, Architectural models.                                                                                                                                                                                                                                 | CO1               |  |  |  |  |  |  |
| II      | <b>Inter process Communication</b> : Introduction, The API for internet protocols,<br>External data representation and Multicast communication.<br>Network virtualization: Overlay networks. Remote Invocation: Introduction,<br>Request-reply protocols, Remote procedure call, Remote method invocation.<br>Indirect Communication: Group communication, Publish-subscribe systems,<br>Message queues, Shared memory approaches. | CO1<br>CO2        |  |  |  |  |  |  |
| III     | <b>Peer to peer services and file system</b> : Peer-to-peer Systems, Introduction,<br>Napster and its legacy, Peer-to-peer Middleware, Routing overlays.<br>Distributed File Systems: Introduction, File service architecture,<br>Name Services: Introduction, Domain Name System, Directory Services.                                                                                                                             | CO1<br>CO2        |  |  |  |  |  |  |
| IV      | <b>Time and Global States</b> : Introduction, Clocks, events and process state, synchronizing physical clocks, Logical time and logical clocks, Global states Coordination and Agreement: Introduction, Distributed mutual exclusion, Elections, coordination and agreement in group communication, Consensus and related problems.                                                                                                | CO1<br>CO3<br>CO4 |  |  |  |  |  |  |
| V       | <b>Distributed Transactions</b> : Introduction, Flat and nested distribution transactions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Replication, fault tolerant services, transactions with replicated data.                                                                                                                                                               | CO1<br>CO3<br>CO4 |  |  |  |  |  |  |

 Text Books

 1. George Coulouris, Jean Dollimore and Tim Kindberg, "Distributed Systems Concepts and Design", Fifth Edition, Pearson Education, 2012

#### References

- 1. Pradeep K Sinha, "Distributed Operating Systems: Concepts and Design", Prentice Hall of India,2007.
- 2. Tanenbaum A.S., Van Steen M., "Distributed Systems: Principles and Paradigms", Pearson Education, 2007.
- 3. Liu M.L., "Distributed Computing, Principles and Applications", Pearson Education, 2004.
- 4. Nancy A Lynch, "Distributed Algorithms", Morgan Kaufman Publishers, USA, 2003.

## E- Resources and other Digital Material

- 1. https://nptel.ac.in/courses/106/106/106106168/
- 2. https://www.ejbtutorial.com/distributed-systems/introduction-to-distributed-systems

#### SOFTWARE REQUIREMENTS MANAGEMENT

#### (Professional Elective - I)

| Course Code                | 20IT4501C | Year               | III   | Semester      | Ι           |
|----------------------------|-----------|--------------------|-------|---------------|-------------|
| Course Category            | PE-I      | Branch             | IT    | Course Type   | Theory      |
| Credits                    | 3         | L-T-P              | 3-0-0 | Prerequisites | Software    |
|                            |           |                    |       |               | Engineering |
| <b>Continuous Internal</b> |           | Semester End       |       |               |             |
| Evaluation :               | 30        | <b>Evaluation:</b> | 70    | Total Marks:  | 100         |

| Upon S | Course Outcomes<br>uccessful completion of course, the student will be able to  | Blooms<br>Taxonomy<br>Level |
|--------|---------------------------------------------------------------------------------|-----------------------------|
| CO1    | Understand software requirements and estimation according to industry standards | L2                          |
| CO2    | Apply the concepts of requirement elicitation, specifications and management    | L3                          |
| CO3    | Use the concepts of requirement management in real scenarios                    | L3                          |
| CO4    | Analyze the concepts of software size estimation.                               | L4                          |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

|     |     | <u>`</u> |     | · · |     | · · · | Singine, |     |     |      |      |      |      |      |
|-----|-----|----------|-----|-----|-----|-------|----------|-----|-----|------|------|------|------|------|
|     | PO1 | PO2      | PO3 | PO4 | PO5 | PO6   | PO7      | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3   |          |     |     |     |       |          |     |     |      |      |      | 3    |      |
| CO2 | 3   |          |     |     |     | 3     |          |     |     |      |      |      | 3    |      |
| CO3 | 3   |          |     |     |     | 3     |          |     |     |      |      |      | 3    |      |
| CO4 |     | 3        |     |     |     | 3     |          |     |     |      |      |      | 3    |      |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mapped<br>CO |
| I          | Introduction: requirements, requirement engineering, requirements<br>document, best way to write requirements, detailed requirements, difference<br>between functional and nonfunctional requirements, system stakeholders,<br>requirements engineering process, recognizing requirements engineering<br>process problems suggesting a good requirements engineering process.<br>Practical process improvement: Process maturity, process assessment,<br>process improvement, top ten guidelines. | CO1          |
| п          | <b>Requirements Elicitation</b> : Assess system feasibility, identify and consult system stakeholders, record requirement sources, system's operating environment, using business concerns to drive requirements elicitation, domain constraints, collect requirements from multiple view points, use scenarios to elicit requirements, operational process. Requirements Analysis and Negotiation: System boundaries prioritize requirements, assess requirements risk.                          | CO1<br>CO2   |
| III        | <b>Describing Requirements</b> : Standard templates use language, use diagrams, supplement natural language requirements, specifying requirements quantitatively.                                                                                                                                                                                                                                                                                                                                 | CO1<br>CO2   |
| IV         | <b>Requirements Management</b> : Uniquely identify each requirement, policies for requirements management, traceability policies, maintaining a traceability manual, change management policies, identify global system requirements, identify volatile requirements, record rejected requirements.                                                                                                                                                                                               | CO1<br>CO2   |
| V          | <b>Software Size Estimation</b> : Software estimation, size based estimation, two views of sizing, function point analysis, mark IIFPA, full function points, loc estimation and conversion between size measures.                                                                                                                                                                                                                                                                                | CO1<br>CO4   |

#### Text Books

- 1. Ian Sommerville and Pete Sawyer, Requirements Engineering: A good practice guide, John Wiley, 1997.
- 2. RajeshNaik, SwapnaKishore, Software Requirements and Estimation, TMH, 2001.

### References

- 1. Don, Managing Software Requirements, A Use Case Approach, 2/e, Dean, Addison-Wesley, 2003.
- 2. Ian Graham, Requirements Engineering and Rapid Development, AddisonWesley, 1998
- 3. S.Robertson, J.Robertson, Mastering the Requirements Process, 2/e, Pearson, 2006

#### E-Resources and other Digital Material

1. Requirements Engineering / Specification, NPTEL

#### **NEURAL NETWORKS**

#### (Professional Elective – I)

| Course Code         | 20IT4501D | Year               | III   | Semester      | Ι                                                |
|---------------------|-----------|--------------------|-------|---------------|--------------------------------------------------|
| Course Category     | PE-I      | Branch             | IT    | Course Type   | Theory                                           |
| Credits             | 3         | L-T-P              | 3-0-0 | Prerequisites | Linear algebra,<br>Statistics and<br>Probability |
| Continuous Internal |           | Semester End       |       |               |                                                  |
| Evaluation :        | 30        | <b>Evaluation:</b> | 70    | Total Marks:  | 100                                              |

| Upon S |                                                                                   | Blooms<br>Taxonomy<br>Level |
|--------|-----------------------------------------------------------------------------------|-----------------------------|
| opons  | uccession completion of course, the student will be able to                       |                             |
| CO1    | Understand the fundamentals and types of neural networks, Fuzzy logic principles. | L2                          |
| CO2    | Apply Back propagation networks for various problems                              | L3                          |
| CO3    | Use Associative memory and Adoptive resonance theory for real world problems.     | L3                          |
| CO4    | Analyze the applications of ANN techniques for solving various problems.          | L3                          |

|     |     |     |     |     |     |            | achiev<br>Slight) |     | of Pro | ogram ( | Outcom | es & St | rength | of   |
|-----|-----|-----|-----|-----|-----|------------|-------------------|-----|--------|---------|--------|---------|--------|------|
|     | PO1 | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | PO7               | PO8 | PO9    | PO10    | PO11   | PO12    | PSO1   | PSO2 |
| CO1 | 3   |     |     |     |     |            |                   |     |        |         |        |         | 3      |      |
| CO2 | 3   |     |     |     |     | 3          |                   |     |        |         |        |         | 3      |      |
| CO3 | 3   |     |     | 3   |     | 3          |                   |     |        |         |        |         | 3      |      |
| CO4 |     |     | 3   |     |     | 3          |                   |     |        |         |        |         | 3      |      |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mapped<br>CO      |
| I          | Introduction to Artificial Intelligence System: Neural Network, Fuzzylogic, Genetic Algorithm.Fundamentals of Neural Networks: Basic Concepts of Neural Network,Human Brain, Model of Artificial NeuronNeural Network Architecture: Single layer Feed-forward networks,Multilayer Feed-forward networks, Recurrent Networks, Characteristics ofNeural networks, Learning methods, Early Neural Network Architectures-Rosenblatt's perceptron, Adaline Network, MADALINE Network. | CO1               |
| II         | <b>Back propagation Networks</b> : Back Propagation networks, Architecture of Back-propagation(BP) Networks, Back-propagation Learning, Effect of Tuning parameters of the Back propagation Neural Network, Selection of various parameters in BPN.                                                                                                                                                                                                                              | CO1<br>CO2        |
| III        | Associative Memory: Auto correlators, Hetero correlators, Wang et al <sup>*</sup> 's<br>Multiple Training Encoding Strategy, Exponential BAM, and Associative<br>Memory for Real coded pattern pairs, Applications.                                                                                                                                                                                                                                                              | CO1<br>CO2<br>CO3 |
| IV         | Adaptive Resonance Theory: Introduction-Cluster structure, vector<br>quantization, Classical ART networks, Simplified ART architectures,<br>ART1-Architectre, Special features of ART1 models, ART1 algorithm,<br>Illustration, ART2-Architecture of ART2, ART2 algorithm, Illustration,<br>Applications-Character recognition using ART1.                                                                                                                                       | CO1<br>CO2<br>CO3 |
| V          | ApplicationsofANN:Introduction,Directapplications-PatternClassification,Associativememories,Optimization.Applicationareas-Applications in speech,applications in image processingareas-                                                                                                                                                                                                                                                                                          | CO1<br>CO2<br>CO4 |

#### Text Books

1. Neural Networks, Fuzzy Logic and Genetic Algorithms, S.Rajasekaran and G.A. Vijayalakshmi Pai, second edition, 2017, PHI Publications.

2. Artificial neural network, B. Yegnanarayana, PHIPublication, eleventh edition 2005.

#### References

- 1. Neural Networks for Pattern Recognition, Bishop, C. M., 1995, Oxford University Press.
- 2. Neuro-Fuzzy Systems, Chin Teng Lin, C. S. George Lee, PHI.
- 3. Build Neural Network with MS Excel sample by Joechoong.
- 1.https://www.coursera.org/learn/neural-networks-deep-learning
- 2. https://www.coursera.org/learn/machine-learning

#### **DATA MINING**

#### (Professional Elective – I)

| Course Code                | 20IT4501E | Year         | III   | Semester      | Ι      |
|----------------------------|-----------|--------------|-------|---------------|--------|
| Course Category            | PE - I    | Branch       | IT    | Course Type   | Theory |
| Credits                    | 3         | L-T-P        | 3-0-0 | Prerequisites | DBMS   |
|                            |           |              |       |               |        |
| <b>Continuous Internal</b> |           | Semester End |       |               |        |
| Evaluation :               | 30        | Evaluation:  | 70    | Total Marks:  | 100    |

|         | B<br>Course Outcomes T<br>L                                                                        |    |  |  |  |  |  |  |
|---------|----------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Upon su | accessful completion of the course, the student will be able to                                    |    |  |  |  |  |  |  |
| CO1     | Understand the basic principles, process and techniques of data mining.                            | L2 |  |  |  |  |  |  |
| CO2     | Use preprocessing techniques on different datasets.                                                | L3 |  |  |  |  |  |  |
| COS     | Apply techniques and algorithms for Mining frequent patterns, classifying and clustering the data. | L3 |  |  |  |  |  |  |
| CO4     | Relate the data for mining frequent patterns, associations and classification in a real scenario.  | L3 |  |  |  |  |  |  |
| CO5     | Analyze various mining techniques for a given case study.(Assignment)                              | L4 |  |  |  |  |  |  |

|     | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight) |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | PO1                                                                                                                                       | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                                                                                                         |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO2 |                                                                                                                                           | 3   |     |     |     | 3   |     |     |     |      |      |      | 3    |      |
| CO3 | 3                                                                                                                                         |     |     |     |     | 3   |     |     |     |      |      |      | 3    |      |
| CO4 |                                                                                                                                           | 3   |     |     |     | 3   |     |     |     |      |      |      | 3    |      |
| CO5 |                                                                                                                                           |     |     | 3   | 3   |     |     |     |     |      |      |      | 3    |      |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                  |                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                  | Mapped<br>CO      |
| I          | <b>Introduction</b> : What is data mining? What kinds of data can be mined? What kinds of pattern can be mined? Which technologies are used? Which kinds of applications are targeted, Major Issues in Data Mining?                                                                                                                       | CO1               |
| II         | <b>Getting to Know Your Data</b> : Data objects and Attribute Types, Basic statistical descriptions of data, Measuring Data Similarity and Dissimilarity. Data Preprocessing: An overview, Data Cleaning, Data integration, Data Reduction, Data Transformation and Discretization.                                                       | CO1<br>CO2        |
| III        | Mining frequent patterns, Associations and Correlations- Basic Concepts, Frequent itemset Mining methods- Apriori Algorithm, Generating association rules from frequent itemsets, improving the efficiency of Apriori, A pattern growth approach for mining frequent itemsets. Which patterns are interesting- pattern evaluation methods | CO1<br>CO3<br>CO4 |
| IV         | Classification: Basic Concepts – Basic concepts, Decision Tree Induction, Bayes<br>Classification Methods, Rule based Classification, Model evaluation and Selection,<br>Techniques to improve Classification Accuracy.                                                                                                                   | CO1<br>CO3- CO5   |
| V          | Cluster Analysis: Basic Concepts and Methods- Cluster Analysis, partitioning methods, Hierarchical Methods and evaluation of Clustering                                                                                                                                                                                                   | CO1<br>CO3- CO5   |

| Learning Recourses                                                                       |
|------------------------------------------------------------------------------------------|
| Text Books                                                                               |
| 1. Jiawei Han and Micheline Kamber, "Data Mining Concepts and Techniques" Third Edition, |
| Elsevier, 2012.                                                                          |
| References                                                                               |
| 1. Michael Steinbach, Vipin Kumar, Pang-Ning Tan, Introduction to data mining, 1/e,      |
| Addison Wesley, 2006                                                                     |
| 1.Michael Steinbach, Vipin Kumar, Pang-Ning Tan, Introduction to data mining, 1/e,       |

2. Margaret H. Dunham, Data Mining Introductory and Advanced Topics, 1/e, Pearson Publishers, 2006

## e-Resources & other digital material

<u>https://www.coursera.org/lecture/code-free-data-science/introduction-to-data-mining-hbb2V</u>
 <u>https://onlinecourses.swayam2.ac.in/cec19\_cs01/preview</u>

#### PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY OPERATING SYSTEMS LAB

| Course ( | Code                                                                         | 20IT3551           | Year               | III            | Semester           | Ι    |              |
|----------|------------------------------------------------------------------------------|--------------------|--------------------|----------------|--------------------|------|--------------|
| Course ( | Category                                                                     | PC                 | Branch             | IT             | <b>Course Type</b> | La   | b            |
| Credits  |                                                                              | 1.5                | L-T-P              | 0-0-3          | Prerequisites      | Data | a structures |
| Continue | ous Internal                                                                 |                    | Semester End       |                |                    |      |              |
| Evaluati | on :                                                                         | 15                 | <b>Evaluation:</b> | 35             | Total Marks:       | 50   |              |
| Course ( | Outcomes                                                                     |                    |                    |                |                    | Blo  | ooms Level   |
| Upon suc | cessful comp                                                                 | oletion of the cou | rse, the student w | ill be able to | :                  |      |              |
| CO1      | Experiment                                                                   | with Unix syste    | m calls            |                |                    |      | L3           |
| CO2      | Identify the                                                                 | performance of     | page replacement   | algorithms     |                    |      | L3           |
| CO3      |                                                                              |                    |                    |                |                    |      | L3           |
|          | algorithms.                                                                  |                    |                    |                |                    |      |              |
| CO4      | Develop algorithm for process synchronization, deadlock avoidance, detection |                    |                    |                |                    |      | L3           |
|          | and file allo                                                                | cation strategies  |                    |                |                    |      |              |

| Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of |
|---------------------------------------------------------------------------------------|
| correlations (3:High, 2: Medium, 1:Low)                                               |

|            |            | (B  |     |     | ,   | .,         |            |            |            |             |      |      |      |      |
|------------|------------|-----|-----|-----|-----|------------|------------|------------|------------|-------------|------|------|------|------|
|            | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | <b>PO10</b> | PO11 | PO12 | PSO1 | PSO2 |
| CO1        |            |     |     |     | 3   |            |            |            |            |             |      |      |      |      |
| CO2        |            | 3   |     |     |     |            |            |            |            |             |      |      |      |      |
| CO3        |            | 3   |     |     |     |            |            |            |            |             |      |      | 3    |      |
| <b>CO4</b> |            |     | 3   |     |     |            |            |            |            |             |      |      | 3    |      |

|               | EXPERIMENTS                                                                                                                                                                           |           |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Experiment No | Description                                                                                                                                                                           | Mapped CO |
| EXP-1         | Execute various Unix system calls for process and file management                                                                                                                     | CO1       |
| EXP-2         | Write a program to simulate the following non pre-emptive CPU scheduling algorithms to find turnaround time and waiting time. a) FCFS b) SJF c) Round Robin (pre-emptive) d) Priority | CO3       |
| EXP-3         | Write a program to simulate Bankers algorithm for the purpose of deadlock avoidance.                                                                                                  | CO4       |
| EXP-4         | Write a program to simulate page replacement algorithms<br>a) FIFO b) LRU                                                                                                             | CO2       |
| EXP-5         | Write a program to simulate page replacement algorithms<br>a) Optimal b) LFU                                                                                                          | CO2       |
| EXP-6         | Write a program to simulate disk scheduling algorithms<br>a) FCFS b) SCAN                                                                                                             | CO3       |
| EXP-7         | Write a program to simulate the concept of Dining-Philosophers problem                                                                                                                | CO4       |
|               | Learning Resources                                                                                                                                                                    | <u>.</u>  |
| Text book:    |                                                                                                                                                                                       |           |
| 1 Operating S | ustom Concents Abraham Silbarahatz Datar Daar Calvin Grag Cogno 0th Edition                                                                                                           | 2016      |

 Operating System Concepts, Abraham Silberchatz, Peter Baer Galvin, Greg Gagne,9<sup>th</sup> Edition, 2016, Wiley India.

**References**:

1 Operating Systems - Internal and Design Principles, William Stallings, Ninth Edition, 2018, Pearson.

Operating Systems - Harvey M.Deitel, Paul J Deitel and David R.Choffnes, Third Edition, 2019, Pearson.
 Operating Systems - A Concept based Approach- D.M. Dhamdhere, Second Edition, 2010, McGraw Hill.

e-Resources and other Digital Material:

1 https://www.youtube.com/watch?v=z3Nw5o9dS7Q&list=PLsylUObW5M3CAGT6OdubyH6FztKfJCcFB

2 http://www.youtube.com/watch?v=MaA0vFKtew&list=PL88oxI15Wi4Kw1aEY2bC51\_4pouojjtd4

## WEB TECHNOLOGIES LAB

| Course Code         | 20IT3552 | Year               | III   | Semester            | Ι    |
|---------------------|----------|--------------------|-------|---------------------|------|
| Course Category     | PC       | Branch             | IT    | Course Type         | Lab  |
| Credits             | 1.5      | L-T-P              | 0-0-3 | Prerequisites       | JAVA |
| Continuous Internal |          | Semester End       |       |                     |      |
| Evaluation :        | 15       | <b>Evaluation:</b> | 35    | <b>Total Marks:</b> | 50   |

|      | Course Outcomes                                                                              |       |  |  |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|--|--|
| Upon | Successful completion of course, the student will be able to                                 | Level |  |  |  |  |  |  |  |  |
| CO1  | Design and develop web applications using HTML, CSS, Java script, XML in a team environment. | L3    |  |  |  |  |  |  |  |  |
| CO2  | Develop web applications using JDBC                                                          | L3    |  |  |  |  |  |  |  |  |
| CO3  | Design and Develop applications using servlets                                               | L3    |  |  |  |  |  |  |  |  |
| CO4  | Develop Server side programming that demonstrate the advanced Java Concepts(JSP)             | L3    |  |  |  |  |  |  |  |  |

|     | ContributionofCourseOutcomestowardsachievementofProgramOutcomes&Strengthofc<br>orrelations (H:High,M:Medium,L:Low) |     |     |     |     |     |     |     |     |      |      |      |          |          |
|-----|--------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|----------|----------|
|     | PO1                                                                                                                | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO<br>1 | PSO<br>2 |
| CO1 |                                                                                                                    |     | 3   |     | 3   |     |     |     |     |      |      | 2    | 3        | 3        |
| CO2 |                                                                                                                    |     | 3   |     | 3   |     |     |     |     |      |      | 2    | 3        | 3        |
| CO3 |                                                                                                                    |     | 3   |     | 3   |     |     |     |     |      |      | 2    | 3        | 3        |
| CO4 |                                                                                                                    |     | 3   |     | 3   |     |     |     |     |      |      | 2    | 3        | 3        |

| Exercise<br>No | Exercise                                        | Mapped<br>CO |
|----------------|-------------------------------------------------|--------------|
| 1              | Design web applications using static HTML tags. | CO1          |
| 2              | Design web pages using different types of CSS.  | CO1          |
| 3              | Apply Client side validations using JavaScript. | CO1          |

| 4 | Create and save an XML document at the server, which contains<br>information of multiple users. Write a program which takes User Id as<br>input and returns the user details by taking the user information from the<br>XML document. |         |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 5 | Create dynamic application using JDBC.                                                                                                                                                                                                | CO2,CO3 |
| 6 | Create different web applications using servlets                                                                                                                                                                                      | CO2,CO3 |
| 7 | Authentication using JSP                                                                                                                                                                                                              | CO2,CO4 |
| 8 | Develop JSP application using JSTL and Custom Tags.                                                                                                                                                                                   | CO4     |
| 9 | Students are encouraged to propose innovative ideas in the field of<br>E- Commerce as projects. (Online banking, online job portal, online<br>library, online ticket reservation, online banking etc).(optional)                      | CO1-CO4 |

- Textbooks
  1. WebTechnologies,BlackBook,KogentLearningSolutionsInc,DreamtechPress,
  2018.
  - 2. JDBC, Servlets, and JSP, New Edition, Santhosh Kumar K, Kogent Learning Solutions Inc, Dreamtech Press, 2018.

#### References

- 1. Core Servlets and Java Server Pages Volume 2 Core Technologies, Second Edition, Marty Hall and Larry Brown Pearson
- 2. Professional Java Server Programming S.Allam Raju and others Apres(dreamtech)
- 3. Java Server Programming, Ivan Bayross and others, The XTeam, SPD
- 4. Beginning Web Programming-Jon Duckett WROX, 2013, SecondEdition.

## e-Resources and other Digital Material

- 1. http://nptel.ac.in/courses/106105084/13
- 2. http://www.w3schools.com/
- 3. https://www.javatpoint.com/html-tutorial

## SOFT SKILLS

| Course Code         | 20SS8551 | Year               | III   | Semester      | Ι   |
|---------------------|----------|--------------------|-------|---------------|-----|
| Course Category     | SOC      | Branch             | IT    | Course Type   | Lab |
| Credits             | 2        | L-T-P              | 1-0-2 | Prerequisites | -   |
| Continuous Internal |          | Semester End       |       |               |     |
| Evaluation :        | -        | <b>Evaluation:</b> | 50    | Total Marks:  | 50  |

| Course Outcomes                                                   | Blooms<br>Taxonomy<br>Level |
|-------------------------------------------------------------------|-----------------------------|
| Upon Successful completion of course, the student will be able to |                             |
| CO1 Develop logical and Analytical skill set through Case Studies | L3                          |
| CO2 Proficient in giving Presentations                            | L3                          |
| CO3 Understand the corporate etiquette                            | L2                          |
| CO4 Develop Competency in group discussion & Interviews           | L3                          |
| CO5 Present themselves with corporate readiness                   | L3                          |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L-Low-1)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 | PSO 1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|------------|------|------|------|-------|------|
| CO1 |     |     |     |     |     |     |     | 2          |            | 2    |      |      |       |      |
| CO2 |     |     |     |     |     |     |     |            | 3          | 3    |      | 2    |       |      |
| CO3 |     |     |     |     |     |     |     | 2          | 1          | 2    |      | 1    |       |      |
| CO4 |     |     |     |     |     |     |     |            | 3          | 3    |      |      |       |      |
| CO5 |     |     |     |     |     |     |     |            |            | 3    |      |      |       |      |

|            | Syllabus                                                                                                               |                 |
|------------|------------------------------------------------------------------------------------------------------------------------|-----------------|
| Unit<br>No | Contents                                                                                                               | Mapped<br>CO    |
|            | Soft Skills- Need & Importance. Intra & Inter Personal Skills                                                          |                 |
|            | Campus to Corporate- Employability Skills- Need of the hour                                                            | <b>GO1 GO</b> 2 |
| 1          | • SWOT Analysis.                                                                                                       | CO1,CO2<br>CO5. |
|            | Attitude- Developing Professional & Positive Attitude                                                                  | 005.            |
|            | • Perception – Importance of analytical thinking.                                                                      |                 |
|            | Communication Skills – Need and Methods                                                                                |                 |
| •          | • Body-Language -I; How to interpret and understand other's body language                                              | CO1,CO2         |
| 2          | Body Language-II; How to improve one's own Body Language                                                               | CO4, CO         |
|            | • Presentation Skills (Seminar Talk & Power Point Presentation)                                                        |                 |
|            | Goal Setting- Need & Importance                                                                                        |                 |
| 2          | • Magic of Team Work.                                                                                                  | CO1 CO          |
| 3          | • Leadership Qualities.                                                                                                | CO1, CO         |
|            | • Six Thinking Hats.                                                                                                   |                 |
|            | Accountability towards Work.                                                                                           |                 |
|            | Paragraph Writing – Descriptive and Analytical with illustrations                                                      | CO1, CO3        |
| 4          | Email Writing                                                                                                          | CO5.            |
|            | Work Etiquette                                                                                                         |                 |
|            | Group Discussion ( Open & Monitored)                                                                                   |                 |
| _          | Resume Preparation                                                                                                     | CO2,            |
| 5          | Interview Skills                                                                                                       | CO4, CO5        |
|            | Mock Interviews                                                                                                        |                 |
|            | Vocabulary- Root Words ( A representative Collection of 50)                                                            |                 |
|            | • Vocabulary for Competitive Exams ( A list of 500 high frequency Words)                                               |                 |
|            | Idioms & Phrases                                                                                                       |                 |
|            | Verbal Analogies                                                                                                       |                 |
|            | <ul> <li>Correction of Sentences</li> <li>Sentence Completion – Course of Action</li> </ul>                            |                 |
| 6          | <ul> <li>Cloze Test</li> </ul>                                                                                         |                 |
| Ū          | <ul> <li>Reading Comprehension (Skimming, Scanning &amp; tackling different kinds of questions)</li> </ul>             |                 |
|            | <ul> <li>Phrasal Collocations (Representative collection of 50meanings along with sentential illustrations)</li> </ul> | CO5.            |
|            | • SWAR/ VERSANT Test                                                                                                   |                 |

|                    | Learning Resources                                                                                                                                                                                                                                                             |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Books         | <ol> <li>The ACE of Soft Skills by Gopala swamy Ramesh &amp;Mahadevan Ramesh<br/>–Pearson</li> <li>Working with Emotional Intelligence - David Goleman.</li> <li>Developing Communication Skills by Krishna Mohan and MeeraBanerji;<br/>MacMillan India Ltd.,Delhi.</li> </ol> |
| Reference<br>Books | <ol> <li>Soft Skills: Meenakshi Raman.</li> <li>Audio—Visuals / Hand Outs (Compiled/Created by T&amp;P Cell,<br/>P.V.P.Siddhartha Institute of Technology), Board &amp; Chalk and Interactive</li> </ol>                                                                       |

|                               | Sessions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Semester<br>End<br>Evaluation | <ul> <li>15 marks for Report- Which includes         <ul> <li>5marks for Resume</li> <li>10 Marks for PPT (5M for PPT preparation &amp; Presentation, 5M for Report Preparation on PPT)</li> </ul> </li> <li>35 Marks for External Exam – Which includes         <ul> <li>10 marks for Viva with external examiner,</li> <li>20 marks for Vocab test (Which is essential in Recruitment written test)</li> <li>5 marks for E-mail Writing (which is important for the student to apply for the job through online, to give consent to job offer and to communicate in the work environment)</li> </ul> </li> </ul> |

#### CONSTITUTION OF INDIA

#### (Common to all)

| Course Code                        | 20MC1501 | Year                        | III   | Semester      | Ι      |
|------------------------------------|----------|-----------------------------|-------|---------------|--------|
| Course Category                    | MC       | Branch                      | IT    | Course Type   | Theory |
| Credits                            | -        | L-T-P                       | 2-0-0 | Prerequisites |        |
| Continuous Internal<br>Evaluation: | 30       | Semester End<br>Evaluation: | 70    | Total Marks:  | 100    |

|            | Syllabus                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| Ι          | <b>Introduction to Indian Constitution:</b> Constitutional history, constituent assembly, salient features of the constitution, significance of preamble, amending process of the constitution.                                                                                                       |  |  |  |  |  |  |
| II         | <b>Rights and Duties:</b> Citizenship, fundamental rights and directive principles, fundamental duties.                                                                                                                                                                                               |  |  |  |  |  |  |
| III        | Union Government: President and vice president, election, removal and powers,                                                                                                                                                                                                                         |  |  |  |  |  |  |
|            | Prime minister and council of ministers, parliament, supreme court, union, state relations, emergency provisions.                                                                                                                                                                                     |  |  |  |  |  |  |
| IV         | StateandLocalGovernments:Governor,statelegislature,assemblyandcouncil,                                                                                                                                                                                                                                |  |  |  |  |  |  |
|            | Chief minister and council of ministers, high court, rural and urban local governments with special reference to 73 <sup>rd</sup> and 74 <sup>th</sup> constitutional amendment acts.                                                                                                                 |  |  |  |  |  |  |
| V          | <b>Other Constitutional and Statutory Bodies:</b> Comptroller and auditor general, election commission, finance commission, attorney general and advocate general, union public service commission(UPSC), state public service commissions(SPSCs), Tribunals, national human rights commission(NHRC). |  |  |  |  |  |  |

#### Learning Resources

#### Text Books

- 1. J.C.Johari, Indian Government and Politics, Vishal Publications, Delhi, 2009.
- 2. M.V.Pylee, Introduction to the Constitution of India, 5/e, Vikas Publishing House, Mumbai, 2007.

## References

#### **References:**

- 1. D.D.Basu, Introduction to the Indian Constitution, 21/e,LexisNexis,Gurgaon,India,2011.
- 2. Subhas C.Kashyap, Our Constitution, 2/e, National Book Trust India, NewDelhi, 2013.

## SUMMER INTERNSHIP

| Course Code         | 20IT3581A | Year               | III   | Semester            | Ι         |
|---------------------|-----------|--------------------|-------|---------------------|-----------|
| Course Category     | PC        | Branch             | IT    | <b>Course Type</b>  | Practical |
| Credits             | 1.5       | L-T-P              | 0-0-0 | Prerequisites       | -         |
| Continuous Internal |           | Semester End       |       |                     |           |
| <b>Evaluation :</b> | 0         | <b>Evaluation:</b> | 50    | <b>Total Marks:</b> | 50        |

|         | Course Outcomes                                                                                                                                          |    |  |  |  |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Upon St | Upon Successful completion of course, the student will be able to                                                                                        |    |  |  |  |  |  |  |
| CO1     | Formulate problem analysis by gaining domain knowledge elaborate<br>through modeling and implementation through state of the art<br>technology available | L3 |  |  |  |  |  |  |
| CO2     | Development of solutions using generic and modular programs for real time applications.                                                                  | L5 |  |  |  |  |  |  |
| CO3     | Developed strong networking / mentoring relationships in work place                                                                                      | L2 |  |  |  |  |  |  |
| CO4     | Conclude finding through effective oral presentations.                                                                                                   | L3 |  |  |  |  |  |  |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations(3:Substantial,2: Moderate, 1:Slight)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   | 2   | 2   |     |     |     | 1   |     |     |      |      | 3    | 2    | 2    |
| CO2 | 1   | 2   | 2   | 1   | 1   |     |     |     |     |      |      | 3    | 2    | 2    |
| CO3 |     |     |     |     |     | 1   |     | 1   | 3   | 2    |      | 2    | 2    | 2    |
| CO4 |     |     |     |     |     |     |     |     | 2   | 2    | 2    | 3    | 2    | 2    |

#### **COMPUTER NETWORKS**

#### (MINOR)

| Course Code         | 20IT5501 | Year               | III   | Semester            | Ι      |
|---------------------|----------|--------------------|-------|---------------------|--------|
| Course Category     | Minor    | Branch             | IT    | Course Type         | Theory |
| Credits             | 4        | L-T-P              | 4-0-0 | Prerequisites       | -      |
| Continuous Internal |          | Semester End       |       |                     |        |
| Evaluation :        | 30       | <b>Evaluation:</b> | 70    | <b>Total Marks:</b> | 100    |

| Course | Course Outcomes                                                                                 |    |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Upon S | Upon Successful completion of course, the student will be able to                               |    |  |  |  |  |  |  |
| CO1    | Understand the basics of computer networks and the functions of OSI and TCP/IP reference model. | L2 |  |  |  |  |  |  |
| CO2    | Analyze various protocols in Data link layer, Transport Layer, and their mechanisms.            | L3 |  |  |  |  |  |  |
| CO3    | Implement routing and congestion control algorithms.                                            | L3 |  |  |  |  |  |  |
| CO4    | Analyze the real applications like electronic mail, www and multimedia.                         | L3 |  |  |  |  |  |  |

# Contribution of Course Outcomestowards a chievement of Program Outcomes & Strength of correlations (3: Subst ntial, 2: Moderate, 1: Slight)

|     |     |     | -   |     |     |     |     |     |     |      |      |      |      |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|-----|
|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO |
| CO1 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |     |
| CO2 | 3   | 3   |     |     |     |     |     |     |     |      |      |      | 3    |     |
| CO3 |     |     | 3   |     |     |     | 3   |     |     |      |      |      | 3    |     |
| CO4 |     | 3   |     |     |     |     |     |     |     |      |      |      | 3    |     |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                     |              |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                     | Mapped<br>CO |  |  |  |  |  |
|            | <ul> <li>Introduction: Uses of Computer Networks, Network hardware, Network software, Networks Topologies, OSI, TCP/IP Reference models.</li> <li>Physical Layer: Guided Transmission media: twisted pairs, coaxial cable, fiber optics, Wireless transmission.</li> </ul>                                                                                                                                   | C01          |  |  |  |  |  |
| Π          | <ul> <li>Data link layer: Design issues, framing, Error detection and correction.</li> <li>Elementary data link protocols: simplex protocol, A simplex stop and wait protocol for an error-free channel, A simplex stop and wait protocol for noisy channel.</li> <li>Sliding Window protocols: A one-bit sliding window protocol, A protocol using Go-Back-N, A protocol using Selective Repeat.</li> </ul> | C01,C02      |  |  |  |  |  |
| III        | <ul> <li>Network Layer: Design issues, Routing algorithms: shortest path routing, distance vector routing, Link State routing, Broadcast routing, Multicast routing.</li> <li>Congestion Control Algorithms, Internetworking, The Network layer in the internet.</li> </ul>                                                                                                                                  | C01,C03      |  |  |  |  |  |
| IV         | <b>Transport Layer:</b> The transport service, Elements of Transport protocols, The internet transport protocols: UDP, The internet transport protocols :TCP.                                                                                                                                                                                                                                                | CO1,CO2      |  |  |  |  |  |
| V          | Application Layer: Domain name system, Electronic Mail;<br>The World WEB, Streaming audio and video.                                                                                                                                                                                                                                                                                                         | CO1,CO4      |  |  |  |  |  |

## Learning Recourses

#### Text Books

 Computer Networks -- Andrew S Tanenbaum, David. j. Wetherall, 5<sup>th</sup>Edition. Pearson Education/PHI

#### References

- 1. An Engineering Approach to Computer Networks-S. Keshav, 2<sup>nd</sup>Edition, Pearson Education.
- 2. Computer Networks, A Top-Down Approach Behrouz A Forouzan, FirouzMosharraf.

3. Data Communications and Networking – Behrouz A. Forouzan. Third Edition TMH.

E-Recourses and other Digital Material

NPTEL VIDEO LECTURES : https://www.youtube.com/watch?v=O--rkQNKqls&list=PLbRMhDVUMngf-peFloB7kyiA40EptH1up

#### SOCIAL MEDIA ANALYTICS

#### (Honors)

| Course Code         | 20IT6501 | Year               | III   | Semester            | Ι         |
|---------------------|----------|--------------------|-------|---------------------|-----------|
| Course Category     | Honors   | Branch             | IT    | Course Type         | Theory    |
|                     |          |                    |       |                     | Big Data  |
| Credits             | 4        | L-T-P              | 4-0-0 | Prerequisites       | Analytics |
| Continuous Internal |          | Semester End       |       |                     |           |
| Evaluation :        | 30       | <b>Evaluation:</b> | 70    | <b>Total Marks:</b> | 100       |

|            | Course Outcomes                                                                                                                                                                                                                                                                                           |           |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Upon succe | essful completion of the course, the student will be able to:                                                                                                                                                                                                                                             |           |
| C01        | Understand and Identify the various components of a web that can be used for mining process.                                                                                                                                                                                                              | L2        |
| CO2        | Discover interesting patterns from Social Media Networks .                                                                                                                                                                                                                                                | L3        |
| CO3        | Understand the structure of the web and the processes of Web crawling to create web applications.                                                                                                                                                                                                         | L2        |
| CO4        | Analyze the emerging problems of social media analytics with sentiment<br>analysis and opinion mining.                                                                                                                                                                                                    | L3        |
|            | Syllabus                                                                                                                                                                                                                                                                                                  |           |
| Unit No    | Contents                                                                                                                                                                                                                                                                                                  | Mapped CO |
| Ι          | <ul> <li>Defining Analytics in Social Media: Analytics in Social Media, Social Network Landscape, The Analytics Process, The Future of Social Media Analytics</li> <li>Web Mining: Information Retrieval and Web Search: Basic Concepts of Information Retrieval, Information Retrieval Models</li> </ul> | CO1       |
| П          | Text and Web Page Pre-Processing: Stop word Removal, Stemming,<br>Other Pre-Processing Tasks for Text, Web Page Pre-Processing, Duplicate<br>DetectionSocial Network Analysis: HITS: HITS Algorithm, Finding Other Eigen<br>vectors, Relationships with Co-Citation and Bibliographic Coupling,<br>       | CO1,CO2   |
| III        | Web Crawling: A Basic Crawler Algorithm, Implementation Issues,<br>Universal Crawlers, Focused Crawlers, Topical Crawlers, Evaluation,<br>Crawler Ethics and Conflicts, Some New Developments                                                                                                             | CO1, CO3  |
| IV         | IV Opinion Mining and Sentiment Analysis: The Problem of Opinion<br>Mining, Document Sentiment Classification, Sentence Subjectivity and<br>Sentiment Classification, Mining Comparative Opinions, Opinion<br>Search and Retrieval, Opinion Spam Detection.                                               |           |
|            | Web Usage Mining: Data Modeling for Web Usage Mining, Discovery and Analysis of Web Usage Patterns         Decomposition       Sectors                                                                                                                                                                    |           |

V Recommender Systems and Collaborative Filtering: The Recommendation Problem, Content-Based Recommendation, Collaborative Filtering: K-Nearest Neighbor(KNN), Collaborative Filtering: Using Association Rules, Collaborative Filtering: Matrix Factorization

|     | Learning Resources                                                                                                                                                                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tex | t book:                                                                                                                                                                           |
| 1   | Social Media Analytics Strategy: Using Data to Optimize Business Performance Alex Gonçalves<br>Las Vegas, Nevada, USA                                                             |
| 2   | Web Data Mining Exploring Hyperlinks, Contents, and Usage Data Bing Liu Second Edition<br>Springer-Verlag Berlin Heidelberg                                                       |
| Ref | erences :                                                                                                                                                                         |
| 1   | GautamShroff,"EnterpriseCloudComputing",Cambridge,2010 Scott Granneman, "Google<br>Apps Deciphered: Compute in the Cloud to Streamline Your Desktop", Pearson Education,<br>2008. |
| 2   | Social Media Analytics Techniques and Insights from Extracting Business Value Out of Social media Matthew Gains ,Avinash Kohirkar IBM press                                       |
| e-R | esources and other Digital Material                                                                                                                                               |
| 1   | https://nptel.ac.in/courses/110107129                                                                                                                                             |
| 2   | https://emplifi.io/resources/blog/social-media-analytics-the-complete-guide                                                                                                       |

## SECURITY GOVERNANCE RISK MANAGEMENT

(Honors)

| Course Code                | 20IT6501 | Year         | III   | Semester           | Ι                |
|----------------------------|----------|--------------|-------|--------------------|------------------|
| Course Category            | Honors   | Branch       | IT    | <b>Course Type</b> | Theory           |
|                            |          |              |       |                    | Cyber            |
|                            |          |              |       |                    | Security/Network |
| Credits                    | 4        | L-T-P        | 4-0-0 | Prerequisites      | Security         |
| <b>Continuous Internal</b> |          | Semester End |       |                    |                  |
| Evaluation :               | 30       | Evaluation:  | 70    | Total Marks:       | 100              |

#### **Course Outcomes**

## Upon successful completion of the course, the student will be able to:

|            | Understand and determine the objectives necessary to achieve those outcomes                               | L2 |
|------------|-----------------------------------------------------------------------------------------------------------|----|
| <b>CO1</b> |                                                                                                           |    |
|            | Perform a comprehensive gap analysis of the requirements to move from the                                 | L3 |
| CO2        | current state to the desired state of security                                                            |    |
| CO3        | Develop a strategy and roadmap to address the gaps, using available resources within existing constraints | L3 |
| CO4        | Create metrics and monitoring processes to Measure progress and guide implementation                      | L3 |

| Syllabus |                                                                                 |           |
|----------|---------------------------------------------------------------------------------|-----------|
| Unit No  | Contents                                                                        | Mapped CO |
|          | Governance Overview: Origins of Governance, Governance Definition,              |           |
| I        | Information Security Governance, Six Outcomes of Effective Security             |           |
|          | Governance, Benefits of Good Governance                                         |           |
|          | Roles and Responsibilities: The Board of Directors, Executive Management,       | CO1 CO2   |
|          | Security Steering Committee, The CISO Strategic Metrics: Governance             | 01,002    |
|          | Objectives                                                                      |           |
|          | Information Security Outcomes: Strategic Alignment, Risk Management,            |           |
|          | Business Process Assurance/Convergence, Value Delivery, Resource                |           |
| II       | Management, Resource Management                                                 |           |
|          | Security Governance Objectives: Security Architecture, CobiT, Capability        | CO1, CO3  |
|          | Maturity Model                                                                  |           |
|          | Risk Management Objectives: Risk Management Responsibilities, Managing          |           |
| III      | Risk Appropriately, Determining Risk Management Objectives                      | CO1,CO2   |
|          | Current State: Current State of Security, Current State of Risk Management, Gap | ,         |

|    | Analysis—Unmitigated Risk                                                                                                                                                                                                                                                                                                        |         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|    | Practical Technical Scenarios(Ptss), DrivesCobit5, Framework Principles.                                                                                                                                                                                                                                                         |         |
| IV | <ul> <li>Developing a Security Strategy: Failures of Strategy, Attributes of a Good Security, Strategy Resources, Strategy Constraints, Sample Strategy Development</li> <li>Implementing Strategy: Action Plan Intermediate Goals , Action Plan Metrics, Reengineering, Inadequate Performance, Elements of Strategy</li> </ul> | CO1,CO4 |
| V  | Security Program Development Metrics:Information Security ProgramDevelopment Metrics, Program Development Operational MetricsInformation Security Management Metrics:Management Metrics, SecurityManagement Decision Support Metrics, CISO Decisions, Information SecurityOperational Metrics                                    | CO1,CO4 |

|      | Learning Resources                                                                                      |
|------|---------------------------------------------------------------------------------------------------------|
| Text | Books                                                                                                   |
| 1.   | Information Security Governance A Practical Development and Implementation Approach                     |
|      | KragBrotby, Wiley A John Wiley & Sons, Inc., Publication                                                |
| Refe | rences                                                                                                  |
| 1.   | Alan Calder, Steve G.Watkins, "Information Security Risk Management for ISO27001/ISO27002", itgp, 2010. |
| e-Re | sources and other Digital Material                                                                      |
| EBC  | OKS                                                                                                     |
| 1.   | https://www.youtube.com/watch?v=0yWt82rlC3o                                                             |
|      |                                                                                                         |
| 2.   | https://www.coursera.org/lecture/cyber-security-domain/information-security-governance-and-risk-        |
|      | management-FLyKS                                                                                        |

#### SCALA PROGRAMMING

(Honors)

| Course Code         | 20IT6501 | Year               | III   | Semester            | Ι           |
|---------------------|----------|--------------------|-------|---------------------|-------------|
| Course Category     | Honors   | Branch             | IT    | Course Type         | Theory      |
|                     |          |                    |       |                     | Java        |
| Credits             | 4        | L-T-P              | 4-0-0 | Prerequisites       | Programming |
| Continuous Internal |          | Semester End       |       |                     |             |
| Evaluation :        | 30       | <b>Evaluation:</b> | 70    | <b>Total Marks:</b> | 100         |

| Course  | Course Outcomes                                                                                                    |    |  |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Upon Su | Upon Successful completion of course, the student will be able to:                                                 |    |  |  |  |  |  |  |
| CO1     | Understand the fundamental concepts of basic object oriented programming in scala.                                 | L2 |  |  |  |  |  |  |
| CO2     | Apply the knowledge of functional programming concepts to develop applications.                                    | L3 |  |  |  |  |  |  |
| CO3     | Analyze and the behavior of programs involving fundamental programming concepts in Scala.                          | L3 |  |  |  |  |  |  |
| CO4     | Apply object-oriented concepts to design and use of Scala in a variety of technologies and on different platforms. | L3 |  |  |  |  |  |  |

#### Syllabus

| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mapped<br>CO |  |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|--|
| Ι          | <ul> <li>Scala: Introduction, Scala Environment, Scala Shell, Scala ID, Implementing the Object</li> <li>Scala Building Blocks: Introduction, Apps and Applications, Basics of the Language</li> <li>Scala Classes: Introduction, Classes, Case Classes</li> <li>Scala Methods: Introduction, Method Definitions, Named Parameters</li> </ul>                                                                                                                         |              |  |  |  |  |  |  |  |
| II         | <ul> <li>Classes, Inheritance and Abstraction: Introduction, Inheritance Between Types,<br/>Inheritance Between Classes, Restricting a Subclass, Abstract Classes, The Super<br/>Keyword, Scala Type Hierarchy, Polymorphism</li> <li>Objects and Instances: Introduction, Singleton Objects, Companion Objects</li> <li>Value Classes: Introduction, Value Classes, Simple Value Type Example,</li> </ul>                                                            | CO1,CO2      |  |  |  |  |  |  |  |
| III        | <ul> <li>Scala Constructs: Introduction, Numbers and Numeric Operators, Characters and Strings, Assignments, Variables, Messages and Message Selectors, Control and Iteration Traits: Introduction, Abstract Trait Members, Dynamic Binding of Traits, Sealed Traits, Marker Traits</li> <li>Arrays: Introduction, Arrays, Creating Square Arrays, Looping Through Arrays</li> <li>Tuples: Introduction, Tuple Characteristics, classes, Creating a Tuple,</li> </ul> | CO1,CO3      |  |  |  |  |  |  |  |
| IV         | <ul> <li>Functional Programming in Scala: Introduction, Scala as a Functional Language,<br/>Defning Scala Functions</li> <li>Scala Collections Framework: Introduction, Scala Collections</li> <li>Immutable Lists and Maps: Introduction, the Immutable List Collection</li> </ul>                                                                                                                                                                                   | CO1,CO4      |  |  |  |  |  |  |  |
| V          | <ul> <li>Scala and JDBC Database Access: Introduction, Working with JDBC, The Database Driver, Registering Drivers, Setting Up MySQL, Setting Up the Database</li> <li>GUIs in Scala Swing: Introduction, Windows as Objects, Windows in Scala, Scala Swing, Scala Swing Packages, Swing Scala Worked Examples</li> <li>Scala&amp; Java Interoperability: Introduction, a Simple Example, Inheritance, Issues, Functions</li> </ul>                                   | CO1,CO4      |  |  |  |  |  |  |  |

|      | Learning Resources                                                                              |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Text | book:                                                                                           |  |  |  |  |  |  |
| 1    | A Beginner's Guide to Scala, Object Orientation and Functional Programming, Second Edition John |  |  |  |  |  |  |
|      | Hunt, Midmarsh Technology Ltd, Bath, Wiltshire Springer publications                            |  |  |  |  |  |  |
| Refe | erences :                                                                                       |  |  |  |  |  |  |
| 1    | Functional Programming in Scala by Paul Chiusano, RunarBjarnason, MEAP Edition                  |  |  |  |  |  |  |
|      | Manning Early Access Program, version 10                                                        |  |  |  |  |  |  |
|      |                                                                                                 |  |  |  |  |  |  |
| e-Re | e-Resources and other Digital Material                                                          |  |  |  |  |  |  |
| 1    | https://www.tutorialspoint.com/scala/index.htm                                                  |  |  |  |  |  |  |
|      |                                                                                                 |  |  |  |  |  |  |

#### SOFTWARE DESIGN AND SYSTEM INTEGRATION

(Honors)

| Course Code         | 20IT6501 | Year         | III   | Semester      | Ι           |
|---------------------|----------|--------------|-------|---------------|-------------|
| Course Category     | Honors   | Branch       | IT    | Course Type   | Theory      |
|                     |          |              |       |               | Software    |
| Credits             | 4        | L-T-P        | 4-0-0 | Prerequisites | Engineering |
| Continuous Internal |          | Semester End |       |               |             |
| Evaluation :        | 30       | Evaluation:  | 70    | Total Marks:  | 100         |

#### **Course Outcomes**

### Upon successful completion of the course, the student will be able to:

|            | Understand basic concepts, methods and technologies related to system integration                        | L2 |
|------------|----------------------------------------------------------------------------------------------------------|----|
| <b>CO1</b> |                                                                                                          |    |
| CO2        | Identify commonly used tools for integrating information systems, describing the benefits of using each. | L2 |
| CO3        | Implement alternative strategies for systems integration.                                                | L3 |
| CO4        | Analyze the problem and design feasible integration solutions to address the problem.                    | L3 |

| Syllabus |                                                                                                                                                                                                                                                                                                                                                                                                    |         |  |  |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|--|
| Unit No  | Contents                                                                                                                                                                                                                                                                                                                                                                                           |         |  |  |  |  |  |  |
| I        | Introduction: Software and Systems Integration Methods, Program and ProjectPlanning, Systems Design, Software Requirements, SoftwareDesign/Development Software Implementation, Software Integration, Softwareand Systems Integration, Software Sub contractor, Software and SystemsIntegration Delivery, Product Evaluation Program and Project Planning:Introduction, Program, Project, Planning | CO1 CO2 |  |  |  |  |  |  |
| II       | Systems Design: Introduction, Definition of System Design, System Engineering<br>Plan, Software Architecture Evaluation<br>Software Requirements: Introduction, Definition of Software Requirements,<br>Requirements Documentation, Requirements Documentation, Released Software<br>Requirements                                                                                                  | CO1,    |  |  |  |  |  |  |
| III      | Software Design: Introduction, Development Plan, Software Design Decisions,<br>Peer Reviews, Software Design/Development Suggestions<br>Software Implementation: Introduction, Configuration Management, Configuration<br>Management Tools, Software Media and Data, Future Trends                                                                                                                 | COI     |  |  |  |  |  |  |

| IV | <b>Software Integration</b> : Introduction, Software Integration Strategy, Development<br>Facility, Software Integration Setup, Software Integration Log, Software Test<br>Completion, Integration Verification and Validation, Configuration Reviews and<br>Audits                                                          | C01,C04 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| V  | <b>Software and Systems Integration</b> : Introduction, Software and Systems Integration Plan, Software and Systems Integration Facility, Integration Setup, Formal Engineering Build, Test Team, Quality Participation in Software and Systems Integration, Risk Management Systems/Software Design, Continuous Integration | CO1,CO4 |

|        | Learning Resources                                                                                                                                   |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Тех    | xt Books                                                                                                                                             |
| 1.     | Effective methods for Software and Systems Integration BoydL.Summers,,CRC,2013                                                                       |
| Refere | ences :                                                                                                                                              |
| 1      | Enterprise Integration by Fred A. Cummins, John Wiley and Sons 2002                                                                                  |
| 2      | Wiley] Enterprise Application Integration: A Wiley Tech Brief, by William A. Ruh, Francis X. Maginnis and William J. Brown, John Wiley & Sons © 2001 |
| e-Res  | sources and other Digital Material                                                                                                                   |
| 1      | https://nptel.ac.in/courses/106108102                                                                                                                |

# MACHINE LEARNING TECHNIQUES

| Course Code                            | Course Code 20IT3601 |                             | III Semester |               | II                                                |  |
|----------------------------------------|----------------------|-----------------------------|--------------|---------------|---------------------------------------------------|--|
| Course<br>Category                     | PC                   | Branch                      | IT           | Course Type   | Theory                                            |  |
| Credits                                | 3                    | L-T-P                       | 3-0-0        | Prerequisites | Linear algebra,<br>Statistics and<br>Probability. |  |
| Continuous<br>Internal<br>Evaluation : | 30                   | Semester End<br>Evaluation: | 70           | Total Marks:  | 100                                               |  |

| Course                                                                | Course Outcomes                                                                                 |    |  |  |  |  |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| Upon successful completion of the course, the student will be able to |                                                                                                 |    |  |  |  |  |  |
| CO1                                                                   | O1 Understand the basic concepts of machine learning.                                           |    |  |  |  |  |  |
| CO2                                                                   | Apply machine learning techniques on appropriate problems.                                      |    |  |  |  |  |  |
| CO3                                                                   | Apply Evaluation, hypothesis tests and compare learning techniques for various problems.        | L3 |  |  |  |  |  |
| CO4                                                                   | Analyze real time problems in different areas and solve using Reinforcement learning technique. | L4 |  |  |  |  |  |

|     | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight) |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | PO1                                                                                                                                       | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                                                                                                         |     |     |     |     |     |     |     |     |      |      |      | 3    | 3    |
| CO2 | 3                                                                                                                                         |     |     | 3   |     |     |     |     |     |      |      |      | 3    | 3    |
| CO3 |                                                                                                                                           | 3   |     |     |     |     |     |     |     |      |      |      | 3    | 3    |
| CO4 |                                                                                                                                           | 3   |     | 3   |     |     |     |     |     |      |      |      | 3    | 3    |

|             | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Unit<br>No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mapped CO   |
| I           | <b>Introduction:</b> What Is Machine Learning?, Examples of Machine Learning Applications - Learning Associations, Classification, Regression, Unsupervised learning, Reinforcement learning. [TB-1]                                                                                                                                                                                                                                                                                                                        | CO1,C02     |
| п           | <ul> <li>Supervised Learning: Regression: Introduction to Linear Regression and<br/>Multiple Linear Regression, KNN. Measuring regression model performance - R<br/>Square, Mean Square Error(MSE),Root Mean Square Error(RMSE), Mean<br/>Absolute Error(MAE)</li> <li>Classification: Support vector machine- Characteristics of SVM, Linear SVM,<br/>Naive Bayes Classifier, KNN classifier, Logistic Regression. [TB-2]</li> <li>Measuring Classifier Performance: Precision, Recall, Confusion Matrix. [TB1]</li> </ul> | CO1,CO2,CO3 |
| ш           | Combining Multiple Learners– Model Combination schemes, voting, Bagging,<br>Boosting. [TB1]<br>UnSupervised Learning: K-Means, Expectation Maximization Algorithm,<br>supervised learning after clustering, spectral clustering, choosing number of<br>clusters.[TB-1]                                                                                                                                                                                                                                                      | CO1,CO2,CO3 |
| IV          | Multilayer Perceptrons: The Perceptron, Training a Perceptron, Learning<br>Boolean Functions, Multilayer Perceptrons, MLP as a Universal Approximator,<br>Back propagation Algorithm, Training Procedures, Dimensionality Reduction,<br>Learning Time. [TB-1]                                                                                                                                                                                                                                                               | CO1,CO2,CO3 |
| V           | <b>Reinforcement Learning</b> : Single State Case: K-Armed Bandit, Elements of Reinforcement learning, Model based Learning, Temporal Difference learning, Generalizing from examples. [TB-1]                                                                                                                                                                                                                                                                                                                               | CO1,CO3,CO4 |

#### Text Book

1.Introduction to Machine Learning, Ethem Alpaydin, Second Edition, 2010, Prentice Hall of India. 2.Introduction to Data Mining, Tan, Vipin Kumar, Michael Steinbach, 9<sup>th</sup> Edition, 2013, Pearson.

#### References

1. Machine Learning by Tom M. Mitchell, International Edition 1997, McGraw Hill Education.

2. Machine Learning, Anuradha Srinivasaraghavan, and Vincy Joseph, Kindle Edition, 2020, WILEY.

3.Machine Learning a Probabilistic Perspective, Kevin P Murphy & Francis Bach, First Edition, 2012, MIT Press.

4. "Deep Learning", Ian Goodfellow, Yoshua Bengio, Aaron Courville, 2016, MIT Press.

e-Resources and other Digital Material

1.https://www.coursera.org/learn/machine-learning 2.https://nptel.ac.in/courses/106/106/106106139/

#### MODERN WEB APPLICATIONS

| Course Code         | 20IT3602 | Year         | III   | Semester      | II     |
|---------------------|----------|--------------|-------|---------------|--------|
| Course Category     | PC       | Branch       | IT    | Course Type   | Theory |
| Credits             | 3        | L-T-P        | 3-0-0 | Prerequisites | -      |
| Continuous Internal |          | Semester End |       |               |        |
| Evaluation :        | 30       | Evaluation:  | 70    | Total Marks:  | 100    |

|        | Course Outcomes                                                                                                        | Blooms<br>Taxonomy<br>Level |
|--------|------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Upon S | uccessful completion of course, the student will be able to                                                            |                             |
| CO1    | Understand core concepts of both the frontend and backend technologies.                                                | L2                          |
| CO2    | Apply Express JS, React JS which are used extensively to handle both the Front-end and Back-end development processes. | L3                          |
| CO3    | Construct server side web applications by applying Node.js elements                                                    | L3                          |
| CO4    | Build applications for accessing data using MongoDB                                                                    | L3                          |

|     | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight) |     |     |     |     |     |            |     |     |      |      |      |          |          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|----------|----------|
|     | PO1                                                                                                                                       | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO<br>1 | PSO<br>2 |
| CO1 | 3                                                                                                                                         |     |     |     |     |     |            |     |     |      |      | 3    | 3        | 3        |
| CO2 |                                                                                                                                           |     | 3   |     |     |     |            |     |     |      |      | 3    | 3        | 3        |
| CO3 |                                                                                                                                           |     | 3   |     |     |     |            |     |     |      |      | 3    | 3        | 3        |
| CO4 |                                                                                                                                           |     | 3   |     |     |     |            |     |     |      |      | 3    | 3        | 3        |

|            | Syllabus                                                                                                                                                                                                                                                                                        |                 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                        | Mapped<br>CO    |
| Ι          | <ul> <li>Introduction: MERN, MERN Components, Serverless Hello World</li> <li>Application, ES6, DOM, JSON, Installation.</li> <li>React Basics: Introduction, Virtual DOM, Components in React, Tradeoffs, using JSX , React Project Structure, State, Component Communication, One-</li> </ul> | CO1,CO2         |
|            | way data flow, Rendering and Life Cycle methods.<br>Updating React Components, Creating a Newsfeed.                                                                                                                                                                                             | C01,C02         |
| п          | <b>Forms, Libraries &amp; Routing:</b> Working with Forms & Third Party libraries, Routing. <b>Redux:</b> Application Architecture, Integrating Redux with React.                                                                                                                               |                 |
| III        | <b>Node.js:</b> Getting Started with Node.js, Using Events, Listeners, Timers, and Callbacks in Node.js, Handling Data I/O in Node.js. Accessing the File System from Node.js, Implementing HTTP Services in Node.js.                                                                           | CO1,CO3         |
| IV         | <b>Express with Node.js</b> , Routes, Request and Response objects, Template engine. Understanding middleware, Query middleware, Serving static files, Handling POST body data, Cookies, Sessions, Authentication                                                                               | CO1,CO3         |
| V          | <b>MongoDB:</b> Understanding NoSQL and MongoDB, Getting Started with MongoDB, Getting Started with MongoDB and Node.js, Manipulating MongoDB Documents from Node.js, Accessing MongoDB from Node.js.                                                                                           | CO1,CO3,<br>CO4 |
|            | Learning Resources                                                                                                                                                                                                                                                                              |                 |
| Textb      |                                                                                                                                                                                                                                                                                                 |                 |
| 1)         | React in Action, Mark Tielens Thomas, Manning Publications, 2018, ISBN:978-1                                                                                                                                                                                                                    | 1617293856,     |
| 2)         | First Edition<br>Node.js, MongoDB and Angular Web Development, Brad Dayley, Brendan Dayley, 2/e, Pearson Edu., Inc. 2018, ISBN: 978-0-13-465553-6                                                                                                                                               | ey Caleb        |
| Refe       | rences                                                                                                                                                                                                                                                                                          |                 |
| 1)         | Pro MERN Stack, Vasan Subramanian, 2/e, Apress, 2019, ISBN: 978-1-4842-439                                                                                                                                                                                                                      | 90-9            |
| 2)         | Full Stack React – The Complete Guide to ReactJS and Friends, Anthony Accom Murray, Ari Lerner, Clay Allsopp, David Guttman, and Tyler McGinnis, 2020, \n                                                                                                                                       | azzo, Nate      |
| 3)         | Node.js in Action, Mike Cantelon, Marc Harter, T.J. Holowaychuk& Nathan Rajl<br>Publications, 2014, ISBN: 9781617290572.                                                                                                                                                                        |                 |
| 4)         | MongoDB in Action, 2/e, Kyle Banker, Peter Bakkum, Shaun Verch, Douglas Ga<br>Hawkins, Manning Publications, 2016, ISBN: 9781617291609.                                                                                                                                                         | urrett & Tim    |
| e-Res      | ources and other Digital Material                                                                                                                                                                                                                                                               |                 |
| 1.         | The-Complete-Beginners-Guide-to-React_Dyrr.pdf (html5hive.org)                                                                                                                                                                                                                                  |                 |
| 2.         | React for Beginners – A React.js Handbook for Front End Developers (freecodec                                                                                                                                                                                                                   | amp.org)        |
| 3.         | How To Code in React.js (digitalocean.com)                                                                                                                                                                                                                                                      |                 |
| 1          | The Complete Paginners Guide to Paget Durr ndf (html5hive org)                                                                                                                                                                                                                                  |                 |

- 4. <u>The-Complete-Beginners-Guide-to-React\_Dyrr.pdf (html5hive.org)</u>
- 5. <u>Nodejs Programming By Example Google Play Books</u>

#### **INTERNET OF THINGS**

| Course Code                           | 20ES1602 | Year                        | III   | Semester      | П      |
|---------------------------------------|----------|-----------------------------|-------|---------------|--------|
| Course<br>Category                    | ES       | Branch                      | IT    | Course Type   | Theory |
| Credits                               | 3        | L-T-P                       | 3-0-0 | Prerequisites | -      |
| Continuous<br>Internal<br>Evaluation: | 30       | Semester End<br>Evaluation: | 70    | Total Marks:  | 100    |

| Course C | Course Outcomes                                                                           |    |  |  |  |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
| Upon suc | Upon successful completion of the course, the student will be able to                     |    |  |  |  |  |  |  |  |
| CO1      | <b>Summarize</b> the genesis and impact of IoT applications, architectures in real world. | L2 |  |  |  |  |  |  |  |
| CO2      | <b>Apply</b> diverse methods in deploying smart objects and connecting them to network.   | L3 |  |  |  |  |  |  |  |
| CO3      | Construct simple applications using Arduino.                                              | L3 |  |  |  |  |  |  |  |
| CO4      | Identify and Select different protocols required for communication in the IoT system.     | L3 |  |  |  |  |  |  |  |
| CO5      | Analyze and develop a solution for a given application using APIs.                        | L4 |  |  |  |  |  |  |  |

| Contribu         |         |             |         |                      |               |                     |     | nent of ] | Progra  | m Out    | comes &  | & Stre   | ngth of |          |
|------------------|---------|-------------|---------|----------------------|---------------|---------------------|-----|-----------|---------|----------|----------|----------|---------|----------|
| correlati<br>COs | PO<br>1 | P<br>O<br>2 | PO<br>3 | u, 2:<br>P<br>O<br>4 | Modera<br>PO5 | rte, 1:S<br>PO<br>6 | PO7 | PO8       | PO<br>9 | PO1<br>0 | PO1<br>1 | PO<br>12 | PSO1    | PS<br>O2 |
| CO1              | 2       | 2           | 3       |                      | 3             |                     |     |           |         |          |          | 3        | 2       |          |
| CO2              | 2       | 2           | 2       | 3                    | 3             |                     |     |           |         |          |          | 3        | 3       | 2        |
| CO3              | 3       | 2           | 2       | 2                    | 3             |                     |     |           |         |          |          | 2        | 3       | 3        |
| <b>CO4</b>       | 3       | 3           | 2       |                      | 2             |                     |     |           |         |          |          | 3        | 2       | 2        |
| CO5              | 3       | 3           | 3       | 3                    |               | 2                   |     |           |         |          |          | 2        | 2       | 3        |
| Averag<br>e*     | 3       | 3           | 3       | 3                    | 3             | 2                   |     |           |         |          |          | 3        | 3       | 3        |

|          | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                        |              |  |  |  |  |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|--|
| Unit No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                        | Mapped<br>CO |  |  |  |  |  |  |  |
| I        | Genesis of IoT, IoT and Digitization, IoT Impact-Connected roadways, Smart connected<br>buildings, Convergence of IT and IoT, IoT Challenges, Comparing IoT Architectures -<br>OneM2M IoT Architecture and IoT WF Architecture, A Simplified IoT Architecture                                                                                                                                                   | CO1,CO2      |  |  |  |  |  |  |  |
| П        | Smart Objects: The Things in IoT- Sensors, Actuators, and Smart Objects, Sensor<br>Networks-Advantages and Disadvantages, Communications Criteria-Range, Frequency<br>bands, Power consumption, Topology, IoT Access Technologies- IEEE 802.15.4,IEEE<br>1901.2a,IEEE 802.11ah (only Standardization and Alliances, Physical Layer, MAC<br>Layer and Topology)                                                  | CO1,<br>CO2  |  |  |  |  |  |  |  |
| III      | Embedded Computing Basics- Microcontrollers, System-on-Chips, Choosing Your Platform, Arduino- Developing on the Arduino, Some Notes on the Hardware, Openness                                                                                                                                                                                                                                                  | CO1,<br>CO3  |  |  |  |  |  |  |  |
| IV       | Communication in the IoT: Internet Principles, Internet Communications: An Overview-<br>IP, TCP, The IP Protocol Suite (TCP/IP), UDP, IP Addresses- DNS, Static IP Address<br>Assignment, Dynamic IP Address Assignment, IPv6, MAC Addresses, TCP and UDP<br>Ports- An Example: HTTP Ports, Other Common Ports, Application Layer Protocols-<br>HTTP, HTTPS: Encrypted HTTP, Other Application Layer Protocols. | CO1,<br>CO4  |  |  |  |  |  |  |  |
| V        | Prototyping Online Components: Getting Started with an API, Writing a New API, Real-<br>Time Reactions, Other Protocols.                                                                                                                                                                                                                                                                                        | CO1,<br>CO5  |  |  |  |  |  |  |  |

| Learning Resources                                                                                |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Text Books                                                                                        |  |  |  |  |  |  |  |  |  |
| 1. Adrian McEwen, Hakim Cassimally - Designing the Internet of Thing Wiley Publications, 2012.    |  |  |  |  |  |  |  |  |  |
| 2. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry,"IoT           |  |  |  |  |  |  |  |  |  |
| Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things,       |  |  |  |  |  |  |  |  |  |
| 1stEdition, Pearson Education (Cisco Press Indian Reprint). (ISBN: 978-9386873743)                |  |  |  |  |  |  |  |  |  |
| Reference Books                                                                                   |  |  |  |  |  |  |  |  |  |
| 1. Arshdeep Bahga, Vijay Madisetti - Internet of Things: A Hands-On Approach, Universities Press, |  |  |  |  |  |  |  |  |  |
| 2014                                                                                              |  |  |  |  |  |  |  |  |  |
| 2. Srinivasa K G, Internet of Things, CENGAGE Leaning India, 2017                                 |  |  |  |  |  |  |  |  |  |
| e-Resources & amp other digital material                                                          |  |  |  |  |  |  |  |  |  |
| 1. <u>https://nptel.ac.in/courses/106/105/106105166/</u>                                          |  |  |  |  |  |  |  |  |  |

#### **CYBER FORENSICS**

(Professional Elective – II)

| Cour       | rse Code                    | 20IT4601A         | Year                        | III          | Semester      | II     |
|------------|-----------------------------|-------------------|-----------------------------|--------------|---------------|--------|
| Cour       | se Category                 | PE-II             | Branch                      | IT           | Course Type   | Theory |
| Cred       | lits                        | 3                 | L-T-P                       | 3-0-0        | Prerequisites | -      |
| Cont       | inuous Internal             |                   | Semester End                |              |               |        |
| Evalu      | uation:                     | 30                | Evaluation:                 | 70           | Total Marks:  | 100    |
| Cours      | Blooms<br>Taxonomy<br>Level |                   |                             |              |               |        |
| Upon       | successful completio        | n of the course,  | , the student will <b>b</b> | be able to   |               |        |
| CO1        | Understand the basic        | terminology of    | cybercrimes                 |              |               | L2     |
| CO2        | Apply a number of d         | lifferent compute | er forensic tools to        | a given sco  | enario        | L3     |
| CO3        | Understand the basic        | es of computer fo | orensics                    |              |               | L2     |
| <b>CO4</b> | Analyze and validate        |                   | L3                          |              |               |        |
| CO5        | Analyze acquisition         | methods for dig   | gital evidence relate       | ed to syster | n security    | L3     |

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | P<br>0<br>11 | P<br>O<br>12 | PS<br>O1 | PSO<br>2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|--------------|--------------|----------|----------|
| CO1 |     |     |     | 3   | 3   | 3   |     |     |     |      |              | 3            |          |          |
| CO2 |     |     |     | 3   | 3   | 3   |     |     |     |      |              | 3            |          |          |
| CO3 |     |     |     | 3   | 3   | 3   |     |     |     |      |              | 3            | 3        | 3        |
| CO4 |     |     |     | 3   | 3   | 3   |     |     |     |      |              | 3            | 3        | 3        |
| CO5 |     |     |     | 3   | 3   | 3   |     |     |     |      |              | 3            | 3        | 3        |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mapped<br>CO |
| I          | <b>Introduction To Cybercrime</b> : Introduction, Role of Electronic Communication Devices and Information and Communication Technologies in Cybercrime, Types of Cybercrime, Cybercrime against Individuals, Property, Nation, Crimes associated with mobile electronic communication devices, classification of cybercriminals, Execution of cybercrime, tools used in cybercrime, factors influencing cybercrime, challenges to cybercrime, strategies to prevent cybercrimes.                                                                                                                                 | CO1          |
| II         | Classification of Cybercrime: Introduction, Cybercrime against<br>individuals, cybercrime against property, cybercrime against nation.<br>Cybercrime the present and the future: Introduction to cyber war, crypto<br>currency, bitcoin, ethereum, comparison between bitcoin and ethereum,<br>blockchain, ransomeware, deep web and dark web and its challenges.                                                                                                                                                                                                                                                 | CO1          |
| ш          | <b>Introduction to cyber forensics</b> : Interrelation among cybercrime, cyber forensics, and cyber security, cyber forensics, disk forensics, network forensics, wireless forensics, database forensics, malware forensics, mobile forensics, gps forensics ,email forensics, memory forensics, building forensic computing lab, incident and incident handling, computer security incident                                                                                                                                                                                                                      | CO2,CO<br>3  |
| IV         | <ul> <li>Digital Evidence: Introduction to digital evidence and evidence collection procedure, sources of evidence, digital evidence from standalone computers/electronic communication devices.</li> <li>Cyber forensics-The present and Future: Forensic tools, cyber forensic suite, Drive Imaging and validation tools, Forensic tools for integrity verification and hashing, data recovery, ram analysis, analysis of registry, encryption/decryption, analysing network, mobile devices, email analysis, Need for computer forensic investigators, career prospects for forensic investigators.</li> </ul> | CO2,CO<br>4  |
| V          | Acquisition and handling of digital evidence: preliminaries of electronic<br>or digital evidence, acquisition and seizure of evidence, chain of custody<br>and digital evidence collection form, fourth amendment and seizure,<br>acquisition of computer and electronic evidence. acquisition of evidence<br>form optical and removal media, digital cameras.                                                                                                                                                                                                                                                    | CO4,CO<br>5  |

### Text book

1.Dejay, Murugan, Cyber Forensics Oxford university press India Edition, 2018.

#### References

1.CEH official Certified Ethical Hacking Review Guide, Wiley India Edition, 2015.

# e-Resources and other Digital Material

1.http://www.cyberforensics.in/

2.https://evestigate.com/computer-forensics-links/

#### **CLOUD COMPUTING**

#### (Professional Elective - II)

| Course Code                        | 20IT4601B | Year                        | III   | Semester      | II     |
|------------------------------------|-----------|-----------------------------|-------|---------------|--------|
| Course Category                    | PE-II     | Branch                      | IT    | Course Type   | Theory |
| Credits                            | 3         | L-T-P                       | 3-0-0 | Prerequisites | CN     |
| Continuous Internal<br>Evaluation: | 30        | Semester End<br>Evaluation: | 70    | Total Marks:  | 100    |

|          | Course Outcomes                                                                                                                |    |  |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Upon Suc | Upon Successful completion of course, the student will be able to                                                              |    |  |  |  |  |  |  |
| CO1      | Understanding Fundamental Concepts and Models of Cloud Computing<br>and Cloud Enabling Technologies, Infrastructure Mechanisms | L2 |  |  |  |  |  |  |
| CO2      | Determine Cloud Infrastructure Mechanisms                                                                                      | L3 |  |  |  |  |  |  |
| CO3      | Determine different Cloud Maintenance strategies                                                                               | L3 |  |  |  |  |  |  |
| CO4      | Analyze Cloud Architectures and Delivery Model                                                                                 | L4 |  |  |  |  |  |  |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial,2:Moderate,1:Slight)

|         | PO<br>1 | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO1 | PSO<br>2 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|------|----------|
| CO<br>1 | 3       |         |         |         |         |         |         |         |         |          |          |          | 2    |          |
| CO<br>2 | 3       |         |         | 3       |         |         |         |         |         |          |          |          | 2    |          |
| CO<br>3 | 3       |         |         | 3       |         |         |         |         |         |          |          |          | 2    |          |
| CO<br>4 | 3       | 3       |         |         |         |         |         |         |         |          |          |          | 2    |          |

| Syllabus |                                                                                          |            |  |  |  |  |
|----------|------------------------------------------------------------------------------------------|------------|--|--|--|--|
| Unit     | iit Contents                                                                             |            |  |  |  |  |
|          | Understanding Cloud Computing: Cloud origins and influences, basic concepts and          |            |  |  |  |  |
|          | terminology, goals and benefits, risks and challenges.                                   |            |  |  |  |  |
| Ι        | Fundamental Concepts and Models: Roles and boundaries, cloud characteristics,            | CO1        |  |  |  |  |
|          | cloud delivery models, cloud deployment models                                           |            |  |  |  |  |
|          | Cloud Enabling Technology: Data center technology, virtualization technology,            |            |  |  |  |  |
| II       | web technology, multitenant technology, service technology.                              | CO1        |  |  |  |  |
|          | Cloud Infrastructure Mechanisms: Logical network perimeter, virtual server, cloud        | CO1,       |  |  |  |  |
| III      | storage device, cloud usage monitor, resource replication                                | CO2        |  |  |  |  |
|          | Specialized Cloud Mechanisms: Automated Scaling Listener, Load Balancer, SLA             |            |  |  |  |  |
|          | Monitor, Pay-Per- Use Monitor, Audit Monitor, Failover System, Hypervisor,               |            |  |  |  |  |
| IV       | Resource Cluster, Multi-Device Broker, State Management Database. Case Studies.          | <b>CO3</b> |  |  |  |  |
|          | Fundamental Cloud Architectures: Workload distribution architecture,                     |            |  |  |  |  |
|          | resource pooling architecture, dynamic scalability architecture, elastic resource        |            |  |  |  |  |
|          | capacity architecture, service load balancing architecture, cloud bursting architecture, |            |  |  |  |  |
|          | elastic disk provisioning architecture, redundant storage architecture.                  | ~~ (       |  |  |  |  |
| V        | Cloud Delivery Model Considerations: The cloud provider perspective: Building            | CO1,       |  |  |  |  |
|          | IaaS environments, equipping PaaS environments, optimizing SaaS environments,            | CO4        |  |  |  |  |
|          | the cloud consumer perspective: Working with IaaS environments, working with             |            |  |  |  |  |
|          | PaaS environments, working with SaaS services.                                           |            |  |  |  |  |

#### Learning Recourses

#### **Text Books**

1. Thomas Erl, Ricardo Puttini, Zaigham Mahmood, Cloud Computing: Concepts, Technology& Architecture, Prentice Hall, 2013.

#### References

1. John W.Ritting house, James F.Ransome, Cloud Computing: Implementation, Management and Security, CRC Press, 2012.

2. Anthony T.Velte, Toby JVelte Robert Elsenpeter, Cloud Computing a practical approach, McGrawHill,2010.

3. MichaelMiller,CloudComputing:WebbasedApplicationsThatChangetheWay

You Work and Collaborate Online, QuePublishing, 2008.

#### e-Resources& other digital material

### NPTELVIDEOLECTURES

#### **OBJECT ORIENTED SOFTWARE ENGINEERING**

| Course Code                | 20IT4601C | Year         | III   | Semester            | II     |
|----------------------------|-----------|--------------|-------|---------------------|--------|
|                            | PE-2      |              |       |                     |        |
| Course Category            |           | Branch       | IT    | Course Type         | Theory |
| Credits                    | 3         | L-T-P        | 3-0-0 | Prerequisites       | SE     |
| <b>Continuous Internal</b> |           | Semester End |       |                     |        |
| Evaluation :               | 30        | Evaluation:  | 70    | <b>Total Marks:</b> | 100    |

#### (Professional Elective – II)

| Course Outcomes                                                   |                                                                                                                                   |    |  |  |  |  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| Upon Successful completion of course, the student will be able to |                                                                                                                                   |    |  |  |  |  |
| CO1                                                               | Understand the fundamental phases of software development and the<br>Principles underlying Object-Oriented software design.       | L2 |  |  |  |  |
| CO2                                                               | Employ formal methods and different roles played to produce effective software designs as solutions to specific tasks.            | L3 |  |  |  |  |
| CO3                                                               | Develop structured sets of simple user-defined classes using Object-<br>Oriented principles to achieve overall programming goals. | L3 |  |  |  |  |
| CO4                                                               | Develop error identification and testing strategies for code Development.                                                         | L3 |  |  |  |  |
| CO5                                                               | Understand modeling for a given problem for better development of<br>the software product to have a high quality                  | L3 |  |  |  |  |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   |     |     |     |     |     |     |     |     |      |      |      |      | 2    |
| CO2 | 3   |     | 3   |     |     |     |     |     |     |      |      |      |      | 2    |
| CO3 | 3   |     |     |     | 2   |     |     |     |     |      |      |      |      | 2    |
| CO4 | 3   |     |     |     |     | 2   |     |     |     |      |      |      |      | 2    |
| CO5 | 3   |     |     |     |     | 2   |     |     |     | 3    |      |      |      | 2    |

| Unit<br>No | Contents                                                                                                         | Mapped<br>CO |
|------------|------------------------------------------------------------------------------------------------------------------|--------------|
| I          | <b>Software engineering</b> : software related problems, software engineering, concepts, development activities, | CO1          |

|     | <b>Project communications</b> : Project communication, modes, mechanisms<br>And activities.                                                                                                                                                                            |     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| II  | Requirements: Requirements elicitation, concepts, activities and<br>Managing requirements elicitation.Analysis: Analysis overview, concepts, activities and managing analysis                                                                                          | CO2 |
| III | <ul> <li>System design: Design overview, concepts, activities and managing</li> <li>System design.</li> <li>Object design: Object Design Overview, concepts, activities and managing</li> <li>object design</li> </ul>                                                 | CO3 |
| IV  | Rationale management: Rational overview, concepts, activities and<br>Managing rationale<br>Testing: Testing overview, concepts, activities and managing testing.                                                                                                       | CO4 |
| V   | Software configuration management: Configuration management<br>overview, concepts, activities and managing configuration management<br>Project management: project management overview, concepts, activities and<br>managing project management models and activities. | CO5 |

#### Learning Recourses

# **Text Books**

1.Object-oriented Software engineering: Conquering complex and changing systems, Bernd Bruegge and AllenH.Dutoit .Pearson Education Asia.,First edition.

#### References

1.Object–oriented software engineering: Practical software development using UML and Java Timothy C.lethbridge and Robert Langaniere Mcgraw–Hill Higher Education.

#### e-Resources& other digital material

NPTEL VIDEO LECTURES

#### ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS

(Professional Elective – II)

| Course Code                | 20IT4601D | Year         | III   | Semester      | II     |
|----------------------------|-----------|--------------|-------|---------------|--------|
|                            | PE -2     |              |       |               |        |
| Course Category            |           | Branch       | IT    | Course Type   | Theory |
| Credits                    | 3         | L-T-P        | 3-0-0 | Prerequisites | -      |
| <b>Continuous Internal</b> |           | Semester End |       |               |        |
| Evaluation:                | 30        | Evaluation:  | 70    | Total Marks:  | 100    |

|         | Course Outcomes                                             | Blooms<br>Taxonomy<br>Level |
|---------|-------------------------------------------------------------|-----------------------------|
| Upon Sı | accessful completion of course, the student will be able to |                             |
| CO1     | Know the challenges and concepts of AI.                     | L2                          |
| CO2     | Solve problems using heuristics search algorithms           | L3                          |
| CO3     | Transform knowledge into rules.                             | L3                          |
| CO4     | Demonstrate Symbolic reasoning under uncertainty            | L3                          |
| CO5     | Acquainted with expert systems.                             | L3                          |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial,2:Moderate,1:Slight)

|            | PO1 | PO2 | РО<br>3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|------------|-----|-----|---------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1        | 3   | 3   |         |     |     |     |     |     |     |      |      |      | 3    | 3    |
| CO2        | 3   | 3   |         |     |     |     |     |     |     |      |      |      | 3    | 3    |
| CO3        | 3   | 3   |         |     |     |     |     |     |     |      |      |      | 3    | 3    |
| <b>CO4</b> |     | 3   |         |     |     |     | 3   |     |     |      |      |      | 3    | 3    |
| CO5        |     | 3   |         |     |     |     |     |     |     |      |      |      | 3    | 3    |

| Unit<br>No                  | Contents                                                                                                                                                                                                                                                                  | Mapped<br>CO |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Ι                           | What is AI: The AI Problems, What is an AI Techniques, Criteria for<br>Successes? Problems and problem spaces and Search: Problem as a state space<br>search, Production systems, Problem Characteristics, Production system<br>characteristics.                          | CO1          |
| II                          | <b>Heuristic search technique</b> : Generate and test, Hill climbing, Best First search, Problem reduction, Constraint satisfaction, Means ends analysis.                                                                                                                 | CO2          |
| III                         | <b>Knowledge Representation issues</b> : Representations and mappings.<br>Predicate logic: Representing simple facts in logic, Resolution. Representing knowledge using rules: Procedural knowledge Vs Declarative knowledge, Forward Vs Backward reasoning, matching.    | CO3          |
| IV                          | Symbolic reasoning under uncertainty: Introduction to Non monotonic reasoning, Implementation in DFS and BFS.<br>Weak, strong slot and filler structures: Semantic nets, Frames, Conceptual dependency, Scripts.                                                          | CO4          |
| v                           | <b>Game playing</b> : The min-max search procedure, adding alpha-beta cutoffs.<br>Planning: Goal stack planning, Hierarchical planning. Expert Systems:<br>Expert system shells, Knowledge acquisition. Perception and action:<br>Perception, action, Robot architecture. | CO5          |
|                             | Learning Resources                                                                                                                                                                                                                                                        |              |
| <b>Text Boo</b><br>1. Artif | ks<br>icial Intelligence,2 <sup>nd</sup> Edition, E.Rich and K.Knight(TMH).                                                                                                                                                                                               |              |
| Referenc                    | es                                                                                                                                                                                                                                                                        |              |
| 2.Expe                      | ficial Intelligence and Expert Systems–Patters on PHI<br>ert Systems Principles and Programming-Fourth Edn, Giarrantana/Riley, Thomson<br>DLOG Programming for Artificial Intelligence. IvanBratka-Third Edition–Pearson E                                                | ducation.    |
| e-Resour                    | ces& other digital material                                                                                                                                                                                                                                               |              |
| -                           | vw.jntuk-coeerd.in/                                                                                                                                                                                                                                                       |              |
|                             | tel.ac.in/video.php?subjectId=106105079                                                                                                                                                                                                                                   |              |
|                             | tel.iitk.ac.in/courses/Webcourse-<br>/IIT%20Kharagpur/Artificial%20intelligence/New_index1.html                                                                                                                                                                           |              |

#### DATA VISUALIZATION

#### (Professional Elective – II)

| Course Code         | 20IT4601E | Year               | III   | Semester            | II     |
|---------------------|-----------|--------------------|-------|---------------------|--------|
|                     | PE - 2    |                    |       |                     |        |
| Course Category     |           | Branch             | IT    | Course Type         | Theory |
| Credits             | 3         | L-T-P              | 3-0-0 | Prerequisites       |        |
| Continuous Internal |           | Semester End       |       |                     |        |
| Evaluation:         | 30        | <b>Evaluation:</b> | 70    | <b>Total Marks:</b> | 100    |

|         | Course Outcomes                                                                                           | Blooms<br>Taxonomy<br>Level |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|
| Upon Su | pon Successful completion of course, the student will be able to                                          |                             |  |  |  |  |
| CO1     | Understand the key techniques and theory behind data visualization and various Data visualization tools.  | L2                          |  |  |  |  |
| CO2     | Use effectively the various visualization structures (like tables, spatial data, tree and network etc.)   | L3                          |  |  |  |  |
| CO3     | Evaluate information visualization systems and other forms of visual presentation for their effectiveness | L4                          |  |  |  |  |
| CO4     | Design and build data visualization systems                                                               | L4                          |  |  |  |  |

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations(3:Substantial,2:Moderate,1:Slight)

|     |     |     |     |     | ,   | 8 / |     |     |     |      |      |      |      |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    | 3    |
| CO2 |     |     | 3   |     |     |     |     |     |     |      |      |      | 3    | 3    |
| CO3 |     | 3   |     |     |     |     |     |     |     |      |      |      | 3    | 3    |
| CO4 |     |     | 3   |     |     |     |     |     |     |      |      |      | 3    | 3    |

| Syllab     | us                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mapped<br>CO        |
| Ι          | <b>Introducing Visualization and Tableau:</b> Why Data Visualization? What can data Visualization help with? An introduction to Visualization, Positioning of Tableau, Tableau product line, File types in Tableau. Working with single and multiple data sources: Desktop Architecture, Tableau environment, Connect to a file, connect to a server, meta data grid, Joins, custom SQL, Data blending and data extracts                                                     | C01                 |
| II         | <b>Simplifying and sorting your data:</b> Filtering, sorting, groups, Difference between a set and a group Measure Names and Measure Values: Why are measure names and measure values required?                                                                                                                                                                                                                                                                              | CO1,<br>CO3         |
| III        | <b>Table Calculations:</b> What is a table calculation? Running total of sales, Profitability as percent of total, Moving average, rank, LOD(level of detail), percentile, year over year growth Customizing Data: Number Functions, string functions, logical functions, date functions, aggregate functions, table calculation functions                                                                                                                                   | CO1,<br>CO2,<br>CO3 |
| IV         | <b>Statistics:</b> Why use statistics? What is statistics? Descriptive statistics, inferential statistics, few terms in statistics, Why do we use inferential statistics? Why do we use descriptive statistics? Five magic number summary, spread of data, Box plot, statistical tools in Tableau, trend lines and forecasting Chart Forms: Pie chart, tree maps, Heat Map, Highlight Table, Line Graph, Stacked Bar Chart, Gantt Chart, Scatter Plot, Histogram, Word Cloud | CO1,<br>CO2,<br>CO4 |
| V          | Advanced visualization: waterfall charts, bump charts, Bullet Graph Dashboard and stories: Why use a dashboard? What is a dashboard? Creating a dashboard, dashboard actions, creating a story, what is a story?                                                                                                                                                                                                                                                             | CO1,<br>CO2,<br>CO4 |

**Text Books** 

1. Seema Acharya, Subhashini Chellappan, Pro Tableau- A step-by-step guide, Apress 2017, Ist Edition

References

1. Andy Kirk, Data Visualization: a successful design process, Paperback , 2012

#### e-Resources& other digital material

[1] Prof. Han-Wei Shen Introduction to Data Visualization, http://web.cse.ohiostate.edu/~shen.94/5544/
[2]University of Illinois at Urbana-Champaign https://www.coursera.org/learn/datavisualization

# INTRODUCTION TO DATA MINING

| (Open Elective | - II) |
|----------------|-------|
|----------------|-------|

| Course Code         | 20IT2601A | Year         | III     | Semester      | Π      |
|---------------------|-----------|--------------|---------|---------------|--------|
|                     | OE - 2    |              | Offered |               |        |
| Course Category     |           | Branch       | by IT   | Course Type   | Theory |
| Credits             | 3         | L-T-P        | 3-0-0   | Prerequisites |        |
| Continuous Internal |           | Semester End |         |               |        |
| Evaluation:         | 30        | Evaluation:  | 70      | Total Marks:  | 100    |

|         | Course Outcomes                                                                                                          |    |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| Upon Su | Upon Successful completion of course, the student will be able to                                                        |    |  |  |  |  |  |
| CO1     | Understand the basic principles, process and techniques of data mining.                                                  | L2 |  |  |  |  |  |
| CO2     | Use pre-processing techniques on different datasets.                                                                     | L3 |  |  |  |  |  |
| CO3     | Apply techniques and algorithms for Mining frequent patterns, classifying and clustering data.                           | L3 |  |  |  |  |  |
| CO4     | Analyze the data for mining frequent patterns, associations, classification<br>and outlier detection in a real scenario. | L4 |  |  |  |  |  |

|     | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations(3:Substantial,2:Moderate,1:Slight) |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | PO1                                                                                                                                   | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 3                                                                                                                                     |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO2 | 3                                                                                                                                     |     |     | 3   |     |     |     |     |     |      |      |      | 3    |      |
| CO3 | 3                                                                                                                                     |     |     | 3   |     |     |     |     |     |      |      |      | 3    | 3    |
| CO4 | 3                                                                                                                                     | 3   |     |     |     |     |     |     |     |      |      |      | 3    | 3    |

|            | Syllabus                                                                                                                                              |              |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|
| Unit<br>No | Contents                                                                                                                                              | Mapped<br>CO |  |  |  |  |  |
|            | Introduction: What is data mining? What kinds of data can be mined? What kinds of                                                                     |              |  |  |  |  |  |
| Ι          | pattern can be mined? Which technologies are used? Which kinds of applications are                                                                    | CO1          |  |  |  |  |  |
|            | targeted?, Major Issues in Data Mining.                                                                                                               |              |  |  |  |  |  |
|            | Getting to Know Your Data: Data objects and Attribute Types, Basic statistical                                                                        |              |  |  |  |  |  |
|            | descriptions of data, Measuring Data Similarity and Dissimilarity.                                                                                    |              |  |  |  |  |  |
| II         | Data Preprocessing: An overview, Data Cleaning, Data integration, Data Reduction, Data                                                                | CO2          |  |  |  |  |  |
|            | Transformation and Discretization.                                                                                                                    |              |  |  |  |  |  |
|            | Mining frequent patterns, Associations and Correlations- Basic Concepts, Frequent                                                                     | CO1          |  |  |  |  |  |
| III        | itemset Mining methods- Apriori Algorithm, Generating association rules from frequent                                                                 | CO3          |  |  |  |  |  |
|            | itemsets, improving the efficiency of Apriori.                                                                                                        | CO4          |  |  |  |  |  |
|            | Classification: Basic Concepts – Basic concepts, Decision Tree Induction, Rule Based                                                                  | CO1          |  |  |  |  |  |
| IV         | Classification, Model evaluation and Selection.                                                                                                       | CO3          |  |  |  |  |  |
|            |                                                                                                                                                       | CO4          |  |  |  |  |  |
|            | Cluster Analysis: Basic Concepts and Methods- Cluster Analysis, partitioning methods,                                                                 | CO1          |  |  |  |  |  |
| v          | Hierarchical Methods and evaluation of Clustering                                                                                                     |              |  |  |  |  |  |
|            |                                                                                                                                                       | CO4          |  |  |  |  |  |
|            |                                                                                                                                                       | I            |  |  |  |  |  |
|            | Learning Resources                                                                                                                                    |              |  |  |  |  |  |
|            | Books                                                                                                                                                 |              |  |  |  |  |  |
|            | wei Han and Micheline Kamber, "Data Mining Concepts and Techniques" Third Edition, Else                                                               | vier, 2012.  |  |  |  |  |  |
| Refer      | e <b>nces</b><br>chael Steinbach, Vipin Kumar, Pang-Ning Tan, Introduction to data mining, First Edition, Ad                                          | dison        |  |  |  |  |  |
|            | ey, 2006                                                                                                                                              | uison        |  |  |  |  |  |
| 2. Ma      | rrgaret H. Dunham, Data Mining Introductory and Advanced Topics, 1/e, Pearson Publishers,                                                             | 2006         |  |  |  |  |  |
|            | ources& other digital material                                                                                                                        |              |  |  |  |  |  |
|            | ps://www.coursera.org/lecture/code-free-data-science/introduction-to-data-mining-hbb2V<br>s://onlinecourses.swayam2.ac.in/cec19_cs01/preview material |              |  |  |  |  |  |

# ECOLOGY AND ENVIRONMENT

# (Open Elective - II)

| Course Code                        | 20CE2601A | Year                           | III                       | Semester                     | II     |
|------------------------------------|-----------|--------------------------------|---------------------------|------------------------------|--------|
| Course Category<br>Credits         | OE - 2    | Branch<br>L-T-P                | Offered by<br>CE<br>3-0-0 | Course Type<br>Prerequisites | Theory |
| Continuous Internal<br>Evaluation: | 30        | Semester<br>End<br>Evaluation: | 70                        | Total Marks:                 | 100    |

|            | Course Outcomes                                                                                   |    |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------|----|--|--|--|--|
| Upon Su    | accessful completion of course, the student will be able to                                       |    |  |  |  |  |
| CO1        | <b>Integrate</b> information related to structure and functions of ecological units.              | L3 |  |  |  |  |
| CO2        | Analyze and communicate the concepts of environment.                                              | L4 |  |  |  |  |
| CO3        | <b>Analyze</b> various environmental components and demonstrate using technology.                 | L4 |  |  |  |  |
| <b>CO4</b> | Analyze and evaluate policies and frame works for welfare of environment & social sustainability. | L4 |  |  |  |  |
| CO5        | Apply system concepts for bio-monitoring environmental issues.                                    | L3 |  |  |  |  |

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations(3:Substantial,2:Moderate,1:Slight)

|            | 1   | ``  |     | /   | ,   | 8 / |     |     |     | 1    | r    |      |      |      |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|            | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1        | 2   |     |     |     |     |     | 2   |     |     |      |      | 2    |      | 2    |
| CO2        | 2   |     |     |     |     | 2   | 2   |     |     |      |      |      |      | 2    |
| CO3        | 2   |     |     |     |     |     | 2   | 2   |     |      |      |      |      | 2    |
| <b>CO4</b> | 2   |     |     |     |     |     | 2   |     |     |      |      |      |      | 2    |
| CO5        | 2   |     |     |     |     | 2   | 2   |     |     |      |      | 2    |      | 2    |

|              | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No   | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mapped<br>CO |
| Ι            | <b>ECOLOGY:</b><br>Introduction – Biosphere, scope, organization and significance. Ecosystem concept- structure &function, Factors affecting ecosystem. Evolution: Natural Selection and its ecological significance. Population parameters- growth regulation, relationships between organisms.                                                                                                                                                                                                                  | CO1<br>CO2   |
| п            | NATURAL RESOURCES & MANAGEMENT:<br>Resource- Definition, category, concept and scarcity of resource. Forests & wild life- Global<br>productivity & human activities (Exploitation). Land Resource- use pattern in India, soil &<br>soil Conservation. Water resource- potentials and use with special reference to India, Concept<br>of Integrated Water Resources Management (IWRM). Remote Sensing and GIS: Applications<br>in conserving resources.                                                            | CO1<br>CO2   |
| III          | <b>ENVIRONMENTAL GEOSCIENCES &amp; COMPUTER APPLICATIONS</b> : Structure and composition of atmosphere, hydrosphere, lithosphere and biosphere. Scale of meteorology, pressure, temperature, atmospheric stability. Graphical representation of Data, creating Database tables.                                                                                                                                                                                                                                   | CO3          |
| IV           | <b>ENVIRONMENTAL POLICY, EDUCATION AND ETHICS:</b><br>Important National policies: National environmental policy, 2006 & National agricultural policy etc. Legislation: Environment Protection Act, 1986.Environmental education: Goals and objectives of environmental education. Environment awareness and action: Role of NGOs in environmental awareness. Environmental movements in India- silent valley movement, Chipko movement, Narmada BachaoAndolan, Environmental movements in the West- Green Peace. | CO4          |
| V            | <b>ENVIRONMENTAL MONITORING AND MANAGEMENT:</b><br>Environmental impact analysis and EMP; Analytical approaches and instrumentation in environmental monitoring; Bio-monitoring of air pollution - plants as bio monitors; Bio monitoring of running water pollution. (Software's)Organic Farming and its ecological significance.                                                                                                                                                                                | CO4<br>CO5   |
|              | Learning Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Text         | Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| Com<br>2) Sl | ingh, J.S; Singh, S.P. and Gupta S.R. (2014) Ecology, Environmental Science and Conservation.<br>pany Pvt. Ltd. New Delhi.<br>harma, P.D. (2011) Ecology and Environment (11 <sup>th</sup> edition) Rastogi Publication, Meerut.<br>harucha, E. (2013) Text Book of Environmental Studies (2nd edition.). Universities Press, Hyder                                                                                                                                                                               |              |
|              | rences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| ) Aga        | bel, B.J. and Wright, R.T. (1995) Environmental Science. Prentice Hall.<br>Irwal, S.K. (1991) Pollution Ecology. Himanshu Publication, Udaipur.<br>.S.Rana, Essentials of Ecology and Environmental Science, Prentice Hall India, New Delhi, 201                                                                                                                                                                                                                                                                  | 1            |
| e-Res        | sources& other digital material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|              | /nptel.ac.in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |

## MATLAB PROGRAMMING

(Open Elective – II)

\_\_\_

| Course             | 20EC2601A | Year               | III     | Semester            | II     |
|--------------------|-----------|--------------------|---------|---------------------|--------|
| Code               |           |                    |         |                     |        |
| Course             | OE - II   | Branch             | Offered | Course Type         | Theory |
| Category           |           |                    | by ECE  |                     |        |
| Credits            | 3         | L-T-P              | 3-0-0   | Prerequisites       | Nil    |
| Continuous         | 30        | Semester End       | 70      | <b>Total Marks:</b> | 100    |
| Internal           |           | <b>Evaluation:</b> |         |                     |        |
| <b>Evaluation:</b> |           |                    |         |                     |        |

|      | Course Outcomes                                                                                     |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Upon | Upon successful completion of the course, the student will be able to                               |  |  |  |  |  |  |
| CO1  | Outline the basic concepts of MATLAB. (L2)                                                          |  |  |  |  |  |  |
| CO2  | Develop programs for scientific and mathematical problems. (L3)                                     |  |  |  |  |  |  |
| CO3  | Analyze an engineering system/Problem through graphical representation and numerical analysis. (L4) |  |  |  |  |  |  |
| CO4  | Build optimized code for various applications in Engineering and Technology.(L3)                    |  |  |  |  |  |  |

#### ---

#### Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation \* - Average value indicates course correlation strength with mapped PO РО PO PO PSO PO9 **PO1** PO2 PO3 **PO4** PO5 **PO7 PO8** PSO1 COs **PO6** 10 11 12 2 2 1 2 **CO1** 2 2 **CO2** 3 3 3 2 CO3 2 2 2 **CO4** 3 2 3 3 Average\* 3 2 2 2 2

| Syllabus    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
| Unit<br>No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mapped<br>CO        |  |  |  |
| Ι           | <b>Introduction:</b> Starting MATLAB, Working in command window, Arithmetic operations, Display formats, Elementary Math Built-in functions, Defining scalar variables, useful commands for managing variables, Script files, Examples of MATLAB applications                                                                                                                                                                                                                                                                                                                                                  | CO1,CO2             |  |  |  |
| II          | <b>Creating arrays and Mathematical operations with arrays:</b> Creating 1-<br>dimensional and 2- dimensional arrays, The Transpose operator, Array<br>addressing, using a colon: in addressing arrays, Adding elements to existing<br>variables, Deleting elements, Built in functions for handling arrays, Strings and<br>strings as variables, Addition and Subtraction, Array Multiplication and<br>Division, Element-by-Element operations, using arrays in MATLAB built-in<br>math functions, Built in functions for analysing arrays, Generation of Random<br>Numbers, Examples of MATLAB applications. | CO1,CO2,<br>CO4     |  |  |  |
| ш           | <b>Two Dimensional and Three Dimensional Plots:</b> plot, fplot commands,<br>Formatting a plot, plots with logarithmic axes, error bars, special graphics,<br>Histograms, Polar plots, putting multiple plots on the same page, Multiple<br>figure windows, Examples, Line plots, Mesh and surface plots, plots with<br>special graphics, The view command, Examples of MATLAB applications                                                                                                                                                                                                                    | CO1,CO2,<br>CO3,CO4 |  |  |  |
| IV          | <b>Programming in MATLAB:</b> Relational and Logical operators, conditional statements, The switch-case statement, Loops, Nested Loops and Nested conditional statements, The break and continue commands, creating a function file, structure of a function file, Local and Global variables, saving a function file, using a User-defined function, Examples of simple User-defined functions, comparison between script files and function files.                                                                                                                                                           | CO1,CO2,<br>CO4     |  |  |  |
| v           | <b>Polynomial, Curve-fitting, Interpolation, Numerical Analysis</b> : Polynomials, curve fitting, Interpolation, The Basic fitting interface, Examples, solving equation of one variable, Finding minimum or maximum of a function, Numerical integration, ordinary differential equations.                                                                                                                                                                                                                                                                                                                    | CO2,CO3,<br>CO4     |  |  |  |

**Text Books** 1. MATLAB: An Introduction with applications – Amos Gilat, Wiley India Pvt. Ltd, 4th Ed., 2012. **Reference Books** 

1. Getting started with MATLAB – Rudra Pratap, Oxford University Press, 2010

2. MATLAB and SIMULINK for Engineers – Agam Kumar Tyagi, Oxford University Press, 2012.

# TV ENGINEERING

| Course             | 20EC2601B | Year               | III        | Semester   | II     |
|--------------------|-----------|--------------------|------------|------------|--------|
| Code               |           |                    |            |            |        |
| Course             | OE - II   | Branch             | Offered by | Course     | Theory |
| Category           |           |                    | ECE        | Туре       |        |
| Credits            | 3         | L-T-P              | 3-0-0      | Prerequisi |        |
|                    |           |                    |            | tes        |        |
| Continuous         | 30        | Semester           | 70         | Total      | 100    |
| Internal           |           | End                |            | Marks:     |        |
| <b>Evaluation:</b> |           | <b>Evaluation:</b> |            |            |        |

----

| Course | Outcomes |
|--------|----------|
| Course | oucomo   |

Upon successful completion of the course, the student will be able to

**CO1** Compare Digital TV transmission standards and performance parameters (L2)

**CO2** Analyse channel coding, errors, interferences and modulation techniques for Digital TV(L4)

**CO3** Make use of RF amplifiers, modules and systems for Digital TV (L3)

**CO4** Identify Transmission lines for Digital TV(L3)

**CO5** Test for a Digital TV Transmitter(L4)

# Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

\* - Average value indicates course correlation strength with mapped PO

| * - Average | * - Average value indicates course correlation strength with mapped PO |     |     |     |     |     |            |     |     |      |      |      |      |      |
|-------------|------------------------------------------------------------------------|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|
| COs         | PO1                                                                    | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1         | 2                                                                      | -   | -   | -   | 2   | 1   | -          | -   | -   | -    | -    | -    | -    |      |
| CO2         | -                                                                      | 3   | -   | -   | 2   | -   | -          | -   | -   | -    | -    | -    | -    | 2    |
| CO3         | -                                                                      | 2   | -   | -   | 3   | -   | -          | -   | -   | -    | -    | -    | -    |      |
| CO4         | -                                                                      | -   | -   | -   | 2   | 2   | -          | -   | -   | -    | -    | -    | -    | 3    |
| CO5         | -                                                                      | 2   | -   | -   | 2   | -   | 1          | -   | -   | -    | -    | -    | -    |      |
| Average*    | 2                                                                      | 2   | -   | -   | 2   | 2   | 1          | -   | -   | -    | -    | -    | -    | 3    |

---

|             | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mapped<br>CO |
| I           | <b>Digital Television Transmission Standards</b> : ATSC terrestrial transmission<br>standard, vestigial sideband modulation, DVB-T transmission standard, ISDB-T<br>transmission standard, channel allocations, antenna height and power, MPEG-2<br>Performance Objectives for Digital Television: System noise, external noise<br>sources, transmission errors, error vector magnitude, eye pattern, interference,<br>cochannel interference, adjacent channel interference, analog to digital TV,<br>transmitter requirements | CO1,<br>CO2  |
| II          | <b>Channel Coding and Modulation for Digital Television:</b> Data synchronization, randomization/scrambling, forward error correction, interleaving, inner code, frame sync insertion, quadrature modulation, 8 VSB, bandwidth, error rate, COFDM, flexibility, bandwidth                                                                                                                                                                                                                                                       | CO1,CO2      |
| III         | <b>Transmitters for Digital Television</b> : Precorrection and equalization, up conversion, precise frequency control, RF amplifiers, solid-state transmitters, RF amplifier modules, power supplies, cooling, automatic gain or level control, ac distribution, transmitter control, tube transmitters, performance quality.                                                                                                                                                                                                   | CO1,CO3      |
| IV          | <b>Transmission Line for Digital Television:</b> Fundamental parameters, efficiency, effect of VSWR, system AERP, rigid coaxial transmission lines, dissipation, attenuation, and power handling, higher-order modes, peak power rating, frequency response, standard lengths, corrugated coaxial cables, wind load, waveguide, bandwidth, waveguide attenuation, power rating, frequency response, size trade-offs, waveguide or coax pressurization                                                                           | CO1,CO4      |
| V           | <b>Test and Measurement for Digital Television:</b> Power measurements, average power measurement, calorimetry, power meters, peak power measurement, measurement uncertainty, testing digital television transmitters.                                                                                                                                                                                                                                                                                                         | CO1,CO5      |

**Text Books** 

1. Gerald w. Collins, Fundamentals of Digital Television Transmission, John Wiley, 2001.

#### **Reference Books**

1 R. R. Gulati, Modern Television Practice, Principles, Technology and servicing, 2/e, New Age International Publishers, 2001.

2 John Arnold, Michael Frater, Mark Pickering, Digital Television Technology and Standards, John Wiley, 2007.

#### e- Resources & other digital material

1.<u>https://www.youtube.com/watch?v=\_nGnRvyHMEI&list=RDCMUCdlnqMpRrMcClK2fT6z8EEw&index=2</u> 2.https://www.rfwireless-world.com/Tutorials/digital-television-DTV-basics.html

# ENERGY MANAGEMENT

| Course<br>Code                        | 20EE2601A | Year                           | III               | Semester        | Π                                                       |
|---------------------------------------|-----------|--------------------------------|-------------------|-----------------|---------------------------------------------------------|
| Course<br>Category                    | OE-II     |                                | Offered by<br>EEE | Course<br>Type  | Theory                                                  |
| Credits                               | 3         | L-T-P                          | 3-0-0             | Prerequisites   | Basics of<br>Electrical &<br>Electronics<br>Engineering |
| Continuous<br>Internal<br>Evaluation: | 30        | Semester<br>End<br>Evaluation: | 70                | Total<br>Marks: | 100                                                     |

|      | Course Outcomes                                                                                                                                                           |  |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Upon | Upon successful completion of the course, the student will be able to                                                                                                     |  |  |  |  |  |  |
| CO1  | <b>Understand</b> the fundamentals of energy scenario, energy management, power factor, lighting and energy instrument, electric energy and economic aspects. <b>(L2)</b> |  |  |  |  |  |  |
| CO2  | <b>Apply</b> the knowledge of energy scenario and energy management in electrical energy. <b>(L3)</b>                                                                     |  |  |  |  |  |  |
| CO3  | <b>Apply the</b> knowledge of Power Factor, Lighting and Energy Instruments use in electrical energy systems. (L3)                                                        |  |  |  |  |  |  |
| CO4  | Analyze the methods to improve efficiency of electrical energy systems. (L4)                                                                                              |  |  |  |  |  |  |
| CO5  | Analyze the economic aspects for energy conservation. (L4)                                                                                                                |  |  |  |  |  |  |
| CO6  | <b>Ability</b> to apply the various laws of energy management tools to measure the <b>basic</b> parameters and <b>submit a report.</b>                                    |  |  |  |  |  |  |

|                                                     | Contribution of Course Outcomes towards achievement of Program Outcomes & |     |     |     |     |     |     |     |     |      |      |      |      |      |  |
|-----------------------------------------------------|---------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|--|
| Strength of correlations (3:High, 2: Medium, 1:Low) |                                                                           |     |     |     |     |     |     |     |     |      |      |      |      |      |  |
|                                                     | PO1                                                                       | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |  |
| CO1                                                 |                                                                           |     |     |     |     |     |     |     |     |      |      |      |      |      |  |
| CO2                                                 | 3                                                                         |     |     |     |     | 2   | 2   |     |     |      |      |      |      |      |  |
| CO3                                                 | 3                                                                         |     | 2   |     | 2   |     |     |     |     |      |      |      |      |      |  |
| CO4                                                 |                                                                           | 3   |     |     |     |     |     |     |     |      |      | 2    |      |      |  |
| CO5                                                 |                                                                           | 3   |     | 2   |     |     |     |     |     |      | 2    |      |      |      |  |
| CO6                                                 |                                                                           |     |     |     |     |     |     |     | 3   | 3    |      | 2    |      |      |  |

|             | SYLLABUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Unit<br>No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mapped<br>CO        |
|             | <b>Energy Scenario</b><br>Commercial and non-commercial energy, primary and secondary energy resources, global primary energy reserves, commercial energy production, final energy consumption, energy needs of growing economy, long term energy scenario, energy pricing, sector wise energy consumption in India, energy and environment.                                                                                                                                  | CO1,CO2<br>CO6      |
|             | <b>Energy Management</b><br>Introduction to energy management and objectives, principles of energy<br>management, organizational structure, energy management program, energy policy,<br>energy planning, controlling, ownership, reporting, summary.                                                                                                                                                                                                                         | CO1,CO2<br>CO6      |
|             | <b>Power Factor Improvement, Lighting and Energy Instruments</b><br>Power factor –causes of low PF, effects of low PF, advantages of PF improvement,<br>PF with non-linear loads, Lighting fundamentals, process to improve lighting<br>efficiency– List of Instruments for energy audit- wattmeter, data loggers,<br>thermocouples, pyrometers, lux meters, tongue testers (working principle and<br>measurement).                                                           | CO1,<br>CO3,<br>CO6 |
|             | <b>Electric Energy Management</b><br>Introduction, power supply, effects of unbalanced voltages on the performance of<br>motors, electric motor operating loads, determining electric motor operating loads,<br>power meter, slip measurement, electric motor efficiency, sensitivity ofload to motor<br>rpm, theoretical power consumption, motor efficiency management.<br><b>Energy efficient transformers</b> : Introduction, transformer loading/efficiency<br>analysis. | ,                   |
|             | <b>Economic Aspects and Analysis</b><br>Economics analysis introduction, objectives, general characteristics of capital<br>investment, depreciation methods-straight line, unit production and double declining,<br>time value of money-simple and compound interests, internal rate of return, net<br>present value method, calculation of simple payback method.                                                                                                            | CO1,CO5,<br>O6      |

| Learning | Resources |
|----------|-----------|

| Learning Resources                                                                              |                  |
|-------------------------------------------------------------------------------------------------|------------------|
| Text Books                                                                                      |                  |
| [1] Wayne C.Turner, —Energy management Hand book, John Wiley and son, 8 <sup>th</sup> Edit      | tion             |
| 2012.                                                                                           |                  |
| [2] S.C. Tripathy, Electric — Energy Utilization and Conservation, Tata McGraw Hill, 19         | <del>9</del> 91. |
| [3] Guide books for National Certification Examination for Energy Manager / Energy              |                  |
| Auditors Book-1, General Aspects (available online).                                            |                  |
| Reference Books                                                                                 |                  |
| [1] John. C. Andres, Energy Efficient Electric Motors, Marcel Dekker Inc. Ltd – 3 <sup>rd</sup> |                  |
| Edition, 2005.                                                                                  |                  |
| [2] Paul W.O. Callaghan, —Energy Management, McGraw hill Book Company,1 <sup>st</sup>           |                  |
| Edition, 2005.                                                                                  |                  |
| Web Links                                                                                       |                  |
| 1. https://www.routledgehandbooks.com/doi/10.1201/9781315374178-4 (Economic                     |                  |
| Aspects)                                                                                        |                  |
| 2. https://www.yourelectricalguide.com/2019/05/lux-meter-working-principle.html                 |                  |
| 3. <u>https://electricalfundablog.com/clamp-meter-tong-tester-types-operating-principle-ho</u>  | <u>W-</u>        |
| to-operate/                                                                                     |                  |
| 4. https://www.elprocus.com/what-is-pyrometer-working-principle-and-its-types/                  |                  |
| 5. <u>http://www.dspmuranchi.ac.in/pdf/Blog/qqqqgmailcomthemocouple1.pdf</u>                    |                  |
| 6. https://www.profitbooks.net/what-is-depreciation/                                            |                  |

# VALUE ENGINEERING

| Course<br>Code                        | 20ME2601A | Year                           | III              | Semester        | П      |
|---------------------------------------|-----------|--------------------------------|------------------|-----------------|--------|
| Course<br>Category                    | OE-II     | Branch                         | Offered by<br>ME | Course<br>Type  | Theory |
| Credits                               | 3         | L-T-P                          | 3-0-0            | Prerequisites   | Nil    |
| Continuous<br>Internal<br>Evaluation: | 30        | Semester<br>End<br>Evaluation: | 70               | Total<br>Marks: | 100    |

|      | Course Outcomes                                                                              |  |  |  |  |  |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Upon | Upon successful completion of the course, the student will be able to                        |  |  |  |  |  |  |  |  |  |  |  |
| CO1  | Understand the basic concepts, techniques and applications of value engineering(L2)          |  |  |  |  |  |  |  |  |  |  |  |
| CO2  | Describe job plan of value engineering.(L2)                                                  |  |  |  |  |  |  |  |  |  |  |  |
| CO3  | Illustrate different value engineering techniques and versatility of value engineering. (L3) |  |  |  |  |  |  |  |  |  |  |  |
| CO4  | Illustrate the efforts of value engineering team during the process of value engineering(L3) |  |  |  |  |  |  |  |  |  |  |  |

|     | Contribution of Course Outcomes towards achievement of Program Outcomes &<br>Strength of correlations (3:High, 2: Medium, 1:Low) |   |   |  |  |   |  |  |   |  |   |  |  |   |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------|---|---|--|--|---|--|--|---|--|---|--|--|---|--|
|     | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2                                                                     |   |   |  |  |   |  |  |   |  |   |  |  |   |  |
| CO1 | 1                                                                                                                                | 2 | 2 |  |  | 3 |  |  | 3 |  | 3 |  |  | 3 |  |
| CO2 | 1                                                                                                                                | 2 | 2 |  |  | 3 |  |  | 3 |  | 3 |  |  | 3 |  |
| CO3 | 1                                                                                                                                | 2 | 2 |  |  | 3 |  |  | 3 |  | 3 |  |  | 3 |  |
| CO4 | 1                                                                                                                                | 2 | 2 |  |  | 3 |  |  | 3 |  | 3 |  |  | 3 |  |

|      | SYLLABUS                                                                                                                                                                                                                                                                                                                                                |        |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Unit | Contents                                                                                                                                                                                                                                                                                                                                                | Mapped |
| No.  |                                                                                                                                                                                                                                                                                                                                                         | CO     |
|      | <b>Introduction</b> : Value engineering (VE) concepts, advantages, applications, problem recognition, and role in productivity, criteria for comparison, element of choice.<br><b>Organization</b> : Level of value engineering in the organization, size and skill of VE staff, small plant, VE activity, unique and quantitative evaluation of ideas. | CO1    |
|      | Value engineering job plan: Introduction, orientation, information phase, speculation phase, analysis phase.<br>Selection and Evaluation of value engineering Projects, Project selection, methods selection, value standards, application of value engineering methodology.                                                                            |        |

|    | <ul> <li>Value engineering techniques: Selecting products and operation for value engineering action, value engineering programmes, determining and evaluating function(s) assigning rupee equivalents, developing alternate means to required functions,</li> <li>Decision making for optimum alternative, use of decision matrix, queuing theory and Monte Carlo method make or buy, measuring profits, reporting results, Follow up, Use of advanced technique like Function Analysis System.</li> </ul> | CO1,<br>CO3 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| IV | <b>Versatility of value engineering</b> : Value engineering operation in maintenance and repair activities, value engineering in non-hardware projects. <b>Initiating a value engineering programme</b> : Introduction, training plan, career development for value engineering specialties.                                                                                                                                                                                                                | CO1,        |
| V  | Value engineering level of effort: Value engineering team, co-coordinator, designer, different services, definitions, construction management contracts, value engineering case studies.                                                                                                                                                                                                                                                                                                                    | CO1,<br>CO4 |

#### **Text Books**

1. Anil Kumar Mukhopadhyaya, "Value Engineering: Concepts Techniques and applications", SAGE Publications 2010

#### **Reference Books**

- Alphonse Dell'Isola, "Value Engineering: Practical Applications for Design, Construction, Maintenance & Operations", R S Means Co., 1997.
- 2. Richard Park, "Value Engineering: A Plan for Invention", St. Lucie Press, 1999.
- Del L. Younker, "Value Engineering analysis and methodology", Marcel Dekker Inc, New York, 2004.
- Miles, L.D., "Techniques of Value Analysis and Engineering", McGraw Hill, second Edition, 1989.
- 5. Khanna, O.P., "Industrial Engineering and Management", Dhanpat Rai & Sons, 1993.
- Anil Kumar Mukhopadhyaya, "Value Engineering Mastermind: From concept toValue Engineering Certification", SAGE Publications, 2003

# HUMAN FACTORS IN ENGINEERING

| Course Code                          | 20ME2601B | Year                       | III              | Semester      | II     |
|--------------------------------------|-----------|----------------------------|------------------|---------------|--------|
| Course Category                      | OE-II     | Branch                     | Offered<br>by ME | Course Type   | Theory |
| Credits                              | 3         | L-T-P                      | 3-0-0            | Prerequisites | -      |
| Continuous<br>Internal<br>Evaluation | 30        | Semester End<br>Evaluation | 70               | Total Marks   | 100    |

|      | Course Outcomes                                                                                                               | Blooms   |
|------|-------------------------------------------------------------------------------------------------------------------------------|----------|
|      |                                                                                                                               | Taxonomy |
|      |                                                                                                                               | Level    |
| Upon | Successful completion of course, the student will be able to                                                                  |          |
| C01  | Understand the fundamentals of Human factors, Physical work,                                                                  |          |
|      | Anthropometry, Ergonomics, Machine controls, Seating design, Colour -                                                         | L2       |
|      | Light, Temperature - Humidity –Illuminations and Measurement of sound.                                                        |          |
| CO2  | Identify the role of Anthropometry and Ergonomics in product design.                                                          | L3       |
| CO3  | Choose the effective seating design and Machine controls for improvement                                                      | L3       |
|      | of human workplace.                                                                                                           | L3       |
| CO4  | Represent the importance of colour and light, Temperature - Humidity – Illumination, Measurement of sound in human workplace. | L3       |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High, M: Medium, L:Low)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   |     | 2   |     |     | 3   |     |     | 1   |      |      | 1    | 3    | 1    |
| CO2 | 1   |     | 2   |     |     | 3   |     |     | 1   |      |      | 1    | 3    | 1    |
| CO3 | 1   |     | 2   |     |     | 3   |     |     | 1   |      |      | 1    | 3    | 1    |
| CO4 | 1   |     | 2   |     |     | 3   |     |     | 1   |      |      | 1    | 3    | 1    |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mapped<br>CO |
| Ι          | <ul> <li>Fundamentals of Human Factors Engineering: Human Biological, Ergonomic and psychological capabilities and limitations, Concepts of human factors engineering and Ergonomics, Man-Machine system and Design philosophy.</li> <li>Physical work and energy expenditure: Manual lifting, Work posture, Repetitive motion, Provision of energy for muscular work, Heat stress, Role of oxygen physical exertion, Measurement of energy expenditure, Respiration, Pulse rate and blood pressure during physical work, Physical work capacity and its evaluation.</li> </ul> | CO1          |
| Ш          | Anthropometry: Physical dimensions of the human body as a working machine, Motion size relationships, Static and dynamic anthropometry, Anthropometric design principles, Using anthropometric measures for industrial design.<br>Ergonomics and product design: Ergonomics in automated systems, Expert systems for ergonomic design, Anthropometric data and its application in ergonomic design, Limitations of anthropometric data, Use of computerized database.                                                                                                           | CO1, CO2     |
| ш          | Machine controls: Improvement of human work place through controls,<br>Displays and Controls, Shapes and sizes of various controls and displays,<br>Multiple display and control situations, Design of major controls in<br>automobiles and machine tools, Principles of hand tool design.<br>Work place and seating design: Design of office furniture, Redesign of<br>instruments, Work process: Duration of rest periods, Design of visual displays,<br>Design for shift work.                                                                                               | CO1, CO      |
| IV         | Color and light: Color and the eye, Color consistency, Color terms, Reactions to color and color continuation, Color on engineering equipments.<br>Temperature-Humidity-Illumination and Contrast: Use of Photometers, Recommended illumination levels, the ageing eye, Use of indirect (Reflected) lighting, Cost efficiency of illumination. Special purpose lighting for illumination and quality control.                                                                                                                                                                   | CO1<br>CO4   |
| V          | <b>Measurement of sound</b> : Noise exposure and hearing loss, Hearing protectors,<br>Analysis and reduction of noise, Effects of noise, Performance annoyance of<br>noise and interface with communication, Sources of vibration and performance<br>effect of vibration.                                                                                                                                                                                                                                                                                                       | CO1<br>CO4   |

#### **Text Books**

1. .M. S. Sanders and E. J. McCormick, Human Factors in Engineering Design, VII Edition, McGraw Hill International, 1993.

### **Reference books**

- P. V. Karpovich and W. E. Sinning, Physiology of Muscular Activity", VII Edition, Saunders (W.B.) Co Ltd., 1971.
- 2. Applied Ergonomics Handbook, I.P.C. Science and Technology Press Limited, 1974.
- 3. M. Helander, A Guide to the Ergonomics of Manufacturing, II Edition, CRC Press, 1997.
- 4. K. H. E. Kroemer, H. B. Kroemer, K. E. Kroemer Elbert, Ergonomics: How to design for ease and efficiency, II Edition, Pearson Publications, 2001.

# **INTRODUCTION TO DATA STRUCTURES**

| Course Code                | 20CS2601A | Year                        | III               | Semester      | II     |
|----------------------------|-----------|-----------------------------|-------------------|---------------|--------|
| Course<br>Category         | OE-2      | Branch                      | Other<br>Branches | Course Type   | Theory |
| Credits                    | 3         | L-T-P                       | 3-0-0             | Prerequisites | -      |
| Continuous<br>Evaluation : | 30        | Semester End<br>Evaluation: | 70                | Total Marks:  | 100    |

| Course | Course Outcomes                                                         |    |  |  |  |  |
|--------|-------------------------------------------------------------------------|----|--|--|--|--|
| Upon s | Upon successful completion of the course, the student will be able to   |    |  |  |  |  |
| CO1    | Understand the basic concepts of data structures.                       | L2 |  |  |  |  |
| CO2    | CO2Apply suitable Linear Data Structures to solve problems.L3           |    |  |  |  |  |
| CO3    | Apply suitable Non Linear data structures to solve problems.            | L3 |  |  |  |  |
| CO4    | Analyze the problem and develop solution using suitable datastructures. | L4 |  |  |  |  |

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO2 | 3   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO3 | 3   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO4 |     | 3   |     |     |     |     |     |     | 3   | 3    |      |      |      |      |

|        | <b>Course Content</b>                                                                                                                                                                                                                                                                                                                    |             |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| UNIT-1 | <ul> <li>Introduction: Introduction to data structures, Abstract data types (ADT).</li> <li>Array: Array element identifier and addressing formulas, One-dimensional arrays, Applications.</li> <li>Linked lists: Introduction, Single linked list, double linked list, circular linked list, and operations on linked lists.</li> </ul> | CO1,CO2,CO4 |
| UNIT-2 | <b>Linear Data Structures:</b><br><b>Stacks:</b> Definition, operations, array implementation, linked list<br>Implementation and applications.                                                                                                                                                                                           | CO1,CO2,CO4 |
| UNIT-3 | <b>Queues:</b> Definition, operations, array implementation and applications, Circular Queue and Double ended queue (DEQUE).                                                                                                                                                                                                             | CO1,CO2,CO4 |
| UNIT-4 | <b>Sorting and Searching:</b><br>Searching- Linear and Binary search algorithms.<br>Sorting- Bubble, Insertion, Selection, Merge, Quick sort<br>algorithms.                                                                                                                                                                              | CO1,CO2,CO4 |
| UNIT-5 | <ul> <li>Introduction to nonlinear data structure:</li> <li>Trees: Definition, binary tree, Properties of Binary Trees, binary tree representation, binary tree traversal.</li> <li>Graphs: Definition, Representation of graph, graph traversals.</li> </ul>                                                                            | CO1,CO3,CO4 |

|                                                   | Learning Resources                                                                                                                                     |  |  |  |  |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Text                                              | 1. Data Structures and Algorithm Analysis in C, Mark Allen Weiss, Second Edition,                                                                      |  |  |  |  |  |
| Books                                             | 2002, Pearson.                                                                                                                                         |  |  |  |  |  |
| Reference                                         |                                                                                                                                                        |  |  |  |  |  |
| Books                                             | 1. Classic Data Structures, Debasis Samantha, Second Edition, 2009, PHI.                                                                               |  |  |  |  |  |
| e-<br>Resources<br>& other<br>digital<br>material | 1.https://www.javatpoint.com/data-structure-array<br>2.http://www.geeksforgeeks.org/data-structures/<br>3.http://www.studytonight.com/data-structures/ |  |  |  |  |  |

## MACHINE LEARNING LAB

| Course Code                         | 20IT3651          | Year                        | III   | Semester      | П                                 |
|-------------------------------------|-------------------|-----------------------------|-------|---------------|-----------------------------------|
| Course Category                     | ategory PC Branch |                             | IT    | Course Type   | Practical                         |
| Credits                             | 1.5               | L-T-P                       | 0-0-3 | Prerequisites | Python<br>Programming<br>Language |
| Continuous Internal<br>Evaluation : | 15                | Semester End<br>Evaluation: | 35    | Total Marks:  | 50                                |

| Course Outcomes                                                       |                                                                                                 |    |  |  |  |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----|--|--|--|--|
| Upon successful completion of the course, the student will be able to |                                                                                                 |    |  |  |  |  |
| CO1                                                                   | L3                                                                                              |    |  |  |  |  |
| CO2                                                                   | Implement programs as an individual on different IDEs/ online platforms.                        | -  |  |  |  |  |
| CO3                                                                   | Develop an effective report based on various programs implemented.                              | -  |  |  |  |  |
| CO4                                                                   | Apply technical knowledge for a given problem and express with an effective oral communication. | L3 |  |  |  |  |
| CO5                                                                   | Analyze outputs using given constraints/test cases.                                             | L4 |  |  |  |  |

**Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations** (3:Substantial, 2: Moderate, 1:Slight)

| <b>(</b> |     |     |     |     |     |     |            |     |     |      |      |      |      |      |
|----------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|
|          | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1      | 2   | 2   | 2   |     | 2   |     |            |     |     |      |      |      | 2    | 2    |
| CO2      | 3   |     | 3   |     | 3   |     |            |     |     |      |      |      | 3    | 3    |
| CO3      |     |     |     |     |     |     |            |     |     | 3    |      |      | 3    | 3    |
| CO4      | 1   |     |     |     |     |     |            |     |     | 1    |      |      | 1    | 1    |
| CO5      |     | 3   |     |     |     |     |            |     |     |      |      |      | 3    | 3    |

|            | Syllabus                                                                              |           |
|------------|---------------------------------------------------------------------------------------|-----------|
| Expt<br>No | Exercises                                                                             | Mapped CO |
| 1.         | Apply Data preprocessing techniques.                                                  | C01-C05   |
| 2.         | Construct a Regression model using Supervised learning method.                        | C01-C05   |
| 3.         | Construct a Classification model using Supervised learning method.                    | C01-C05   |
| 4.         | Construct a machine learning model using Unsupervised partition clustering method.    | C01-C05   |
| 5.         | Construct a machine learning model using Unsupervised hierarchical clustering method. | C01-C05   |
| 6.         | Construct a machine learning model for Association analysis.                          | C01-C05   |
| 7.         | Apply Reinforcement learning technique to build an application.                       | C01-C05   |

## **Text Books**

1. Introduction to Machine Learning with Python Andreas C Muller & Sarah Guido First Shroff Publishers 2019

2. Introduction to Machine Learning, Ethem Alpaydin, Second Edition, 2010, Prentice Hall of India.

3. Machine Learning, Anuradha Srinivasaraghavan, and Vincy Joseph, Kindle Edition, 2020, WILEY.

## References

1. Machine Learning by Tom M. Mitchell, International Edition 1997, McGraw Hill Education.

2. Machine Learning a Probabilistic Perspective, Kevin P Murphy & Francis Bach, First Edition, 2012, MIT Press.

3. Introduction to Data Mining, Tan, Vipin Kumar, Michael Steinbach, 9th Edition, 2013, Pearson

4. "Deep Learning", Ian Goodfellow, Yoshua Bengio, Aaron Courville, 2016, MIT Press.

## e- Resources & other digital material

1.https://www.coursera.org/learn/machine-learning-with-python 2. https://nptel.ac.in/courses/106/106/106106139/

## FULL STACK TECHNOLOGIES LAB

| Course Code                | 20IT3652 | Year               | III   | Semester            | Π                    |
|----------------------------|----------|--------------------|-------|---------------------|----------------------|
| Course Category            | PC       | Branch             | IT    | Course Type         | PRACTICAL            |
|                            |          |                    |       |                     |                      |
| Credits                    | 1.5      | L-T-P              | 0-0-3 | Prerequisites       | HTML,CSS,JAVASCRIPT, |
|                            |          |                    |       |                     | ANY RDBMS (SQL)      |
| <b>Continuous Internal</b> |          | Semester End       |       |                     |                      |
| Evaluation:                | 15       | <b>Evaluation:</b> | 35    | <b>Total Marks:</b> | 50                   |

| Course     | Course Outcomes                                                            |    |  |  |  |  |  |
|------------|----------------------------------------------------------------------------|----|--|--|--|--|--|
| Upon s     | Upon successful completion of the course, the student will be able to      |    |  |  |  |  |  |
| CO1        | CO1 Develop web applications using Express JS, React JS                    |    |  |  |  |  |  |
| CO2        | CO2 Develop server side web applications using Node.js                     |    |  |  |  |  |  |
| CO3        | Design and Develop web applications using various libraries and frameworks | L3 |  |  |  |  |  |
| <b>CO4</b> | Build web applications using MangoDB                                       | L3 |  |  |  |  |  |

|         | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight) |     |     |     |     |     |     |     |     |      |      |      | f    |      |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|         | PO1                                                                                                                                       | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO<br>1 |                                                                                                                                           |     | 3   |     |     |     |     |     |     |      |      | 2    | 3    | 3    |
| CO<br>2 |                                                                                                                                           |     | 3   |     |     |     |     |     |     |      |      | 2    | 3    | 3    |
| CO<br>3 |                                                                                                                                           |     | 3   |     |     |     |     |     |     |      |      | 2    | 3    | 3    |
| CO<br>4 |                                                                                                                                           |     | 3   |     |     |     |     |     |     |      |      | 2    | 3    | 3    |

|                  | Syllabus                                                                                     |              |  |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|
| Experiment<br>No | Contents                                                                                     | Mapped<br>CO |  |  |  |  |  |  |
| 1                | Demonstrate React Component Life cycle                                                       | C01,C03      |  |  |  |  |  |  |
| 2                | Develop a Calculator React Application                                                       | C01,C03      |  |  |  |  |  |  |
| 3                | Develop a Redux application.                                                                 | C01,C03      |  |  |  |  |  |  |
| 4                | Develop Website demonstrate React Routing.                                                   | C01,C03      |  |  |  |  |  |  |
| 5                | Develop a Node.js application demonstrating handling data I/O (Buffer, Stream, Zlib modules) | CO2,CO3      |  |  |  |  |  |  |
| 6                | Demonstrate accessing File system from Node.js application                                   | CO2,CO3      |  |  |  |  |  |  |
| 7                | Demonstrate Express Routing.                                                                 | C01,C03      |  |  |  |  |  |  |
| 8                | Demonstrate Express.js Authentication                                                        | C01,C03      |  |  |  |  |  |  |
| 9                | Demonstrate Manipulating MongoDB Documents from Node.js                                      | CO4,CO3      |  |  |  |  |  |  |
| 10               | Demonstrate Accessing MongoDB from Node.js.                                                  | CO4,CO3      |  |  |  |  |  |  |

## Text book

1.React in Action, Mark Tielens Thomas, Manning Publications, 2018, ISBN:978-1617293856 ,First Edition

2. Node.js, MongoDB and Angular Web Development, Brad Dayley, Brendan Dayley Caleb Dayley, 2/e, Pearson Edu., Inc. 2018, ISBN: 978-0-13-465553-6

#### References

1.Pro MERN Stack, Vasan Subramanian, 2/e, Apress, 2019, ISBN: 978-1-4842-4390-9

2.FullStack React – The Complete Guide to ReactJS and Friends, Anthony Accomazzo, Nate Murray, Ari Lerner, Clay Allsopp, David Guttman, and Tyler McGinnis, 2020, \newline

# e-Resources and other Digital Material

https://html5hive.org/wp-content/uploads/2018/04/The-Complete-Beginners-Guide-to-React Dyrr.pdf

## **INTERNET OF THINGS LAB**

| Course             | 20ES1652 | Year               | III   | Semester      | II  |
|--------------------|----------|--------------------|-------|---------------|-----|
| Code               |          |                    |       |               |     |
| Course             | ES       | Branch             | IT    | Course Type   | Lab |
| Category           |          |                    |       |               |     |
| Credits            | 1.5      | L-T-P              | 0-0-3 | Prerequisites | Nil |
| Continuous         |          | Semester           |       | Total         |     |
| Internal           | 15       | End                | 35    | Marks:        | 50  |
| <b>Evaluation:</b> |          | <b>Evaluation:</b> |       |               |     |

----

| Course Outcomes                                                       |                                                                                                                       |    |  |  |  |  |  |  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Upon successful completion of the course, the student will be able to |                                                                                                                       |    |  |  |  |  |  |  |
| CO1                                                                   | <b>Apply</b> appropriate techniques, resources and IDE for modeling system designs with understanding of limitations. | L3 |  |  |  |  |  |  |
| CO2                                                                   | Develop various sensor interfacing using Visual Programming Language                                                  | L3 |  |  |  |  |  |  |
| CO3                                                                   | Evaluate Wireless Control of Remote Devices                                                                           | L5 |  |  |  |  |  |  |
| CO4                                                                   | <b>Design and develop</b> Mobile Application which can interact with Sensors and Actuators                            | L6 |  |  |  |  |  |  |
| CO5                                                                   | Make an effective report based on experiments.                                                                        | L6 |  |  |  |  |  |  |

|            | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations |     |     |     |     |            |            |            |            |             | nes & S     | trength | of corre | lations |
|------------|----------------------------------------------------------------------------------------------------|-----|-----|-----|-----|------------|------------|------------|------------|-------------|-------------|---------|----------|---------|
| (3:Substar | (3:Substantial, 2: Moderate, 1:Slight)                                                             |     |     |     |     |            |            |            |            |             |             |         |          |         |
| COs        | <b>PO1</b>                                                                                         | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | <b>PO10</b> | <b>PO11</b> | PO12    | PSO1     | PSO2    |
| CO1        |                                                                                                    |     | 3   |     |     |            |            |            |            |             |             |         | 3        | 3       |
| CO2        |                                                                                                    | 3   |     | 1   |     |            |            |            |            |             |             |         | 3        | 3       |
| CO3        |                                                                                                    |     | 2   |     |     |            |            |            |            |             |             |         | 1        | 1       |
| CO4        |                                                                                                    |     |     |     |     |            |            |            |            |             |             |         | 2        | 2       |
| CO5        |                                                                                                    |     |     |     |     |            |            |            |            | 3           |             |         |          |         |
| Average*   |                                                                                                    | 3   | 3   | 1   |     |            |            |            |            | 3           |             |         | 2        | 2       |

|              | Syllabus                                                                                   |               |  |  |  |
|--------------|--------------------------------------------------------------------------------------------|---------------|--|--|--|
| Expt.<br>No. | Contents                                                                                   | Mapped CO     |  |  |  |
| 1            | Introduction to Arduino and necessary software installation.<br>Interface and control LED. | CO1, CO5      |  |  |  |
| 2            | Digital I/O Interface.                                                                     | CO1, CO2, CO5 |  |  |  |
| 3            | Analog I/O Interface.                                                                      | CO1, CO2, CO5 |  |  |  |
| 4            | Fabrication and direction control of wheeled robot using Arduino.                          | CO1, CO2, CO5 |  |  |  |
| 5            | Serial Communication - Device Control.                                                     | CO1, CO2, CO5 |  |  |  |
| 6            | Wireless Module Interface.                                                                 | CO1,CO3, CO5  |  |  |  |
| 7            | Basic Android App Development using MIT App Inventor.                                      | C01,C04, C05  |  |  |  |
| 8            | Smart Home Android App Development using App Inventor and Arduino.                         | CO1,CO4, CO5  |  |  |  |

## **Text Books**

1. Sylvia Libow Martinez, Gary S Stager, "Invent To Learn: Making, Tinkering, and Engineering in the Classroom", Constructing Modern Knowledge Press, 2016.

## References

1. Michael Margolis, "Arduino Cookbook", Oreilly, 2011.

## e-Resources & other digital material

1.<u>https://nptel.ac.in/courses/108/108/108108098/</u>

#### MOBILE APPLICATION DEVELOPMENT

| Course Code                            | 20SA8652 | Year                        | III   | Semester      | II                  |
|----------------------------------------|----------|-----------------------------|-------|---------------|---------------------|
| Course<br>Category                     | SC       | Branch                      | IT    | Course Type   | SKILL               |
| Credits                                | 2        | L-T-P                       | 1-0-2 | Prerequisites | Java<br>Programming |
| Continuous<br>Internal<br>Evaluation : | -        | Semester End<br>Evaluation: | 50    | Total Marks:  | 50                  |

|          | Course Outcomes                                                                               |    |  |  |  |  |  |
|----------|-----------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| Upon suc | Upon successful completion of the course, the student will be able to                         |    |  |  |  |  |  |
| CO1      | Basics of android mobile application design models and styles.                                | L2 |  |  |  |  |  |
| CO2      | Apply activities, dialog boxes, fragments, intents, views and layouts to android apps.        | L3 |  |  |  |  |  |
| CO3      | Apply views and layouts to android apps.                                                      | L3 |  |  |  |  |  |
| CO4      | Design and develop mobile apps for given real time scenario using modern tool android studio. | L3 |  |  |  |  |  |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

| correta | correlations (s. substantial, 2. Would all, 1. Signt) |     |     |     |     |     |     |     |     |      |      |      |      |      |
|---------|-------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|         | PO1                                                   | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1     | 3                                                     |     |     |     | 3   |     |     |     |     |      |      |      | 2    | 2    |
| CO2     | 3                                                     | 3   |     |     | 3   | 3   |     |     |     | 3    |      |      | 2    | 2    |
| CO3     | 3                                                     | 3   |     |     | 3   | 3   |     |     |     | 3    |      |      | 2    | 2    |
| CO4     | 3                                                     | 3   | 3   | 3   | 3   | 3   |     |     |     | 3    |      |      | 2    | 2    |

|             | Syllabus                                                                                                                                                                                                                                                     |                     |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|--|--|
| Unit<br>No. | Contents                                                                                                                                                                                                                                                     |                     |  |  |  |  |  |  |
| I           | <b>GETTING STARTED WITH ANDROID PROGRAMMING</b> : What Is Android?, Versions of android, Features of android, Architecture of android. <b>ACTIVITIES, INTENTS:</b> Understanding activities, Life cycle of an activity.                                      | CO1,<br>CO2         |  |  |  |  |  |  |
| II          | <b>INTENTS:</b> Linking activities using intents, Calling built in apps using intents, Displaying Notifications.                                                                                                                                             | CO1,<br>CO2         |  |  |  |  |  |  |
| III         | <b>GETTING TO KNOW ANDROID UI:</b> Understanding the components of screen - Views and view groups, Liner layout, Absolute layout, Table layout, Relative layout, Frame layout, Scroll view.                                                                  | CO1,<br>CO3,<br>CO4 |  |  |  |  |  |  |
| IV          | <b>DISPLAY ORIENTATION, PICTURES and MENUS:</b> Anchoring views,<br>Resizing and repositioning views, Managing changes to screen orientation,<br>Utilizing the action bar, Creating UI programmatically, Using image views to<br>display pictures and Menus. | CO1,<br>CO3,<br>CO4 |  |  |  |  |  |  |
| V           | <b>DESIGNING UI WITH VIEWS:</b> Using basic views - Text view, Button, Image Button, Edit text, check Box, Toggle button, Radio button, and Radio group views, Progress bar view and Auto complete text view.                                                | CO1,<br>CO3,<br>CO4 |  |  |  |  |  |  |

# Lab Course

| Expt.<br>No. | Contents                                                                                                   | Mapped<br>CO |
|--------------|------------------------------------------------------------------------------------------------------------|--------------|
| 1            | Installation of Android studio, its required tools and Android Virtual Device (AVD).                       | CO1          |
| 2            | Develop an android program to displaying your name in AVD.                                                 | CO1          |
| 3            | Develop an android program to illustrate how to create a basic Activity and applying themes, styles to it. | CO1          |
| 4            | Develop an android program to displaying various types of Dialog objects.                                  | CO2          |
| 5            | Develop an android program to illustrate linking activities with Intents.                                  | CO2          |
| 6            | Develop an android program to illustrate passing data using intent object.                                 | CO2          |
| 7            | Develop an android program to illustrate different layouts.                                                | CO3          |
| 8            | Build an Android application.                                                                              | CO4          |

## **Text Book**

1. Wei-Meng Lee, "Beginning Android Application Development", 1st Edition, John Wiley & Sons, Inc., 2012.

## References

1. Raimon Refols Montane, Laurence Dawson, "Learning and Android Application Development", 1st Edition, PACKT Publishing, 2016.

2. Adam Gerber and Clifton Craig, "Learn Android Studio", 1st Edition, Apress, 2015

## e-Resources and other Digital Material

1.https://www.coursera.org/specializations/android-app-development#courses 2.https://infyspringboard.onwingspan.com/web/en/app/toc/lex\_auth\_0130944503427072002808\_shared/over view

## SOFTWARE ENGINEERING

## (MINOR)

| Course Code                | 20IT5601 | Year               | III   | Semester      | П            |
|----------------------------|----------|--------------------|-------|---------------|--------------|
| Course Category            | Minor    | Branch             | IT    | Course Type   | Theory       |
| Credits                    | 4        | L-T-P              | 4-0-0 | Prerequisites | Basics of IT |
| <b>Continuous Internal</b> |          | Semester End       |       |               |              |
| Evaluation:                | 30       | <b>Evaluation:</b> | 70    | Total Marks:  | 100          |

|        | Course Outcomes                                                            | Blooms<br>Taxonomy<br>Level |  |  |  |  |  |  |
|--------|----------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|--|
| Upon S | Upon Successful completion of course, the student will be able to          |                             |  |  |  |  |  |  |
| CO1    | Understand the process of software engineering and various process Models. | L2                          |  |  |  |  |  |  |
| CO2    | Design the requirements of software system.                                | L3                          |  |  |  |  |  |  |
| CO3    | Use various design elements to prepare software system.                    | L3                          |  |  |  |  |  |  |
| CO4    | Analyze various testing techniques.                                        | L4                          |  |  |  |  |  |  |

|     | Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations(H: High, M:Medium, L: Low) |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | PO1                                                                                                                           | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 |                                                                                                                               | 3   |     |     |     |     |     |     |     | 3    |      |      |      | 3    |
| CO2 |                                                                                                                               |     | 3   |     |     |     |     |     | 3   | 3    |      |      | 3    | 3    |
| CO3 |                                                                                                                               |     | 3   |     |     |     |     |     | 3   | 3    |      |      | 3    | 3    |
| CO4 |                                                                                                                               |     | 3   |     |     |     |     |     | 3   | 3    |      |      | 3    | 3    |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mappe<br>d CO |
| I          | <ul> <li>Software and Software Engineering: The Nature of Software, The Unique Nature of Web Apps, Software Engineering, Software Process, Software Engineering Practice, Software Myths.</li> <li>Process Models: A Generic Process Model: Defining a framework activity, Prescriptive Process Models: The Waterfall Model, Incremental Process Model, Evolutionary Process Model, The Unified Process, What is an Agile Process?, XP Process.</li> </ul> | CO1           |
| II         | <ul> <li>Requirements Analysis And Specification: Requirements Gathering and Analysis, Software Requirement Specification (SRS): Characteristics of good SRS, Functional Requirements, Organization of SRS.</li> <li>Software Design: Overview of the Design Process, How to Characterize of a Design? Cohesion and Coupling, Approaches to Software Design.</li> </ul>                                                                                    | CO2,<br>CO3   |
| Ш          | <ul> <li>Function-Oriented Software Design: Overview of SA/SD Methodology,</li> <li>Structured Analysis, Structured Design, Detailed Design, Design Review.</li> <li>User Interface Design: Characteristics of Good User Interface, Basic</li> <li>Concepts, Types of User Interfaces, A User Interface Design Methodology.</li> </ul>                                                                                                                     | CO1,<br>CO3   |
| IV         | <b>Coding And Testing:</b> Coding, Code Review, Software Documentation, Testing, Unit Testing, Black-Box Testing, White-Box Testing, Debugging, Integration Testing, System Testing.                                                                                                                                                                                                                                                                       | CO1,<br>CO4   |
| V          | <ul> <li>Software Reliability And Quality Management: Software Reliability,</li> <li>Statistical Testing, Software Quality, Software Quality Management System.</li> <li>Software Maintenance: Software maintenance, Maintenance Process</li> <li>Models, Maintenance Cost.</li> <li>Software Reuse: what can be reused? Why almost No Reuse So Far?</li> <li>Basic Issues in Reuse Approach.</li> </ul>                                                   | CO1,<br>CO4   |

| Learning Resources                                                                      |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Text Books                                                                              |  |  |  |  |  |  |  |
| 1. Software Engineering-A Practitioner's Approach, RogerS. Pressman, Seventh            |  |  |  |  |  |  |  |
| Edition McGraw Hill International Edition.                                              |  |  |  |  |  |  |  |
| 2. Fundamentals of Software Engineering, Rajib Mall, Third Edition, PHI.                |  |  |  |  |  |  |  |
| References                                                                              |  |  |  |  |  |  |  |
| 3. Software Engineering: A Primer, Waman SJawadekar, TataMc Graw-Hill, 2008             |  |  |  |  |  |  |  |
| 4. Software Engineering, A Precise Approach, Pankaj Jalote, Wiley India, 2010.          |  |  |  |  |  |  |  |
| 5. Software Engineering, Principles and Practices, DeepakJain, Oxford University Press. |  |  |  |  |  |  |  |
| E-Resources and other Digital Material                                                  |  |  |  |  |  |  |  |
| 1. <u>https://nptel.ac.in/courses/106101061/</u>                                        |  |  |  |  |  |  |  |

# SOFTWARE ARCHITECTURE AND DESIGN PATTERNS (Honors)

| Course Code         | 20IT6601 | Year               | III   | Semester            | II          |
|---------------------|----------|--------------------|-------|---------------------|-------------|
| Course              |          |                    |       |                     |             |
| Category            | Honors   | Branch             | IT    | Course Type         | Theory      |
|                     |          |                    |       |                     | Software    |
| Credits             | 4        | L-T-P              | 4-0-0 | Prerequisites       | Engineering |
| Continuous          |          | Semester           |       |                     |             |
| Internal            |          | End                |       |                     |             |
| <b>Evaluation :</b> | 30       | <b>Evaluation:</b> | 70    | <b>Total Marks:</b> | 100         |

|         | Course Outcomes                                                                                                                   |    |  |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Upon Su | ccessful completion of course, the student will be able to                                                                        |    |  |  |  |  |  |  |
| CO1     | Demonstrate an understanding of a range of design patterns. Be capable of comprehending a design presented using this vocabulary. | L2 |  |  |  |  |  |  |
| CO2     | Experience core design principles and to assess the quality of a design with respect to these principles.                         | L3 |  |  |  |  |  |  |
| CO3     | Capable of applying these principles in the design of object oriented systems.                                                    | L3 |  |  |  |  |  |  |
| CO4     | Design and implement codes with higher performance and lower complexity                                                           | L4 |  |  |  |  |  |  |
| CO5     | Select and apply suitable patterns in specific contexts                                                                           | L4 |  |  |  |  |  |  |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mapped CO           |  |  |  |
| I          | <ul> <li>Introduction: what is a design pattern? Describing design patterns, the catalog of design pattern, organizing the catalog, how design patterns solve design problems, how to select a design pattern, how to use a design pattern. A Notation for Describing Object-Oriented Systems.</li> <li>Analysis a System: overview of the analysis phase, stage 1: gathering the requirements functional requirements specification, defining conceptual classes and relationships, using the knowledge of the domain. Design and Implementation, discussions and further reading.</li> </ul> | CO1                 |  |  |  |
| II         | <b>Design Pattern Catalog:</b> Structural patterns, Adapter, bridge, composite, decorator, facade, flyweight, proxy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO1,CO2,CO5         |  |  |  |
| III        | <b>Behavioral Patterns:</b> Chain of Responsibility, Command, Interpreter, Iterator, Mediator, Memento, Observer, State, Template Method                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO1,CO2,CO5         |  |  |  |
| IV         | <b>Interactive systems and the MVC architecture:</b> Introduction, The MVC architectural pattern, analyzing a simple drawing program, designing the system, designing of the subsystems, getting into implementation, implementing undo operation, drawing incomplete items, adding a new feature, pattern based solutions.                                                                                                                                                                                                                                                                    | CO1,<br>CO4,<br>CO5 |  |  |  |
| V          | <b>Designing with Distributed Objects:</b> Client server system, java remote method invocation, implementing an object oriented system on the web (discussions and further reading) a note on input and output, selection statements, loops arrays.                                                                                                                                                                                                                                                                                                                                            | CO1,<br>CO3,<br>CO5 |  |  |  |

## **Text Books**

1. Brahma Dathan, Sarnath Rammath, Object-oriented analysis, design and implementation, Universities Press,2013

2. Erich Gamma, Richard Helan, Ralph Johman, John Vlissides, Design Patterns, Pearson Publication, 2013.

## References

- 1. Frank Bachmann, Regine Meunier, Hans Rohnert "Pattern Oriented Software Architecture" Volume 1, 1996.
- 2. William J Brown et al., "Anti-Patterns: Refactoring Software, Architectures and Projects in Crisis", John Wiley, 1998.

#### **E-** Resources and other Digital Material

## NPTEL VIDEO LECTURES

# ADVANCED JAVA AND J2EE

(Honors)

| Course Code         | 20IT6601 | Year               | III   | Semester            | II     |
|---------------------|----------|--------------------|-------|---------------------|--------|
| Course Category     | Honors   | Branch             | IT    | Course Type         | Theory |
| Credits             | 4        | L-T-P              | 4-0-0 | Prerequisites       | C,C++  |
| Continuous Internal |          | Semester End       |       |                     |        |
| Evaluation :        | 30       | <b>Evaluation:</b> | 70    | <b>Total Marks:</b> | 100    |

|          | Course Outcomes                                                                                                              |    |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| Upon Suc | cessful completion of course, the student will be able to                                                                    |    |  |  |  |
| CO1      | Interpret the need for advanced Java concepts like enumerations and collections in developing modular and efficient programs | L2 |  |  |  |
| CO2      | Build server side program using JSP                                                                                          | L3 |  |  |  |
| CO3      | Describe how servlets fit into Java-based web application architecture                                                       | L4 |  |  |  |
| CO4      | Develop reusable software components using Java Beans                                                                        | L4 |  |  |  |

| Syllabus   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mapped<br>CO |  |
| I          | <b>Enumerations, Autoboxing and Annotations(metadata):</b> Enumerations,<br>Enumeration fundamentals, the values() and valueOf() Methods, java enumerations are<br>class types, enumerations Inherits Enum, example, type wrappers, Autoboxing,<br>Autoboxing and Methods, Autoboxing/Unboxing occurs in Expressions,<br>Autoboxing/Unboxing, Boolean and character values, Autoboxing/Unboxing helps<br>prevent errors, A word of Warning. Annotations, Annotation basics, specifying<br>retention policy, Obtaining Annotations at run time by use of reflection, Annotated<br>element Interface, Using Default values, Marker Annotations, Single Member<br>annotations, Built-In annotations. | CO1          |  |
| II         | <b>The collections and Framework:</b> Collections Overview, Recent Changes to Collections, The Collection Interfaces, The Collection Classes, Accessing a collection Via an Iterator, Storing User Defined Classes in Collections, The Random Access Interface, Working With Maps, Comparators, The Collection Algorithms, Why Generic Collections?, The legacy Classes and Interfaces, Parting Thoughts on Collections.                                                                                                                                                                                                                                                                          | CO1          |  |
| III        | <b>Java Servlet Technology:</b> What is a servlet?, The Example Servlets, Servlet Life Cycle, Sharing Information, Initializing a Servlet, Writing Service Methods, Filtering Requests and Responses, Invoking Other Web Resources, Accessing the Web Context, Maintaining Client State, Finalizing a Servlet.                                                                                                                                                                                                                                                                                                                                                                                    | CO3          |  |
| IV         | <b>Java Server Pages Technology:</b> What is a JSP page? The Example JSP Pages, The Life Cycle of a JSP Page, Initializing and Finalizing a JSP Page, Creating Static Content, Creating Dynamic Content, Including Content in a JSP Page, Transferring Control to Another Web Component, Including an Applet, Extending the JSP Language.                                                                                                                                                                                                                                                                                                                                                         | CO2          |  |
| V          | JavaBeans Components in JSP Pages: JavaBeans Component Design Conventions,<br>Why use a JavaBeans Component?, Creating and Using a JavaBeans Component,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO4          |  |

Setting JavaBeans Component Properties, Retrieving JavaBeans Component Properties.

## Learning Resources

#### **Text Books**

- 1. Herbert Schildt: JAVA the Complete Reference, 7th/9th Edition, Tata McGraw Hill, 2007.
- 2. Stephanie Bodoff, Dale Green, Kim Haase, Eric Jendrock, Monica Pawlan, Beth Stearns: The J2EE Tutorial, 2<sup>nd</sup> Edition, Pearson Education Asia, 2004.

## References

- 1. Y. Daniel Liang: Introduction to JAVA Programming, 7thEdition, Pearson Education, 2007.
- 2. Jim Keogh: J2EE-TheCompleteReference, McGraw Hill, 2007.
- 3. Uttam K Roy, Advanced JAVA programming, Oxford University press, 2015.

## E- Resources and other Digital Material

NPTEL VIDEO LECTURES

# STORAGE AREA NETWORKS

(Honors)

| Course Code         | 20IT6601 | Year         | III   | Semester            | II       |
|---------------------|----------|--------------|-------|---------------------|----------|
| Course Category     | Honors   | Branch       | IT    | Course Type         | Theory   |
|                     |          |              |       |                     | Computer |
| Credits             | 4        | L-T-P        | 4-0-0 | Prerequisites       | Networks |
| Continuous Internal |          | Semester End |       |                     |          |
| Evaluation :        | 30       | Evaluation:  | 70    | <b>Total Marks:</b> | 100      |

|         | Course Outcomes                                                             |    |  |  |  |
|---------|-----------------------------------------------------------------------------|----|--|--|--|
| Upon Su | Upon Successful completion of course, the student will be able to           |    |  |  |  |
|         | Identify key challenges in managing information and analyze different       | L2 |  |  |  |
| CO1     | storage networking technologies and virtualization                          |    |  |  |  |
| CO2     | Explain components and the implementation of NAS                            | L3 |  |  |  |
| CO3     | Describe CAS architecture and types of archives and forms of virtualization | L3 |  |  |  |
| CO4     | Illustrate the storage infrastructure and management activities             | L3 |  |  |  |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mapped<br>CO |
| I          | <ul> <li>Storage System: Introduction to Information Storage: Information Storage,<br/>Evolution of Storage Architecture, Data Center Infrastructure, Virtualization and<br/>Cloud Computing.</li> <li>Data Center Environment: Application Database Management System (DBMS),<br/>Host (Compute), Connectivity, Storage, Disk Drive Components, Disk Drive<br/>Performance, Host Access to Data, Direct-Attached Storage, Storage Design Based<br/>on Application</li> </ul>                                      | CO1          |
| II         | <ul> <li>Data Protection - RAID: RAID Implementation Methods, RAID Array Components, RAID Techniques, RAID Levels, RAID Impact on Disk Performance, RAID Comparison.</li> <li>Intelligent Storage Systems: Components of an Intelligent Storage System, Types of Intelligent Storage Systems.</li> <li>Fibre Channel Storage Area Networks - Fibre Channel: Overview, The SAN and Its Evolution, Components of FC SAN.</li> </ul>                                                                                  | CO2,CO5      |
| III        | <b>IP SAN and FCoE:</b> iSCSI, FCIP,<br><b>Network-Attached Storage:</b> General-Purpose Servers versus NAS Devices, Benefits<br>of NAS, File Systems and Network File Sharing, Components of NAS, NAS I/O<br>Operation, NAS Implementations, NAS File-Sharing Protocols, Factors Affecting<br>NAS Performance                                                                                                                                                                                                     | CO3,CO5      |
| IV         | <ul> <li>Introduction to Business Continuity: Information Availability, BC Terminology,<br/>BC Planning Life Cycle, Failure Analysis, Business Impact Analysis, BC Technology<br/>Solutions,</li> <li>Backup and Archive: Backup Purpose, Backup Considerations, Backup Granularity,<br/>Recovery Considerations, Backup Methods, Backup Architecture, Backup and<br/>Restore Operations, Backup Topologies, Backup in NAS Environments</li> </ul>                                                                 | CO4, CO5     |
| V          | <ul> <li>Local Replication: Replication Terminology, Uses of Local Replicas, Replica Consistency, Local Replication Technologies, Tracking Changes to Source and Replica, Restore and Restart Considerations, Creating Multiple Replicas.</li> <li>Remote Replication: Modes of Remote Replication, Remote Replication Technologies.</li> <li>Securing the Storage Infrastructure: Information Security Framework, Risk Triad, Storage Security Domains. Security Implementations in Storage Networking</li> </ul> | CO1          |

**Text Books** 

1. EMC Education Services, "Information Storage and Management", Wiley India Publications, 2009. ISBN: 9781118094839

References

1. Paul Massiglia, Richard Barker, "Storage Area Network Essentials: A Complete Guide to Understanding and Implementating SANs Paperback", 1st Edition, Wiley India Publications, 2008

## E- Resources and other Digital Material

## NPTEL VIDEO LECTURES

## HIGH PERFORMANCE COMPUTING

(Honors)

| Course Code         | 20IT6601 | Year               | III   | Semester            | II     |
|---------------------|----------|--------------------|-------|---------------------|--------|
| Course Category     | Honors   | Branch             | IT    | Course Type         | Theory |
| Credits             | 4        | L-T-P              | 4-0-0 | Prerequisites       |        |
| Continuous Internal |          | Semester End       |       |                     |        |
| Evaluation :        | 30       | <b>Evaluation:</b> | 70    | <b>Total Marks:</b> | 100    |

|        | Course Outcomes                                                             |    |  |  |  |
|--------|-----------------------------------------------------------------------------|----|--|--|--|
| Upon S | Upon Successful completion of course, the student will be able to           |    |  |  |  |
|        | Identify key challenges in managing information and analyze different       | L2 |  |  |  |
| CO1    | storage networking technologies and virtualization                          |    |  |  |  |
| CO2    | Explain components and the implementation of NAS                            | L3 |  |  |  |
| CO3    | Describe CAS architecture and types of archives and forms of virtualization | L3 |  |  |  |
| CO4    | Illustrate the storage infrastructure and management activities             | L3 |  |  |  |

| Syllabus   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mapped<br>CO |  |
| I          | <ul> <li>Introduction to Parallel Computing: Motivating Parallelism, Scope of Parallel Computing,</li> <li>Parallel Programming Platforms: Implicit Parallelism: Trends in Microprocessor Architectures, Limitations of Memory System Performance, Dichotomy of Parallel Computing Platforms, Physical Organization of Parallel Platforms, Communication Costs in Parallel Machines, Routing Mechanisms for Interconnection Networks, Impact of Process-Processor Mapping and Mapping Techniques.</li> </ul>                                                                                                                                                                                                                | CO1          |  |
| II         | <ul> <li>Principles of Parallel Algorithm Design: Preliminaries, Decomposition Techniques,<br/>Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing,<br/>Methods for Containing Interaction Overheads, Parallel Algorithm Models</li> <li>Basic Communication Operations: One-to-All Broadcast and All-to-One<br/>Reduction, Allto-All Broadcast and Reduction, All-Reduce and Prefix-Sum<br/>Operations, Scatter and Gather, All-to-All Personalized Communication, Circular<br/>Shift, Improving the Speed of Some Communication Operations</li> </ul>                                                                                                                                        | CO2,CO5      |  |
| III        | <ul> <li>Analytical Modeling of Parallel Programs: Sources of Overhead in Parallel Programs, Performance Metrics for Parallel Systems, The Effect of Granularity on Performance, Scalability of Parallel Systems. Minimum Execution Time and Minimum Cost-Optimal Execution Time, Asymptotic Analysis of Parallel Programs Section 5.7. Other Scalability Metrics,</li> <li>Programming Using the Message-Passing Paradigm: Principles of Message-Passing Programming, The Building Blocks: Send and Receive Operations, MPI: the Message Passing Interface, Topologies and Embedding, Overlapping Communication with Computation, Collective Communication and Computation Operations, Groups and Communicators</li> </ul> | CO3,CO5      |  |
| IV         | <ul> <li>Programming Shared Address Space Platforms: Thread Basics, Why Threads?,</li> <li>The POSIX Thread API, Thread Basics: Creation and Termination, Synchronization</li> <li>Primitives in Pthreads, Controlling Thread and Synchronization Attributes, Thread</li> <li>Cancellation, 08 Composite Synchronization Constructs, Tips for Designing</li> </ul>                                                                                                                                                                                                                                                                                                                                                          | CO4, CO5     |  |

|   | Asynchronous Programs, OpenMP: a Standard for Directive Based Parallel              |     |  |  |  |  |  |
|---|-------------------------------------------------------------------------------------|-----|--|--|--|--|--|
|   | Programming                                                                         |     |  |  |  |  |  |
|   | Dense Matrix Algorithms: Matrix-Vector Multiplication, Matrix-Matrix                |     |  |  |  |  |  |
|   | Multiplication, Solving a System of Linear Equations                                |     |  |  |  |  |  |
|   | Sorting: Issues in Sorting on Parallel Computers, Sorting Networks, Bubble Sort and |     |  |  |  |  |  |
|   | its Variants, Quicksort, Bucket and Sample Sort.                                    |     |  |  |  |  |  |
|   | Graph Algorithms: Definitions and Representation, Minimum Spanning Tree:            |     |  |  |  |  |  |
|   | Prim's Algorithm, Single-Source Shortest Paths: Dijkstra's Algorithm, All-Pairs     |     |  |  |  |  |  |
|   | Shortest Paths, Transitive Closure, Connected Components, Algorithms for Sparse     |     |  |  |  |  |  |
| v | Graphs,                                                                             | CO1 |  |  |  |  |  |
| v | Search Algorithms for Discrete Optimization Problems: Definitions and               | COI |  |  |  |  |  |
|   | Examples, Sequential Search Algorithms, Search Overhead Factor, Parallel Depth-     |     |  |  |  |  |  |
|   | First Search, Parallel Best-First Search, Speedup, Anomalies in Parallel Search     |     |  |  |  |  |  |
|   | Algorithms                                                                          |     |  |  |  |  |  |

1.Introduction to Parallel Computing, AnanthGrama, Anshul Gupta, George Karypis, and Vipin Kumar, 2nd edition, Addison-Welsey, 2003.

#### References

**Text Books** 

1.Grama, A. Gupta, G. Karypis, V. Kumar, An Introduction to Parallel Computing, Design and Analysis of Algorithms: 2/e, Addison-Wesley, 2003.

2. G.E. Karniadakis, R.M. Kirby II, Parallel Scientific Computing in C++ and MPI: A Seamless Approach to Parallel Algorithms and their Implementation, Cambridge University Press, 2003.

3. Wilkinson and M. Allen, Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers, 2/E, Prentice Hall, 2005.

4. M.J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, 2004.

5. .S. Almasi and A. Gottlieb, Highly Parallel Computing, 2/E, Addison-Wesley, 1994.

6. David Culler Jaswinder Pal Singh,"Parallel Computer Architecture: A hardware/Software Approach", Morgan Kaufmann, 1999.

7. Kai Hwang, "Scalable Parallel Computing", McGraw Hill 1998.

E- Resources and other Digital Material

NPTEL VIDEO LECTURES

## WIRELESS SENSOR NETWORKS (Professional Elective –III)

| Course Code                           | 20IT4701A | Year                           | IV    | Semester      | Ι                    |
|---------------------------------------|-----------|--------------------------------|-------|---------------|----------------------|
| Course Category                       | PE3       | Branch                         | IT    | Course Type   | Theory               |
| Credits                               | 3         | L-T-P                          | 3-0-0 | Prerequisites | Computer<br>Networks |
| Continuous<br>Internal<br>Evaluation: | 30        | Semester<br>End<br>Evaluation: | 70    | Total Marks:  | 100                  |

|        | Course Outcomes                                                                                                                                                         | Blooms<br>Taxonom<br>y Level |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Upon S | Successful completion of course, the student will be able to                                                                                                            |                              |
| C01    | Design a wireless sensor network for given sensor data using microcontroller, transceiver, middleware and operating system.                                             | L2                           |
| CO2    | Evaluate the performance of schedule based and random Medium Access Control protocols for power consumption, fairness, channel utilization and control packet overhead. | L3                           |
| CO3    | Evaluate the performance of Geographic routing protocols for power consumption, scalability and latency parameters.                                                     | ,L3                          |
| CO4    | Evaluate the performance of transport control protocols for congestion detection and avoidance, reliability and control packet overhead parameters.                     | IL3                          |

## Strength of Correlation between CO – PO, CO- PSO in scale of 1-3

1: Slight (low), 2: Moderate (medium) 3: Substantial (High)

|                | PO1 | PO<br>2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO1<br>0 | PO1<br>1 | PO1<br>2 | PSO1 | PSO2 |
|----------------|-----|---------|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|------|------|
| CO1            | 3   |         |     |     |     |     |     |     |     |          |          |          |      |      |
| CO2            |     | 3       |     |     |     |     |     |     |     |          |          |          |      |      |
| CO3            |     |         |     | 3   |     |     |     |     |     |          |          |          |      |      |
| CO4            |     |         |     | 3   |     |     |     |     |     |          |          |          | 3    | 3    |
| Overall course | 3   | 3       |     | 3   |     |     |     |     |     |          |          |          | 3    | 3    |

|            | Syllabus                                                                                                                                                                                                                                               |     |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
| Unit<br>No | No Contents                                                                                                                                                                                                                                            |     |  |  |  |  |  |
| Ι          | Introduction Wireless Networks, Protocol Suites and Standards, OSI Model<br>and TCP/IP Protocol Suite, Adhoc Networks, Comparison of Adhoc and<br>Sensor Networks, Applications of Sensor Networks, Challenges and Hurdles<br>in Sensor network design | CO1 |  |  |  |  |  |

| п  | <ul> <li>Wireless Transmission Technology and Systems Bluetooth; IEEE</li> <li>802.11a/b/g/n series of wireless LANs; ZigBee; Radio-frequency</li> <li>identification (RFID)</li> <li>Traditional Transport Control Protocols-TCP, UDP; Feasibility of Using TCP</li> <li>or UDP for WSNs, Transport Protocol Design Issues, Existing Transport</li> <li>Control Protocols- CODA (Congestion Detection and Avoidance), ESRT</li> <li>(Event-to-Sink Reliable Transport) Performance of Transport Control</li> <li>Protocols.</li> </ul> | CO1,<br>CO2 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ш  | Sensor-node Architecture Hardware components, Energy consumption of<br>sensor nodes, Operating systems and execution environments, Physical layer<br>and transceiver design considerations in Wireless Sensor Networks.                                                                                                                                                                                                                                                                                                                 | CO1,<br>CO2 |
| IV | Medium Access Control Protocols for Wireless Sensor Networks<br>Fundamentals of MAC Protocols, Performance Requirements, Types of MAC<br>protocols - Schedule-Based and Random Access-Based Protocols, Sensor-<br>MAC, Zebra-MAC                                                                                                                                                                                                                                                                                                        | CO1,<br>CO3 |
| V  | Routing Protocols for Wireless Sensor Networks Fundamentals of Routing<br>Protocols, Performance Requirements, Routing Strategies in Wireless Sensor<br>Networks - Flooding and its variants, LEACH, Power-Efficient Gathering in<br>Sensor Information Systems, Directed diffusion, Geographical routing.                                                                                                                                                                                                                              | CO1,<br>CO4 |

## Text Books

1. Holger Karl, Andreas Willig, Protocols and Architectures for Wireless Sensor Networks, John Wiley.

2. Kazem Sohraby, Daniel Minoli, Taieb Znati, Wireless Sensor Networks: Technology, Protocols, and Applications, John Wiley.

3. Ananthram Swami, Qing Zhao, Yao-Win Hong, Lang Tong, Wireless Sensor Networks, Signal Processing and Communications Perspectives, John Wiley.

4. C. S. Raghavendra, Krishna M. Sivalingam, Taieb Znati, Wireless Sensor Networks, Kluwer Academic.

5. Bhaskar Krishnamachari, Networking Wireless Sensors, Cambridge University Press.

## References

1. Raghavendra, Cauligi S, Sivalingam, Krishna M., Zanti Taieb, Wireless Sensor Network, Springer 1/e, 2004 (ISBN: 978, 4020, 7883, 5).

2. Ian F. Akyildiz and Mehmet Can Vuran, Wireless Sensor Networks, John Wiley and Sond Ltd, Publication, 2010

## **RECOMMENDER SYSTEMS** (Professional Elective –III)

| Course Code                        | 20IT4701B  | Year                        | IV    | Semester      | Ι              |
|------------------------------------|------------|-----------------------------|-------|---------------|----------------|
| Course Category                    | PE3 Branch |                             | IT    | Course Type   | Theory         |
| Credits                            | 3          | L-T-P                       | 3-0-0 | Prerequisites | Opinion mining |
| Continuous Internal<br>Evaluation: | 30         | Semester End<br>Evaluation: | 70    | Total Marks:  | 100            |

#### Strength of Correlation between CO – PO , CO- PSO in scale of 1-3

1: Slight (low), 2: Moderate (medium) 3: Substantial (High)

|                | PO1 |   | PO3 | PO4 | PO5 | PO6 |  | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|----------------|-----|---|-----|-----|-----|-----|--|------|------|------|------|------|
| CO1            | 3   |   |     |     |     |     |  |      |      |      |      |      |
| CO2            | 3   |   |     |     |     |     |  |      |      |      |      |      |
| CO3            | 3   |   |     |     |     |     |  |      |      |      |      |      |
| CO4            |     | 3 |     |     |     |     |  |      |      |      | 3    | 3    |
| Overall course | 3   | 3 |     |     |     |     |  |      |      |      | 3    | 3    |

| Upon S | Course Outcomes<br>Successful completion of course, the student will be able to                              | Blooms<br>Taxonom<br>y Level |
|--------|--------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1    | To understand basic techniques and problems in the field of recommender systems                              | L2                           |
| CO2    | Evaluate Types of recommender systems: non-personalized, content based, collaborative filtering              | L3                           |
| CO3    | Apply algorithms and techniques to develop Recommender Systems that are widely used in the Internet industry | L3                           |
| CO4    | To develop state-of-the-art recommender systems                                                              | L3                           |

|            | Syllabus                                                                                                                                                                                                                                                               |             |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                               | Mapped CO   |
| I          | <b>Introduction:</b> Recommender system functions, Linear Algebra notation:<br>Matrix addition, Multiplication, transposition, and inverses; covariance<br>matrices, Understanding ratings, Applications of recommendation systems,<br>Issues with recommender system. | CO1         |
| п          | <b>Collaborative Filtering:</b> User-based nearest neighbour recommendation, Item-<br>based nearest neighbour recommendation, Model based and pre-processing<br>based approaches, Attacks on collaborative recommender systems                                         | CO1,<br>CO2 |
| III        | <b>Content-based recommendation:</b> High level architecture of content-based systems, Advantages and drawbacks of content based filtering, Item profiles, Discovering features of documents, Obtaining item features from tags,                                       | CO1,<br>CO2 |

|    | Representing item profiles, Methods for learning user profiles, Similarity based retrieval, Classification algorithms.                                                                                                                                                                                                                                                                                                                                   |             |  |  |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|--|--|
| IV | <ul> <li>Knowledge based recommendation: Knowledge representation and reasoning, Constraint based recommenders, Case based recommenders.</li> <li>Hybrid approaches: Opportunities for hybridization, Monolithic hybridization design: Feature combination, Feature augmentation, Parallelized hybridization design: Weighted, Switching, Mixed, Pipelined hybridization design: Cascade Meta-level, Limitations of hybridization strategies.</li> </ul> | CO1,<br>CO3 |  |  |  |  |  |  |  |
| V  | <b>Evaluating Recommender System:</b> Introduction, General properties of evaluation research, Evaluation designs, Evaluation on historical datasets, Error metrics, Decision-Support metrics, User-Centred metrics.                                                                                                                                                                                                                                     | CO1,<br>CO4 |  |  |  |  |  |  |  |
|    | Learning Resources                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |  |  |  |  |  |

#### Text Books

1. Jannach D., Zanker M. and FelFering A., Recommender Systems: An Introduction, Cambridge University Press(2011), 1st ed. 2.

## References

Ricci F., Rokach L., Shapira D., Kantor B.P., Recommender Systems Handbook, Springer(2011), 1st ed.
 Manouselis N., Drachsler H., Verbert K., Duval E., Recommender Systems For Learning, Springer (2013), 1st ed

## ELEMENTS OF SOFTWARE PROJECT MANAGEMENT (Professional Elective –III)

| Course Code                        | 20IT4701C | Year                           | IV    | Semester           | I                       |
|------------------------------------|-----------|--------------------------------|-------|--------------------|-------------------------|
| Course Category                    | PE3       | Branch                         | IT    | <b>Course Type</b> | Theory                  |
| Credits                            | 3         | L-T-P                          | 3-0-0 | Prerequisites      | Software<br>Engineering |
| Continuous Internal<br>Evaluation: | 30        | Semester<br>End<br>Evaluation: | 70    | Total Marks:       | 100                     |

|      | Course Outcomes                                                                           |    |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Upon | Successful completion of course, the student will be able to                              |    |  |  |  |  |  |  |
| CO1  | Understand the concepts of conventional software management and software economics        | L2 |  |  |  |  |  |  |
| CO2  | Gain the knowledge on software development lifecycle and artifacts                        | L3 |  |  |  |  |  |  |
| CO3  | Understand the process workflows and milestones                                           | L3 |  |  |  |  |  |  |
| CO4  | Analyze the concepts of work break down structure, cost estimation and process automation | L3 |  |  |  |  |  |  |

## Strength of Correlation between CO – PO , CO- PSO in scale of 1-3

1: Slight (low), 2: Moderate (medium) 3: Substantial (High)

|                | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1            | 3   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO2            | 3   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO3            | 3   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO4            |     |     |     | 3   |     |     |     |     | 3   |      | 3    |      | 3    | 3    |
| Overall course | 3   |     |     | 3   |     |     |     |     | 3   |      | 3    |      | 3    | 3    |

| <b>.</b> . | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                         | Mapped<br>CO |
| I          | <ul> <li>Conventional Software Management: The waterfall model, conventional software Management performance.</li> <li>Evolution of Software Economics: Software Economics, pragmatic software cost estimation.</li> <li>Improving Software Economics: Reducing Software product size, improving software processes, improving team effectiveness, improving automation, Achieving required quality, peer Inspections</li> </ul> | CO1          |
| II         | The old way and the new: The principles of conventional software<br>Engineering, principles of modern software management, transitioning to<br>an iterative process.<br>Life cycle phases: Engineering and production stages, inception,<br>elaboration, construction, transition phases.<br>Artifacts of the process: The artifact sets, Management artifacts,<br>Engineering artifacts, Programmatic artifacts                 | C01,C02      |
| III        | Model based software architectures: A Management perspective and<br>technical perspective.<br>Work Flows of the process: Software process workflows, Iteration<br>workflows.<br>Checkpoints of the process: Major mile stones, Minor Milestones,<br>Periodic status assessments.                                                                                                                                                 | CO1,CO2      |
| IV         | Iterative Process Planning: Work breakdown structures, planning<br>guidelines, cost and schedule estimating, Iteration planning process,<br>Pragmatic planning.<br>Project Organizations and Responsibilities: Line-of-Business<br>Organizations, Project Organizations, evolution of Organizations.<br>Process Automation: Automation Building blocks, The Project<br>Environment                                               | C01,C03      |
| V          | Project Control and Process instrumentation: The seven core Metrics,<br>Management indicators, quality indicators, life cycle expectations,<br>pragmatic Software Metrics, Metrics automation, Process discriminates.                                                                                                                                                                                                            | CO1,CO4      |
|            | Learning Resources                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Fext B     |                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| Softwa     | re Project Management, Walker Royce Pearson Education, 2009                                                                                                                                                                                                                                                                                                                                                                      |              |
| Refere     | nces                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| . Soft     | ware Project Management, Bob Hughes and Mike Cotterell Tata McGraw                                                                                                                                                                                                                                                                                                                                                               | - Hill Editi |

Software Project Management, Bob Hughes and Mike Cotterell Tata McGraw- Hill Edition.
 Software Project Management in Practice, Pankajjalot, Pearson Education

## DEEP LEARNING (Professional Elective –III)

| Course Code                        | 20IT4701D | Year                        | IV    | Semester      | Ι                                          |
|------------------------------------|-----------|-----------------------------|-------|---------------|--------------------------------------------|
| Course Category                    | РЕЗ       | Branch                      | IT    | Course Type   | Theory                                     |
| Credits                            | 3         | L-T-P                       | 3-0-0 | Prerequisites | Machine learning<br>and neural<br>networks |
| Continuous Internal<br>Evaluation: | 30        | Semester End<br>Evaluation: | 70    | Total Marks:  | 100                                        |

|                                                                   | Course Outcomes                                                                               |    |  |  |  |  |  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| Upon Successful completion of course, the student will be able to |                                                                                               |    |  |  |  |  |  |
| CO1                                                               | Understand the fundamental techniques and tools required to train a deep learning models      | L2 |  |  |  |  |  |
| CO2                                                               | Analyze deep learning data types and model architectures                                      | L3 |  |  |  |  |  |
| CO3                                                               | Analyze artificial neural network optimization and regularization in deep learning approaches | L3 |  |  |  |  |  |
| CO4                                                               | Train and apply fully connected deep neural networks                                          | L3 |  |  |  |  |  |

## Strength of Correlation between CO – PO, CO- PSO in scale of 1-3

1: Slight (low), 2: Moderate (medium) 3: Substantial (High)

| <br>. Singht (16 w), 2. Woderate (mediani) 5. Substantial (11gh) |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|                                                                  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1                                                              | 3   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO2                                                              |     | 3   |     |     |     |     |     |     |     |      |      |      |      |      |
| CO3                                                              |     | 3   |     |     |     |     |     |     |     |      |      |      |      |      |
| CO4                                                              |     |     |     | 3   |     |     |     |     |     |      |      |      | 3    | 3    |
| Overall                                                          | 3   | 3   |     | 3   |     |     |     |     |     |      |      |      | 3    | 3    |
| course                                                           | 5   | 5   |     | 5   |     |     |     |     |     |      |      |      | 5    | 5    |

|            | Syllabus                                                                                                                                                                                                                        |              |  |  |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|--|
| Unit<br>No | Contents                                                                                                                                                                                                                        | Mapped<br>CO |  |  |  |  |  |  |  |
| I          | <b>Introduction to Tensor Flow: Computational</b> Graph, Key highlights, Creating a Graph, Regression example, Gradient Descent, Tensor Board, Modularity, Sharing Variables, Keras Perceptrons: What is a Perceptron, XOR Gate | CO1          |  |  |  |  |  |  |  |

| Π   | Activation Functions: Sigmoid, ReLU, Hyperbolic Fns, Softmax<br>Artificial Neural Networks: Introduction, Perceptron Training Rule, Gradient<br>Descent Rule                                                                                                                         | CO1,<br>CO2         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| III | <b>Gradient Descent and Back propagation:</b> Gradient Descent, Stochastic Gradient Descent, Back propagation, Some problems in ANN Optimization and Regularization: Overfitting and Capacity, Cross Validation, Feature Selection, Regularization, Hyper parameters                 | CO1,<br>CO2         |
| IV  | <b>Introduction to Convolutional Neural Networks</b> : Introduction to CNNs,<br>Kernel filter, Principles behind CNNs, Multiple Filters, CNN applications<br>Introduction to Recurrent Neural Networks: Introduction to RNNs, Unfolded<br>RNNs, Seq2Seq RNNs, LSTM, RNN applications | CO1,<br>CO2,<br>CO3 |
| V   | <b>Deep Learning applications:</b> Image Processing, Natural Language Processing, Speech Recognition, Video Analytics                                                                                                                                                                | CO1,<br>CO2,<br>CO4 |

## Text Books

1. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016.

# References

- 1. Bishop, C., M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 3. Golub, G., H., and Van Loan, C., F., Matrix Computations, JHU Press, 2013.
- 4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

#### e-Resources and other Digital Material

1) https://keras.io/datasets/

2) http://deeplearning.net/tutorial/deeplearning.pdf

3) https://arxiv.org/pdf/1404.7828v4.pdf

4) <u>https://github.com/lisa-lab/DeepLearningTutorials</u>

#### MINING MASSIVE DATASETS (Professional Elective –III)

| Course Code                        | 20IT4701E | Year                           | IV    | Semester      | I           |
|------------------------------------|-----------|--------------------------------|-------|---------------|-------------|
| Course Category                    | PE3       | Branch                         | IT    | Course Type   | Theory      |
| Credits                            | 3         | L-T-P                          | 3-0-0 | Prerequisites | Data mining |
| Continuous Internal<br>Evaluation: | 30        | Semester<br>End<br>Evaluation: | 70    | Total Marks:  | 100         |

## Strength of Correlation between CO – PO, CO- PSO in scale of 1-3

1: Slight (low), 2: Moderate (medium) 3: Substantial (High)

|                | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1            | 3   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO2            |     | 3   |     |     |     |     |     |     |     |      |      |      |      |      |
| CO3            |     | 3   |     |     |     |     |     |     |     |      |      |      |      |      |
| CO4            |     |     |     | 3   |     |     |     |     |     |      |      |      | 3    | 3    |
| Overall course | 3   | 3   |     | 3   |     |     |     |     |     |      |      |      | 3    | 3    |

| Course Outcomes<br>Upon Successful completion of course, the student will be able to |                                                                                                  |    |  |  |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----|--|--|--|--|
| CO1                                                                                  | Recollecting fundamentals of data mining.                                                        | L2 |  |  |  |  |
| CO2                                                                                  | Apply the concept of Map reduce and data streams for storing and processing of massive data sets | L3 |  |  |  |  |
| CO3                                                                                  | Analyze the issues underlying the effective applications of massive data sets                    | L4 |  |  |  |  |
| CO4                                                                                  | Evaluate different clustering algorithms and analyze various decomposition techniques            | L4 |  |  |  |  |

|            | Syllabus                                                                                                                                                                                                                                                 |              |  |  |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                 | Mapped<br>CO |  |  |  |  |  |  |  |
| Ι          | <b>Data Mining: Introduction,</b> Statistical Modeling, Machine Learning,<br>Computational Approaches to Modeling, Feature Extraction, Statistical Limits on<br>Data Mining, Hash Functions, Indexes, Natural Logarithms, Power Laws.                    |              |  |  |  |  |  |  |  |
| II         | Map Reduce and the New Software Stack: Distributed File Systems, Map Reduce, Algorithms Using MapReduce, Extensions to MapReduce, Complexity Theory for MapReduce.                                                                                       |              |  |  |  |  |  |  |  |
| III        | Mining Data Streams: The Stream Data Model, Sampling Data in a Stream,<br>Filtering Streams, Counting Distinct Elements in a Stream, Counting Ones in a Window, Decaying Windows.                                                                        |              |  |  |  |  |  |  |  |
| IV         | <b>Frequent Item sets:</b> The Market-Basket Model, Market Baskets and the A-Priori Algorithm, Handling Larger Datasets in Main Memory, Limited-Pass Algorithms, Counting Frequent Items in a Stream.                                                    | CO1,CO3      |  |  |  |  |  |  |  |
| V          | Counting Frequent items in a Stream.<br><b>Clustering:</b> Introduction to Clustering Techniques, Hierarchical Clustering, K-<br>means Algorithms, The CURE Algorithm, Clustering in Non-Euclidean Spaces, and<br>Clustering for Streams and Parallelism |              |  |  |  |  |  |  |  |
|            | Learning Resources                                                                                                                                                                                                                                       |              |  |  |  |  |  |  |  |
| Text I     | 0                                                                                                                                                                                                                                                        |              |  |  |  |  |  |  |  |
| 1.Min      | ing of Massive Datasets - Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman" (LaT                                                                                                                                                                        | TeX)         |  |  |  |  |  |  |  |

## ADHOC NETWORKS (Professional Elective –IV)

| Course Code                         | 20IT4702A | Year                        | IV    | Semester      | Ι                    |
|-------------------------------------|-----------|-----------------------------|-------|---------------|----------------------|
| Course Category                     | PE IV     | Branch                      | IT    | Course Type   | Theory               |
| Credits                             | 3         | L-T-P                       | 3-0-0 | Prerequisites | Computer<br>Networks |
| Continuous Internal<br>Evaluation : | 30        | Semester End<br>Evaluation: | 70    | Total Marks:  | 100                  |

| Course | Course Outcomes                                                    |    |  |  |  |  |  |
|--------|--------------------------------------------------------------------|----|--|--|--|--|--|
| Upon S |                                                                    |    |  |  |  |  |  |
| CO1    | Understand the principles of Ad Hoc wireless networks.             | L2 |  |  |  |  |  |
| CO2    | Apply principles of different access control protocols.            | L3 |  |  |  |  |  |
| CO3    | Use the concepts of different routing protocols in real scenarios. | L3 |  |  |  |  |  |
| CO4    | Analyze the concepts of transport layer and security protocols.    | L4 |  |  |  |  |  |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO <sub>2</sub> |
|-----|-----|-----|-----|-----|-----|------------|------------|------------|-----|------|------|------|------|------------------|
| CO1 | 3   |     |     |     |     |            |            |            |     |      |      |      | 3    |                  |
| CO2 | 3   |     |     |     |     |            |            |            |     |      |      |      | 3    |                  |
| CO3 |     | 3   |     |     |     |            |            |            |     |      |      |      | 3    |                  |
| CO4 |     | 3   |     |     |     |            |            |            |     |      |      |      | 3    |                  |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mapped<br>CO |
| Ι          | Ad Hoc Wireless Networks: Introduction-Cellular and Ad Hoc Wireless Networks, Applications of Ad Hoc Wireless Networks, Issues in Ad Hoc Wireless Networks- Medium Access Scheme, Routing, Multicasting, Transport Layer Protocols, Pricing Scheme, Quality of Service Provisioning, Ad Hoc Wireless Internet.                                                                                                                                          | CO1          |
| II         | Mac Protocols For Ad Hoc Wireless Networks – Design Goals of A<br>Mac Protocol For Ad Hoc Wireless Networks, Classifications of MAC<br>protocols, Contention-Based Protocols- MACAW: A Media Access<br>Protocol for Wireless LANs, Floor Acquisition Multiple Access<br>Protocols, Contention-Based Protocols With Reservation Mechanisms-<br>Distributed Packet Reservation Multiple Access Protocol, Collision<br>Avoidance Time Allocation Protocol. | CO1<br>CO2   |
| III        | <b>Routing Protocols:</b> Issues In Designing A Routing Protocol For Ad<br>Hoc Wireless Networks, Classifications of Routing Protocols, Table-<br>Driven Routing Protocols-Destination Sequenced Distance-Vector<br>Routing Protocol, Wireless Routing Protocol, On-Demand Routing<br>Protocols-Dynamic Source Routing Protocol, Ad Hoc On-Demand<br>Distance Vector Routing Protocol.                                                                  | CO1CO3       |
| IV         | Multicast Routing In Ad Hoc Wireless Networks: Issues in<br>designing multicast routing protocols, Classification of Multicast<br>Routing Protocols, Tree-Based Multicast Routing Protocols-<br>Bandwidth-Efficient Multicast Routing Protocol, Multicast Routing<br>Protocol Based on Zone Routing, Mesh-Based Multicast Routing<br>Protocols-On-Demand Multicast Routing Protocol, Dynamic Core-<br>Based Multicast Routing Protocol.                 | CO1CO3       |
| V          | <b>Transport Layer And Security Protocols For Ad Hoc Wireless</b><br><b>Networks:</b> Issues In Designing A Transport Layer Protocol For Ad<br>Hoc Wireless Networks, Design Goals of A Transport Layer Protocol<br>For Ad Hoc Wireless Networks, Classification of Transport Layer<br>Solutions, Network Security Requirements, Issues and Challenges in<br>Security Provisioning, Network Security Attacks-Network Layer<br>Attacks.                  | CO1<br>CO4   |

## Text Books

1. C.Siva Ram Murthy, B.S. Manoj, "Ad hoc wireless networks-Architectures and protocols" Pearson Education, 2014

#### References

1. Stefano Basagni, Marco Conti, "Mobile ad hoc networking", Wielyinterscience 2004

2. Charles Kadushin, Understanding Social Networks: Theories, Concepts, and Findings

## E- Resources and other Digital Material

- 1. <u>https://www.coursera.org/learn/social-network-analysis</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc20\_cs78/</u>

## SERVICE ORIENTED ARCHITECTURE (Professional Elective –IV)

| Course Code                         | 20IT4702B | Year                        | IV    | Semester      | Ι                         |
|-------------------------------------|-----------|-----------------------------|-------|---------------|---------------------------|
| Course Category                     | PE - IV   | Branch                      | IT    | Course Type   | Theory                    |
| Credits                             | 3         | L-T-P                       | 3-0-0 | Prerequisites | JAVA, Web<br>Technologies |
| Continuous Internal<br>Evaluation : | 30        | Semester End<br>Evaluation: | 70    | Total Marks:  | 100                       |

| Upon S | Course Outcomes                                                                                            | Blooms<br>Taxonomy<br>Level |
|--------|------------------------------------------------------------------------------------------------------------|-----------------------------|
| CO1    | Understand basic principles, functionalities, standards, registering and discovery of web services in SOA. | L2                          |
| CO2    | Use the technologies and systems for enabling infrastructure of SOA.                                       | L3                          |
| CO3    | Apply SOAP specification and data structures to provide a general protocol for Web services.               | L3                          |
| CO4    | Analyze the concepts related to WSDL and UDDI framework.                                                   | L4                          |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of Correlations (H:High, M:Medium, L:Low) **PO1** PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 3 3 CO2 3 3 3 CO3 3 3 CO4 3 3

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                         | Mapped<br>CO |
| I          | Web services basics: Introduction, The concept of software as a service, A more complete definition of Web services, Characteristics of Web services, Service interface and implementation, The service-oriented architecture, The Web services technology stack, Quality of service (QoS), Web services interoperability, Web services versus components, Impact and shortcomings of Web services                               | CO1          |
| п          | <b>Distributed computing infrastructure</b> : Distributed computing and Internet protocols, The client–server model, Characteristics of inter process communication, Synchronous forms of middleware, Asynchronous forms of middleware, Request/reply messaging, Message-oriented middleware, Transaction-oriented middleware, Enterprise application and e-business integration                                                 | CO1<br>CO2   |
| III        | <b>Brief overview of XML</b> : XML document structure, URIs and XML namespaces, Defining structure in XML documents, XML schemas reuse, Document navigation and transformation                                                                                                                                                                                                                                                   | CO1<br>CO2   |
| IV         | <b>SOAP:</b> Simple Object Access Protocol: Inter-application communication and wire protocols, SOAP as a messaging protocol, Structure of a SOAP message, The SOAP communication model, Error handling in SOAP, SOAP over HTTP 140, Advantages and disadvantages of SOAP                                                                                                                                                        | CO1<br>CO3   |
| V          | <ul> <li>Describing Web services: Why is a service description needed?, WSDL: Web Services Description Language, Using WSDL to generate client stubs, Non-functional descriptions in WSDL</li> <li>Registering and discovering Web services: Service registries, Service discovery, UDDI data structures, WSDL to UDDI mapping model, The UDDI API, Querying the UDDI model, UDDI usage model and deployment variants</li> </ul> | CO1<br>CO4   |

# Text Books

1. Web Services & SOA Principles and Technology, Second Edition, Michael P. Papazoglou, 2012.

## References

1. Developing J2EE Web Services, R. Nagappan, R. Skoczylas, R.P. Sriganesh, Wiley India.

2. Sandeep Chatterjee, James Webber, Developing Enterprise Web Services, An Architect's Guide, Pearson Education, 2005.

3. Dan Woods and Thomas Mattern, Enterprise SOA Designing IT for Business Innovation, O'REILLY, 2006.

4. Frank Cohen, FastSOA, Elsevier, 2007.

5. Jeff Davies, The Definitive Guide to SOA, Academic Press, 2007

E- Resources and other Digital Material

1. https://www.coursera.org/learn/service-oriented-architecture

## AGILE SOFTWARE DEVELOPMENT

|                     | (Professional Elective -IV) |              |       |               |                         |  |  |  |  |  |  |  |
|---------------------|-----------------------------|--------------|-------|---------------|-------------------------|--|--|--|--|--|--|--|
| Course Code         | 20IT4702C                   | Year         | IV    | Semester      | Ι                       |  |  |  |  |  |  |  |
| Course Category     | PE - IV                     | Branch       | IT    | Course Type   | Theory                  |  |  |  |  |  |  |  |
| Credits             | 3                           | L-T-P        | 3-0-0 | Prerequisites | Software<br>Engineering |  |  |  |  |  |  |  |
| Continuous Internal | 20                          | Semester End | 70    |               | 100                     |  |  |  |  |  |  |  |
| Evaluation :        | 30                          | Evaluation:  | 70    | Total Marks:  | 100                     |  |  |  |  |  |  |  |

| Upon S | Course Outcomes                                                             | Blooms<br>Taxonomy<br>Level |
|--------|-----------------------------------------------------------------------------|-----------------------------|
| C01    | Understand the basics of Agile methods in various development environments. | L2                          |
| CO2    | Apply different software development processes in real situations           | L3                          |
| CO3    | Use Agile tools for software development processes in different scenarios   | L3                          |
| CO4    | Analyze different software development methods                              | L4                          |

| Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of<br>Correlations (H:High, M:Medium, L:Low) |   |  |   |  |   |  |  |  |  |  |   |      |   |   |
|---------------------------------------------------------------------------------------------------------------------------------|---|--|---|--|---|--|--|--|--|--|---|------|---|---|
| PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO                                                                     |   |  |   |  |   |  |  |  |  |  |   | PSO2 |   |   |
| CO1                                                                                                                             | 3 |  |   |  |   |  |  |  |  |  |   |      | 3 |   |
| CO2                                                                                                                             | 3 |  |   |  |   |  |  |  |  |  | 3 |      |   | 3 |
| CO3                                                                                                                             |   |  | 3 |  | 3 |  |  |  |  |  | 3 |      |   |   |
| CO4                                                                                                                             | 3 |  | 3 |  |   |  |  |  |  |  | 3 |      |   | 3 |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                     |                   |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                     | Mapped<br>CO      |
| I          | <b>INTRODUCTION:</b> What is Agile? The Agile manifesto, agile methods, XP: Extreme Programming, DSDM, SCRUM, Feature-Driven Development, modeling misconceptions, agile modeling, tools of misconceptions, updating agile models.                                                                                                           | CO1               |
| II         | <b>Extreme Programming</b> : Introduction, core XP values, the twelve XP practices, about extreme programming? Planning XP projects, test first coding, making pair programming work.                                                                                                                                                        | CO1<br>CO2<br>CO4 |
| III        | Agile Modelling and XP: Introduction, the fit, common practices, modelling specific practices, XP objections to agile modelling, agile modelling and planning XP projects, XP implementation phase.                                                                                                                                          | CO1<br>CO2<br>CO4 |
| IV         | <b>Feature-Driven Development:</b> Introduction, incremental software development, Regaining Control: The motivation behind FDD, planning an iterative project, architecture centric, FDD and XP.                                                                                                                                            | CO1<br>CO2<br>CO4 |
| V          | Agile Methods with RUP and PRINCE2 and Tools and Obstacles: Agile modeling and RUP, FDD and RUP, agile methods and prince2, tools to help with agile development, Eclipse: An agile IDE, obstacles to agile software development, management intransigence, the failed project syndrome, contractual difficulties, familiarity with agility. | CO1<br>CO3<br>CO4 |

## Text Books

1. Craig Larman, Agile and Iterative Development, Addison-Wesley, Pearson Education, 2004.

## References

1. Agile Software Development, Principles, Patterns and Practices, Pearson New International Edition, 2013.

2. Pearson, Robert C. Martin, Juli, James Shore, Chromatic, the Art of Agile Development, O'Reilly Media, 2013.

## E-Resources and other Digital Material

1. https://www.udacity.com/course/agile-software-development-nanodegree--nd144

## NATURAL LANGUAGE PROCESSING

|                     |           | (Professional Ele | ctive –IV) |               |             |
|---------------------|-----------|-------------------|------------|---------------|-------------|
| Course Code         | 20IT4702D | Year              | IV         | Semester      | Ι           |
| Course Category     | PE - IV   | Branch            | IT         | Course Type   | Theory      |
| Credits             | 3         | L-T-P             | 3-0-0      | Prerequisites | Data Mining |
| Continuous Internal |           | Semester End      |            |               |             |
| Evaluation :        | 30        | Evaluation:       | 70         | Total Marks:  | 100         |

| Upon S | Course Outcomes                                                                                                     | Blooms<br>Taxonomy<br>Level |
|--------|---------------------------------------------------------------------------------------------------------------------|-----------------------------|
| CO1    | Understand the theoretical foundations of natural language processing<br>in linguistics and formal language theory. | L2                          |
| CO2    | Apply algorithms to solve text categorization tasks.                                                                | L3                          |
| CO3    | Use concepts of semantic and syntactic analysis in real world NLP applications.                                     | L3                          |
| CO4    | Analyze NLP tasks using existing algorithms and frameworks for various applications.                                | L4                          |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of<br/>Correlations (H:High, M:Medium, L:Low)PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02

|     | PUI | PUZ | PUS | PU4 | PU5 | PUO | PU/ | PUð | PU9 | POIU | POII | POIZ | PSUI | PSU2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO2 |     | 3   |     |     | 3   |     |     |     |     |      |      |      | 3    |      |
| CO3 |     |     | 3   |     |     |     |     |     |     |      |      |      |      | 3    |
| CO4 | 3   |     |     |     |     |     |     |     |     |      |      |      |      | 3    |

| Syllabus |                                                                        |        |
|----------|------------------------------------------------------------------------|--------|
| Unit     | Contents                                                               | Mapped |
| No       | Contents                                                               | CO     |
|          | Regular Expressions, Text Normalization, Edit Distance- Regular        | CO1    |
| I        | Expression, Words, Corpora, Text Normalization, Minimum Edit Distance. | CO4    |
|          | N-Gram Language Models-NGrams, Evaluating Language Models,             |        |
|          | Generalization and Zeros, Smoothing, Kneser-Ney Smoothing, The web and |        |
|          | stupid Backoff, Advanced Perplexity's Relation to Entropy.             |        |

|     | Naive Bayes and Sentiment Classification: Naive Bayes Classifiers, Training   | CO1 |
|-----|-------------------------------------------------------------------------------|-----|
|     | the Naive Bayes Classifier, Worked example, Optimizing for Sentiment          | CO2 |
| II  | Analysis, Naive Bayes for other text classification tasks, Naive Bayes as a   | CO4 |
|     | Language Model, Evaluation: Precision, Recall, F-measure, Test sets and       |     |
|     | Cross-validation, Statistical Significance Testing, Avoiding Harms in         |     |
|     | Classification                                                                |     |
|     | Vector Semantics and Embeddings- Lexical Semantics, Vector Semantics,         | CO1 |
| III | Words and Vectors, Cosine for measuring similarity, TF-IDF: Weighing terms    |     |
|     | in the vector, Applications of the TF-IDF vector model, Word2vec, Visualizing | CO3 |
|     | Embeddings, Semantic properties of embeddings, Bias and Embeddings,           |     |
|     | Evaluating Vector Models.                                                     | CO4 |
|     | Sequence Labeling for Parts of Speech and Named Entities- English Word        | CO1 |
| IV  | Classes, Part-of-Speech Tagging, Named Entities and Named Entity Tagging,     | CO3 |
|     | HMM Part-of-Speech Tagging, Conditional Random Fields (CRFs),                 | CO4 |
|     | Evaluation of Named Entity Recognition                                        |     |
|     | Applications of NLP- Question Answering Information Retrieval                 | CO1 |
|     | IR-based Factoid Question Answering, Entity Linking, Knowledge-based          | CO2 |
| V   | Question Answering, Using Language Models to do QA, Classic QA Models,        | CO3 |
|     | Evaluation of Factoid Answers, Chatbots & Dialogue Systems, Properties of     | CO4 |
|     | Human Conversation, Chatbots, GUS: Simple Frame-based Dialogue Systems,       |     |
|     | The Dialogue-State Architecture, Evaluating Dialogue Systems, Dialogue        |     |
|     | System Design                                                                 |     |

### Text Books

- Speech and Language Processing: An introduction to Natural Language Processing, Computational Linguistics and Speech Recognition by Daniel Jurafsky and James H Martin, 3<sup>rd</sup> Edition, Prentice Hall, 2020.
- 2. Natural Language Processing: An information Access Perspective by Kavi Narayana Murthy, Ess Publications, 2006.

### References

- 1. Applied Text Analysis with Python by Benjamin Bengfort, Tony Ojeda, Rebecca Bilbro, O'Reilly Media, June 2018.
- 2. Natural Language Processing Recipes by Akshay Kulkarni, Adarsha Shivananda, Apress, 2019

### E-Resources and other Digital Material

- 1. Natural Language Processing by Pawan Goyal, IIT Kharagpur, https://swayam.gov.in/nd1\_noc19\_cs56/preview\_
- 2. Natural Language Processing offered by deeplearning.ai on Coursera <u>https://www.coursera.org/specializations/natural-language-processing</u>

### PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY

### BIG DATA ANAYTICS (Professional Elective –IV)

| Course Code                         | 20IT4702E | Year                        | IV    | Semester      | Ι                    |
|-------------------------------------|-----------|-----------------------------|-------|---------------|----------------------|
| Course Category                     | PE -IV    | Branch                      | IT    | Course Type   | Theory               |
| Credits                             | 3         | L-T-P                       | 3-0-0 | Prerequisites | DBMS, Data<br>Mining |
| Continuous Internal<br>Evaluation : |           | Semester End<br>Evaluation: | 70    | Total Marks:  | 100                  |

|        | Course Outcomes                                                            |    |  |  |  |  |  |  |
|--------|----------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Upon S |                                                                            |    |  |  |  |  |  |  |
| CO1    | Understand the concepts of Hadoop, Cassandra, Pig and Hive.                | L2 |  |  |  |  |  |  |
| CO2    | Apply the knowledge of Hadoop and Cassandra for solving real time problems | L3 |  |  |  |  |  |  |
| CO3    | Use the concepts Pig and Hive for big data analysis                        | L3 |  |  |  |  |  |  |
| CO4    | Analyze the appropriate concepts of bigdata to solve a given application.  | L4 |  |  |  |  |  |  |

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of Correlations (H:High,M:Medium,L:Low)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | <b>PO12</b> | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-------------|------|------|
| CO1 | 3   |     |     |     |     |     |     |     |     |      |      |             | 3    |      |
| CO2 | 3   | 3   | 3   |     |     |     |     |     |     |      |      |             | 3    |      |
| CO3 | 3   |     | 3   |     |     |     |     |     |     |      |      |             | 3    |      |
| CO4 | 3   | 3   |     |     |     |     |     |     |     |      |      |             | 3    |      |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                         |                   |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                         |                   |  |  |  |  |  |
| I          | Types of Digital Data: Classification of Digital Data. Introduction to BigData:Characteristic of Data, Evolution of BigData, Definition of Big Data,Challenges with Big Data, What is BigData?. Big Data Analytics: Where doweBegin? What is BigData Analytics?, What Big Data Analytics isn't?,Classification of Analytics, Terminologies Used in Big Data Environments.The BigData Technology Landscape: NoSQL | CO1               |  |  |  |  |  |
| II         | <b>Introduction to Cassandra</b> : Apache Cassandra – An Introduction Features of Cassandra, CQL Data Types, CQLSH, Key spaces, CRUD ,Collections, Using a Counter, Time to Live, Alter Commands, Import and Export.                                                                                                                                                                                             | CO1<br>CO2<br>CO4 |  |  |  |  |  |
| III        | <ul> <li>Hadoop Overview: HDFS(Hadoop Distributed File System), Processing Data with Hadoop, Managing Resources and Applications with Hadoop YARN(Yet another Resource Negotiator).</li> <li>Introduction to MAPREDUCE Programming: Introduction, Mapper, Reducer, Combiner, Partitioner, Searching, Sorting, Compression.</li> </ul>                                                                            | CO1<br>CO2<br>CO4 |  |  |  |  |  |
| IV         | Introduction to Hive: Introduction – Architecture - Data Types - File Formats<br>- Hive Query Language Statements – Partitions – Bucketing – Views - Sub-<br>Query – Joins – Aggregations - Group by and Having - RCFile Implementation<br>- Hive User Defined Function - Serialization and Deserialization.                                                                                                     | CO1<br>CO3<br>CO4 |  |  |  |  |  |
| V          | <b>Pig</b> : Introduction - Anatomy – Features – Philosophy - Use Case for Pig - Pig<br>Latin Overview - Pig Primitive Data Types - Running Pig - Execution Modes<br>of Pig - HDFS Commands - Relational Operators - Eval Function - Complex<br>Data Types - Piggy Bank - User-Defined Functions - Word Count Example<br>using Pig.                                                                              | CO1<br>CO3<br>CO4 |  |  |  |  |  |

### Text Books

1. Big Data and Analytics, Seema Acharya, Subhashini Chellappan ,First Edition,Wiley,2015

### References

- 1. Tom White, Hadoop: The Definitive Guide, FourthEdition,O'Reilly,2015
- 2. Hrushikesha Mohanty, Prachet Bhuyan, Deepak Chenthati Editors Big Data A PremierSpringer Volume 11
- 3. Learning Spark Lightning-Fast Big Data Analysis, Andy Konwinski, Holden Karau, MateiZaharia, Patrick Wendell , First Edition, O'Reilly, 2015
- 4. Big Data Analytics, Radha Shankarmani, M VijayaLakshmi, Second Edition, Wiley, 2017

### E- Resources and other Digital Material

1. <u>https://www.coursera.org/courses?query=introduction%20to%20big%20data%20analytics</u>

2. <u>https://www.edx.org/learn/big-data</u>

3. https://swayam.gov.in/nd1\_noc20\_cs46/

### PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY

### FUNDAMENTALS OF BLOCK CHAIN TECHNOLOGY

|                                        | (Professional Elective –V) |                             |       |               |                      |  |  |  |  |  |
|----------------------------------------|----------------------------|-----------------------------|-------|---------------|----------------------|--|--|--|--|--|
| Course Code                            | 20IT4703A                  | Year                        | IV    | Semester      | Ι                    |  |  |  |  |  |
| Course<br>Category                     | PE 5                       | Branch                      | IT    | Course Type   | Theory               |  |  |  |  |  |
| Credits                                | 3                          | L-T-P                       | 3-0-0 | Prerequisites | Computer<br>Networks |  |  |  |  |  |
| Continuous<br>Internal<br>Evaluation : | 30                         | Semester End<br>Evaluation: | 70    | Total Marks:  | 100                  |  |  |  |  |  |

# Course UtcomesUpon successful completion of the course, the student will be able toCO1Understand the key dimensions of Blockchain TechnologyL2CO2Apply the principles of Block chain for a given application.L3CO3Apply the features of Ethereum and Hyperledger to develop various applicationsL3CO4Analyze the given scenario and design a block chain based solution.L4

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

|     | PO<br>1 | PO<br>2 | PO<br>3 | <b>PO</b><br>4 | PO<br>5 | PO<br>6 | <b>PO</b><br>7 | PO<br>8 | PO<br>9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|---------|---------|---------|----------------|---------|---------|----------------|---------|---------|------|------|------|------|------|
| CO1 | 3       |         |         |                |         |         |                |         |         |      |      |      |      |      |
| CO2 | 3       |         |         |                |         |         |                |         |         |      |      |      | 3    |      |
| CO3 | 3       |         |         |                |         |         |                |         |         |      |      |      | 3    |      |
| CO4 |         | 3       |         |                |         |         |                |         | 3       | 3    |      |      | 3    |      |

|             | Syllabus                                                                                                                                                                                                                                       |             |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Unit<br>No. | Contents                                                                                                                                                                                                                                       | Mapped CO   |
| Ι           | <b>Blockchain 101:</b> Distributed systems, History of Blockchain and bitcoin, Introduction to Blockchain, Consensus, CAP theorem and Blockchain.                                                                                              | CO1,CO2     |
| II          | <b>Decentralization</b> : Decentralization using Blockchain, Methods of decentralization, Routes to decentralization, Blockchain and full ecosystem decentralization, pertinent Terminology.                                                   | CO1,CO2,CO4 |
| ш           | Cryptography and Technical Foundations: Cryptographic primitives,<br>Asymmetric cryptography, Cryptographic constructs and Blockchain<br>technology<br>Introducing Bitcoin: Overview, Cryptographic keys, transactions,<br>Blockchain, Mining. | CO1,CO2,CO4 |
| IV          | Ethereum 101:Overview,The Ethereum Network, Components of the Ethereum ecosystem, The Ethereum Virtual Machine Smart Contracts: Definition, Ricardian Contracts, Smart Contract Templates, Oracles, Deploying Smart Contracts                  | CO1,CO3,CO4 |
| v           | <b>Hyper ledger:</b> Overview, Hyper ledger Reference Architecture,<br>Hyperledger fabric Blockchain-Outside of Currencies: Internet of Things,<br>Government, Health, Finance, Media.                                                         | CO1,CO3,CO4 |

### **Text Book**

**1**.Mastering Block chain - Distributed ledgers, decentralization and smart contracts explained, Imran Bashir, Third Edition, Packt Publishing Ltd.

### References

**1.**Bitcoin and Crypto currency Technologies, Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, Steven Gold feder, Princeton University, 2016.

**2**. Mastering Bitcoin: Unlocking Digital Crypto currencies, Andreas M. Antonopoulos, First Edition, 2014, O'Reilly Media.

### e-Resources and other Digital Material

- 1. https://www.coursera.org/specializations/blockchain
- 2. https://nptel.ac.in/courses/106105184/

### PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY

### CLOUD SECURITY AND PRIVACY (Professional Elective –V)

| Course Code                | 20IT4703B | Year         | IV    | Semester      | Ι         |
|----------------------------|-----------|--------------|-------|---------------|-----------|
| Course Category            | PE 5      | Branch       | IT    | Course Type   | Theory    |
| Credits                    | 3         | L-T-P        | 3-0-0 | Prerequisites | Cloud     |
|                            |           |              |       |               | Computing |
| <b>Continuous Internal</b> |           | Semester End |       |               |           |
| Evaluation :               | 30        | Evaluation:  | 70    | Total Marks:  | 100       |

| Upon S | Course Outcomes                                                                                      | Blooms<br>Taxonomy<br>Level |
|--------|------------------------------------------------------------------------------------------------------|-----------------------------|
| CO1    | Understand the basic components of cloud & Security in the cloud                                     | L2                          |
| CO2    | Illustrate the Infrastructure Security, Data Security, storage and security management in the cloud. | L3                          |
| CO3    | Understand the concepts of Identity and Access Management                                            | L2                          |
| CO4    | Illustrate the privacy issues in could environment                                                   | L3                          |

## Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations(3:Substantial,2: Moderate,1:Slight)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO2 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO3 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO4 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |  |  |  |  |  |
| I          | What Is Cloud Computing: Cloud Computing Defined, The SPI Framework<br>for Cloud Computing, Relevant Technologies in Cloud Computing, The<br>Traditional Software Model, The Cloud Services Delivery Model, Cloud<br>Deployment Models, Key Drivers to Adopting the Cloud, The Impact of<br>Cloud Computing on Users, Governance in the Cloud, Barriers to Cloud<br>Computing Adoption in the Enterprise. | C01        |  |  |  |  |  |  |
| II         | Infrastructure Security: The Network Level,Infrastructure Security: The Host Level, Infrastructure Security: TheApplication LevelData Security and Storage:Aspects of Data Security, Data SecurityMitigation,Provider Data and Its Security                                                                                                                                                               | CO1<br>CO2 |  |  |  |  |  |  |
| III        | <b>Identity and Access Management:</b> Trust Boundaries and IAM, Why<br>IAM?,IAM Challenges, IAM Definitions, IAM Architecture and Practice,<br>Getting Ready for the Cloud, Relevant IAM Standards and Protocols for<br>Cloud Services, IAM Practices in the Cloud, Cloud Authorization<br>Management, Cloud Service Provider IAM Practice                                                               | CO1<br>CO3 |  |  |  |  |  |  |
| IV         | Security Management in the Cloud: Security Management Standards,<br>Security Management in the Cloud Availability Management, SaaS<br>Availability Management PaaS Availability Management, IaaS Availability<br>Management, Access Control, Security Vulnerability, Patch, and<br>Configuration Management                                                                                               | CO1<br>CO2 |  |  |  |  |  |  |
| V          | <b>Privacy</b> : What Is Privacy, What Is the Data Life Cycle, What Are the Key Privacy Concerns in the Cloud, Who Is Responsible for Protecting Privacy, Changes to Privacy Risk Management and Compliance in Relation to Cloud Computing, Legal and Regulatory Implications, U.S. Laws and Regulations, International Laws and Regulations                                                              | CO1<br>CO4 |  |  |  |  |  |  |

### Text Books

1. Tim Mather, Subra Kumara swamy, Shahed Latif, "Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance" O'ReillyMedia; 1edition [ISBN:0596802765], 2009

### References

- 1. RonaldL.Krutz,RussellDeanVines,"CloudSecurity"[ISBN:0470589876],2010.
- 2. John Rittinghouse, James Ransome, "Cloud Computing" CRC Press; 1 edition [ISBN:1439806802], 2009.

 $3. J.R. ("Vic") Winkler, ``Securing the Cloud'' Syngress [ISBN: 1597495921] 2011 \ 1st Edition, Kindle Edition \ Note: State of the Cloud'' Syngress \ State of the Cloud'' Syngress \ State of the Cloud'' Syngress \ State of the Cloud'' \ State \ Stat$ 

### E- Resources and other Digital Material

### PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY

### SOFTWARE TESTING METHODOLOGIES (Professional Elective –V)

| Course Code         | 20IT4703C | Year         | IV    | Semester      | Ι                       |
|---------------------|-----------|--------------|-------|---------------|-------------------------|
| Course Category     | PE 5      | Branch       | IT    | Course Type   | Theory                  |
| Credits             | 3         | L-T-P        | 3-0-0 | Prerequisites | Software<br>engineering |
| Continuous Internal |           | Semester End |       |               |                         |
| Evaluation :        | 30        | Evaluation:  | 70    | Total Marks:  | 100                     |

|        | Course Outcomes                                                         |    |  |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
| Upon S | uccessful completion of course, the student will be able to             |    |  |  |  |  |  |  |  |
| CO1    | Understand the basic concepts of software testing                       | L2 |  |  |  |  |  |  |  |
| CO2    | Apply Dynamic Testing Techniques and validation activities              | L3 |  |  |  |  |  |  |  |
| CO3    | Apply software test management practices                                | L3 |  |  |  |  |  |  |  |
| CO4    | Gain knowledge on automation testing                                    | L2 |  |  |  |  |  |  |  |
| CO5    | Analyze various testing strategies for a given application (Assignment) | L4 |  |  |  |  |  |  |  |

# Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations(3:Substantial,2: Moderate,1:Slight)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO2 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO3 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO4 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO5 |     | 3   |     |     |     |     |     |     | 3   | 3    |      |      |      | 3    |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                               |                     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                               | Mapped<br>CO        |
| I          | Introduction to Software Testing: Introduction, evolution of software testing, software testing-Myths and Facts, goals of software testing, Psychology for software testing, Software Testing Definitions, Model of software testing, Effective Software Testing Vs Exhaustive Software Testing, Software Testing Terminology, Software Testing Life Cycle(STLC), Testing methodology. | CO1                 |
| II         | <ul> <li>Dynamic testing: Black-Box Testing Techniques: Boundary value analysis, equivalence class testing.</li> <li>White-box testing: Need of White Box Testing, Logic Coverage Criteria, Basis Path Testing, Loop Testing, Data Flow Testing.</li> </ul>                                                                                                                            | CO1,<br>CO2,<br>CO5 |
| III        | <ul> <li>Validation activities: Unit validation testing, integration Testing, function Testing, system Testing, acceptance testing.</li> <li>Regression Testing: Progressive Vs Regression Testing, objectives, types, defining regression test problem, regression testing techniques.</li> </ul>                                                                                     | CO1,<br>CO2         |
| IV         | <b>Test management</b> : Test organization, structure of testing group, test planning,<br>Detailed test design and test specification.<br><b>Software Metrics:</b> Need of Software Measurement, Definition of Software<br>Metrics, Classification of Software Metrics, Entities to be measured, Size<br>Metrics.                                                                      | CO1<br>CO3          |
| V          | Automation and Testing Tools: Need for automation, categorization of testing tools, selection of testing tools, Cost incurred, Guidelines for automated testing, overview of some commercial testing tools.                                                                                                                                                                            | CO4                 |

### Text Books

1. Naresh Chauhan, Software Testing: Principles and Practices, 1/e, Oxford UniversityPress, 2010

### References

- 1. William E. Perry, Effective Methods for Software Testing, 3/e, Wiley, 2006.
- 2. Paul C. Jorgensen, Software Testing: A Craftsman's Approach, 3/e, Auerbach publication, 2015.

### E- Resources and other Digital Material

https://www.coursera.org/courses?query=software%20testing https://nptel.ac.in/courses/106101163

### PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY

### SOFT COMPUTING (Professional Elective –V)

| Course Code                         | 20IT4703D | Year                        | IV    | Semester      | Ι                                             |
|-------------------------------------|-----------|-----------------------------|-------|---------------|-----------------------------------------------|
| Course Category                     | PE-5      | Branch                      | IT    | Course Type   | Theory                                        |
| Credits                             | 3         | L-T-P                       | 3-0-0 | Prerequisites | Mathematics,<br>Probability and<br>Statistics |
| Continuous Internal<br>Evaluation : | 30        | Semester End<br>Evaluation: | 70    | Total Marks:  | 100                                           |

| Upon S | Course Outcomes<br>Upon Successful completion of course, the student will be able to                         |    |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| CO1    | Understand the basic concepts of soft computing, Artificial Neural Network techniques and their applications | L2 |  |  |  |  |
| CO2    | Illustrate the concepts of Supervised Learning Network, Un Supervised Learning Network                       | L2 |  |  |  |  |
| CO3    | Interpret the concepts of fuzzy logic and fuzzy relations                                                    | L2 |  |  |  |  |
| CO4    | Apply genetic algorithms to solve engineering problems                                                       | L3 |  |  |  |  |

Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations(3:Substantial,2: Moderate,1:Slight)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO2 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO3 | 3   |     |     |     |     | 3   |     |     |     |      |      |      | 3    |      |
| CO4 | 3   |     |     |     |     | 3   |     |     |     |      |      |      | 3    |      |

| Syllabus   |                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                        |     |  |  |  |  |  |
| I          | Introduction: Neural Networks, Application scope of neural networks,<br>Application scope of Neural Networks, Fuzzy logic, Genetic Algorithm, Hybrid<br>Systems, Soft computing.<br>Artificial Neural Network: An Introduction, Fundamental Concept, Evolution<br>of Neural Networks, Basic models Artificial neural network, Important<br>Terminologies of ANNs, McCulloch-Pitts Neuron, Linear Separability, Hebb<br>Network. |     |  |  |  |  |  |
| II         | Supervised Learning Network: Introduction, Perceptron Networks, Adaptive Linear Neuron, Multiple adaptive Linear neurons, Back Propagation Network. Unsupervised Learning Network: Introduction, Fixed weight Competitive Nets, Counter Propagation Networks, Adaptive Resonance Theory Network.                                                                                                                                | CO2 |  |  |  |  |  |
| III        | <b>Introduction to Fuzzy Logic, Classical Sets and Fuzzy Sets:</b> Introduction to Fuzzy Logic, Classical Sets(Crisp Sets):Operations on Classical Sets, Fuzzy Sets: Fuzzy Set Operations.<br>Classical Relations and Fuzzy Relation: Introduction, Cartesian Product of Relation, Classical Relation, Fuzzy Relations.                                                                                                         | CO1 |  |  |  |  |  |
| IV         | <b>Genetic Algorithm:</b> Introduction, Biological background, Traditional Optimization and Search Techniques: Gradient-Based Local Optimization method, Random Search, Stochastic Hill Climbing, Simulated Annealing, Symbolic Artificial Intelligence Genetic Algorithm and Search space, Genetic Algorithm Vs Traditional Algorithms.                                                                                        | CO4 |  |  |  |  |  |
| V          | Basic Terminologies in Genetic Algorithm: Simple GA, General GeneticAlgorithm, Operators in Genetic Algorithm: Encoding, Selection,<br>Crossover(Recombination),Mutation, Stopping Condition for Genetic Algorithm<br>Flow: Best Individual, Worst Individual, Sum of Fitness, Median Fitness                                                                                                                                   | CO4 |  |  |  |  |  |

### Text Books

1. Principles of Soft Computing, S.N.Sivanandam, S.N.Deepa, Wiley India Pvt. Ltd., Second Edition, 2011.

### References

- 1. Principles of Soft Computing, S.N.Sivanandam, S.N.Deepa, Wiley India Pvt. Ltd., 2018, Paperback.
- 2. Genetic Algorithms: Search and Optimization. E. Goldberg
- 3. Fuzzy Sets and Fuzzy Logic-Theory and Applications, George J. Klir and Bo Yuan, Prentice Hall, 2015, Paperback.

### E- Resources and other Digital Material

- 1. https://nptel.ac.in/courses/106/105/106105173/
- 2. https://cse.iitkgp.ac.in/~dsamanta/courses/sca/index.html#resourceS

### PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA (AUTONOMOUS) INFORMATION TECHNOLOGY

### DATA SCIENCE

### (Professional Elective –V)

| Course Code                         | 20IT4703E | Year                        | IV    | Semester      | Ι                       |
|-------------------------------------|-----------|-----------------------------|-------|---------------|-------------------------|
| Course Category                     | PE-5      | Branch                      | IT    | Course Type   | Theory                  |
| Credits                             | 3         | L-T-P                       | 3-0-0 | Prerequisites | Data Mining<br>Concepts |
| Continuous Internal<br>Evaluation : | 30        | Semester End<br>Evaluation: | 70    | Total Marks:  | 100                     |

|        | Course Outcomes                                             | Blooms<br>Taxonomy<br>Level |
|--------|-------------------------------------------------------------|-----------------------------|
| Upon S | uccessful completion of course, the student will be able to |                             |
| CO1    | Understand the basic terms of Data Science.                 | L2                          |
| CO2    | Understand the Data Science process.                        | L2                          |
| CO3    | Explain how to Handle large data on a single computer       | L2                          |
| CO4    | Apply Data Visualization, plotting techniques.              | L3                          |

### Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations(3:Substantial,2: Moderate,1:Slight) PO3 PO4 **PO1 PO2 PO5** PO6 **PO7 PO8** PO9 **PO10** PO11 **PO12** PSO1 PSO2 CO1 3 3 **CO2** 3 3 CO3 3 3 **CO4** 3 3 **Syllabus** Unit Mapped Contents CO No

|   | Data science in a big data world : Benefits and uses of data science and big data                                                                                                                                                                                                                                             | CO1 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | <b>Facets of data:</b> Structured data, Unstructured data, Natural language, Machine-generated                                                                                                                                                                                                                                | COI |
|   | data, Graph-based or network data, Audio, image, and video, Streaming data                                                                                                                                                                                                                                                    |     |
|   | <b>The data science process:</b> Setting the research goal , Retrieving data, Data preparation, Data exploration, Data modeling or model building, Presentation and automation                                                                                                                                                |     |
|   | The data science process : Overview of the data science process: Don't be a slave to                                                                                                                                                                                                                                          | CO1 |
| I | the process, <b>Defining research goals and creating a project charter:</b> Spend time understanding the goals and context of your research, Create a project charter <b>Retrieving data:</b> Start with data stored within the company, Don't be afraid to shop around, Do data quality checks now to prevent problems later | CO2 |
|   | Cleansing, integrating, and transforming data: Cleansing data, Correct errors as early                                                                                                                                                                                                                                        | CO1 |
|   | as possible, Combining data from different data sources, Transforming data                                                                                                                                                                                                                                                    |     |
| Ι | Exploratory data analysis, Build the models: Model and variable selection, Model execution, Model diagnostics and model comparison                                                                                                                                                                                            | CO2 |
|   | Handling large data on a single computer : The problems you face when handling large                                                                                                                                                                                                                                          | CO1 |
| V | data                                                                                                                                                                                                                                                                                                                          | CO3 |
|   | <b>General techniques for handling large volumes of data:</b> Choosing the right algorithm,<br>Choosing the right data structure, Selecting the right tools                                                                                                                                                                   |     |
|   | General programming tips for dealing with large data sets: Don't reinvent the wheel,                                                                                                                                                                                                                                          |     |
|   | Get the most out of your hardware, Reduce your computing needs.                                                                                                                                                                                                                                                               |     |
|   | Plotting and Visualization: A Brief matplotlib API Primer: Figures and Subplots,                                                                                                                                                                                                                                              | CO1 |
|   | Colors, Markers, and Line Styles, Ticks, Labels, and Legends, Annotations and Drawing                                                                                                                                                                                                                                         | CO4 |
| 7 | on a Subplot, Saving Plots to File, matplotlib Configuration                                                                                                                                                                                                                                                                  |     |
|   | Plotting with pandas and sea born: Line Plots, Bar Plots, Histograms and Density                                                                                                                                                                                                                                              |     |
|   | Plots, Scatter or Point Plots, Facet Grids and Categorical Data                                                                                                                                                                                                                                                               | 1   |

### Text Books

1. Introducing Data Science: Big data, machine learning, and more, using Python tools Davy Cielen, Arno D. B. Meysman, and Mohamed Ali, Manning Publishers

 Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython Wes McKinney, Second Edition, 2018, O'Reilly Media, (Unit 4- (9<sup>th</sup> Chapter)

### References

- 1. Avrim Blum, John Hop croft and Ravindran Kannan. Foundations of Data Science.
- 2. Jure Leskovek, Anand Rajaraman and Jeffrey Ullman .Mining of MassiveDatasets.v2.1,CambridgeUniversityPress.2 014.(free online)
- 3. Jiawei Han, Micheline Kamber and Jian Pei. Data Mining: Concepts and Techniques, 3rd Edition. ISBN 0123814790.2011.

### E- Resources and other Digital Material

https://www.coursera.org/browse/data-science/data-analysis https://nptel.ac.in/courses/106106179

### FUNDAMENTALS OF DATA SCIENCE (Open Elective-III)

| Course Code                | 20IT2701A | Year         | IV         | Semester      | I           |
|----------------------------|-----------|--------------|------------|---------------|-------------|
| Course Category            | OE-III    | Branch       | Offered by | Course Type   | Theory      |
|                            |           |              | IT         |               |             |
| Credits                    | 3         | L-T-P        | 3-0-0      | Prerequisites | Data Mining |
| <b>Continuous Internal</b> |           | Semester End |            |               |             |
| Evaluation :               | 30        | Evaluation:  | 70         | Total Marks:  | 100         |

|        | Course Outcomes                                              |    |  |  |  |  |
|--------|--------------------------------------------------------------|----|--|--|--|--|
| Upon S | Successful completion of course, the student will be able to |    |  |  |  |  |
| C01    | Understand the basic concepts of Data Science                | L2 |  |  |  |  |
| CO2    | Apply different modelling methods                            | L3 |  |  |  |  |
| CO3    | Discuss the concepts of web mining                           | L2 |  |  |  |  |
| CO4    | Analyze the different modelling methods                      | L4 |  |  |  |  |

# Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations(3:Substantial,2: Moderate,1:Slight)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO2 | 3   | 3   | 3   |     |     |     |     |     |     |      |      |      | 3    |      |
| CO3 | 3   |     | 3   |     |     |     |     |     |     |      |      |      | 3    |      |
| CO4 | 3   | 3   |     |     |     |     |     |     |     |      |      |      | 3    |      |

|            | Syllabus                                                                                                                                                                                                                                                           |                   |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                           | Mapped<br>CO      |
| I          | Introduction to data science: The Data Science process: Roles in a datascience project, stages of a data science projectManaging Data: Cleaning data, Sampling for modeling and validation                                                                         | CO1               |
| II         | <b>Modelling Methods:</b> Choosing evaluating models: Problems to machine learning tasks, Evaluating models                                                                                                                                                        | CO1<br>CO2<br>CO4 |
| III        | Linear and Logistic Regression:Using Linear Regression:UnderstandingLinear regression model,Making PredictionsUsing Logistic Regression:UnderstandingLogistic regression model,Making PredictionsaLogistic regression model,Making PredictionsLogistic Regression, | CO1<br>CO2<br>CO4 |
| IV         | Unsupervised methods:<br>Clustering Analysis: Preparing Data, K-Means Algorithm<br>Association Rules: Overview of Association rules, Mining Associations<br>rules                                                                                                  | CO1<br>CO2<br>CO4 |
| v          | <b>Web Mining</b> :Web Content mining, Web structure mining, Web usage mining, Text mining, Unstructured Text, Episode rule discovery for text, Text Clustering                                                                                                    | CO1<br>CO3        |

### Text Books

Nina Zumel, John Mount: Practical Data Science with R , Dreamtech, 2015
 Data Mining Techniques 3<sup>rd</sup> Edition Arun K Pujari 2013

### References

Fundamentals of Data Science, 1<sup>st</sup> Edition By Sanjeev J. Wagh, Manisha S. Bhende, Anuradha D. Thakare, 2021

### E- Resources and other Digital Material

http://nptel.ac.in

### DISASTER MANAGEMENT AND PREPAREDNESS

(Open Elective-III)

| Course Code                | 20CE2701A | Year         | IV         | Semester      | Ι                        |
|----------------------------|-----------|--------------|------------|---------------|--------------------------|
| Course Category            | OE-III    | Branch       | Offered by | Course Type   | Theory                   |
|                            |           |              | CE         |               |                          |
| Credits                    | 3         | L-T-P        | 3-0-0      | Prerequisites | Environmental<br>Science |
| <b>Continuous Internal</b> |           | Semester End |            |               |                          |
| Evaluation :               | 30        | Evaluation:  | 70         | Total Marks:  | 100                      |

|        | Course Outcomes                                                             |    |  |  |  |  |
|--------|-----------------------------------------------------------------------------|----|--|--|--|--|
| Upon S | uccessful completion of course, the student will be able to                 |    |  |  |  |  |
| CO1    | <b>Demonstrate</b> basic terminology and <b>classify</b> types of disasters | L3 |  |  |  |  |
| CO2    | Outline the impacts of disaster                                             | L2 |  |  |  |  |
| CO3    | Familiarize Disaster management activities and phases                       | L2 |  |  |  |  |
| CO4    | Explain the Components of disaster relief, disaster management policies     | L3 |  |  |  |  |
| CO5    | Develop the responsibilities towards society after disaster                 | L3 |  |  |  |  |

Contribution of Course Outcomes towards achievement of Program Outcomes &Strength of correlations(3:Substantial,2: Moderate,1:Slight)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| C01 | 2   | 2   |     |     |     |     | 2   |     |     | 2    |      |      |      | 2    |
| CO2 | 2   | 2   |     |     |     |     | 2   |     |     | 2    |      |      |      | 2    |
| CO3 | 3   | 3   |     |     |     |     | 2   |     |     | 2    |      |      |      | 2    |
| CO4 | 2   | 2   |     |     |     |     | 2   |     |     | 2    |      |      |      | 2    |
| C05 | 2   | 2   |     |     |     |     | 2   |     |     | 2    |      |      |      | 2    |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mapped<br>CO |
| I          | <b>INTRODUCTION &amp; DISASTERS CLASSIFICATION</b><br>Concepts and definitions: disaster, hazard, vulnerability, resilience, risks severity, frequency and details, capacity, impact, prevention, mitigation. Disasters classification; natural disasters (floods, draught, cyclones, volcanoes, earthquakes, tsunami, landslides, forest fires.); manmade disasters (industrial pollution, nuclear radiation, chemical spills, terrorist strikes); hazard and vulnerability profile of India. | CO1          |
| II         | <b>DISASTER IMPACTS</b><br>Disaster impacts (environmental, physical, social, ecological, economical, political); health, psycho-social issues; demographic aspects (gender, age, special needs); hazard locations; global and national disaster trends; climate change and urban disasters                                                                                                                                                                                                    | CO2          |
| Ш          | <b>DISASTER MITIGATION AND PREPAREDNESS</b><br>Disaster management cycle – its phases; prevention, mitigation, preparedness, relief and recovery; structural and non-structural measures; risk analysis, vulnerability and capacity assessment; early warning systems, Role of remote sensing and GIS in disaster management.                                                                                                                                                                  | CO3          |
| IV         | <b>POST DISASTER RESPONSE</b><br>Emergency medical and public health services; Environmental post disaster response (water, sanitation, food safety, disease control, security, communications);reconstruction and rehabilitation; Roles and responsibilities of government, community, local institutions, role of agencies like NDMA, SDMA and other International agencies, organizational structure, role of insurance sector.                                                             | CO4          |
| V          | DISASTERS - ENVIRONMENT AND DEVELOPMENTFactors affecting vulnerability such as impact of developmental projects and<br>environmental modifications (including of dams, land use changes,<br>urbanization etc.), sustainable and environmental friendly recovery;<br>reconstruction and development methods.                                                                                                                                                                                    | CO5          |

| Learning | Resources |
|----------|-----------|
|----------|-----------|

| Text Books                                                                              |
|-----------------------------------------------------------------------------------------|
|                                                                                         |
| 1. R. B. Singh, Disaster Management, Rawat Publications, 2000                           |
| 2. Pradeep Sahni, 2004, Disaster Risk Reduction in South Asia, Prentice Hall.           |
| 3. Singh B.K., 2008, Handbook of Disaster Management: Techniques & Guidelines,          |
| Rajat Publication.                                                                      |
| References                                                                              |
|                                                                                         |
| 1. Disaster Medical Systems Guidelines. Emergency Medical Services Authority, State of  |
| California, EMSA no.214, June 2003                                                      |
| 2. Inter-Agency Standing Committee (IASC) (Feb. 2007). IASC Guidelines on               |
| Mental Health and Psychosocial Support in Emergency Settings. Geneva: IASC              |
| E- Resources and other Digital Material                                                 |
| 1. http://ndma.gov.in/ (Home page of National Disaster Management Authority)            |
| 2. http://www.ndmindia.nic.in/ (National Disaster management in India, Ministry of Home |
| Affairs).                                                                               |

### **RESEARCH METHODOLOGY**

| Course Code                           | 20EC2701A | Year                           | IV                | Semester        | Ι      |
|---------------------------------------|-----------|--------------------------------|-------------------|-----------------|--------|
| Course<br>Category                    | OE-III    | Branch                         | Offered<br>by ECE | Course Type     | Theory |
| Credits                               | 3         | L-T-P                          | 3-0-0             | Prerequisites   | Nil    |
| Continuous<br>Internal<br>Evaluation: | 30        | Semester<br>End<br>Evaluation: | 70                | Total<br>Marks: | 100    |

|        | Course Outcomes                                                       |  |  |  |  |  |  |
|--------|-----------------------------------------------------------------------|--|--|--|--|--|--|
| Upon s | Upon successful completion of the course, the student will be able to |  |  |  |  |  |  |
| CO1    | CO1 Understand basic concepts and its methodologies (L2)              |  |  |  |  |  |  |
| CO2    | Demonstrate the knowledge of research processes (L3)                  |  |  |  |  |  |  |
| CO3    | CO3 Apply research articles in their academic projects (L3)           |  |  |  |  |  |  |
| CO4    | Analyze various types of testing tools used in research (L4)          |  |  |  |  |  |  |
| CO5    | Design a research paper (L4)                                          |  |  |  |  |  |  |

| Not           | Mapping of course outcomes with Program outcomes(CO/PO/PSO Matrix)           Note:1-Weak correlation         2-Medium correlation         3-Strong correlation           *-Average value indicates course correlation strength with mapped PO |     |     |     |     |     |     |     |     |      |          |      |          |      |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|----------|------|----------|------|
| CO/PO&P<br>SO | PO1                                                                                                                                                                                                                                           | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO1<br>1 | PO12 | PSO<br>1 | PSO2 |
| CO-1          | 2                                                                                                                                                                                                                                             |     |     |     |     |     |     | 2   |     | 2    |          | 2    |          |      |
| CO-2          | 3                                                                                                                                                                                                                                             |     |     |     |     |     |     | 3   |     | 3    |          | 3    |          |      |
| CO-3          | 2                                                                                                                                                                                                                                             |     |     |     |     |     |     | 2   |     | 2    |          | 2    |          | 2    |
| CO-4          |                                                                                                                                                                                                                                               | 3   |     |     | 3   | 3   |     | 3   |     | 3    |          | 3    | 3        | 3    |
| CO-5          | 2                                                                                                                                                                                                                                             |     |     |     |     |     |     | 2   |     | 2    |          | 2    |          |      |

|             | Syllabus                                                                                                                                                                                                                                                                                                                           |          |  |  |  |  |  |  |  |  |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|--|--|--|--|--|
| Unit<br>No. | Contents                                                                                                                                                                                                                                                                                                                           |          |  |  |  |  |  |  |  |  |  |  |
| Ι           | <ul> <li>Introduction: Meaning of Research, Objectives of Research, Types d'Research, Research Approaches.</li> <li>Research Ethics: Objectives, codes, policies, conventions of publications, ethics for editors, reviewers and publishers, IPR.</li> <li>Research Problem: What is a Research Problem?, Selecting the</li> </ul> | CO1, CO2 |  |  |  |  |  |  |  |  |  |  |

|     | Problem, Necessity of Defining a problem.                                                              |          |
|-----|--------------------------------------------------------------------------------------------------------|----------|
|     | Research Design –Features of Good Design, Important Concepts                                           |          |
|     | related to Research Design, Basic Principles of Experimental                                           |          |
|     | Designs.                                                                                               |          |
|     | Sampling Design –Sample Design, Sampling and Non- Sampling                                             |          |
|     | errors, Goodness of Measurement scales, Sources of error in                                            |          |
| II  | measurement.                                                                                           |          |
|     | <b>Data Collection Methods</b> – Collection of Primary Data – Collection of Secondary data.            | CO1-CO3  |
|     | Data Preparation: Data Preparation Process, Some problems in                                           |          |
|     | Preparation Process, Missing Values and Outliers, Types of                                             |          |
|     | Analysis, Statistics in Research.                                                                      |          |
|     | Descriptive Statistics: Measures of Central Tendency, Measures of                                      |          |
| III | Dispersion, Measures of Skewness, Kurtosis, Measures of                                                | CO1, CO4 |
|     | Relationship, Association in case of Attributes, Other Measures                                        | 01,004   |
|     | Sampling and Statistical Inference: Parametric vs Statistic,                                           |          |
|     | Sampling and Non-Sampling errors, Sampling Distribution, Degrees                                       |          |
| IV  | of Freedom, Standard Error.                                                                            | CO1, CO4 |
|     | Testing of Hypothesis: What is a Hypothesis, Basic Concepts                                            |          |
|     | Concerning Testing of Hypothesis, Testing the Hypothesis, Test                                         |          |
|     | Statistic and Critical Region, Critical Value and Decision Value,<br>Procedure for Hypothesis Testing. |          |
|     | <b>Interpretation and Report Writing</b> : Meaning of Interpretation,                                  |          |
| V   | Techniques of Interpretation, Precautions in Interpretation Significance                               |          |
| •   | of Report Writing, Different Steps in Writing Report, Layout of a                                      |          |
|     | Research Paper, Types of Reports, Oral Presentation, Mechanics of                                      | CO1, CO5 |
|     | Writing a Research Report, Precautions for Writing Research Reports.                                   |          |

|   | Te | ext Books:                                                                              |
|---|----|-----------------------------------------------------------------------------------------|
| ſ | 1. | C.R.Kothari, Research Methodology: Methods and Techniques, 2 <sup>nd</sup> Ed., New Age |
|   |    | International Publishers,2014.                                                          |
|   | 2  | Garg BL Karadia R Agarwal F and Agarwal An introduction to Research                     |

2. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, An introduction to Research Methodology, RBSA Publishers, U.K., 2002

### **References:**

1. Day, R.A., How to Write and Publish a Scientific Paper, Cambridge University Press,1992

2. Anthony, M., Graziano, A.M. and Raulin, M.L., Research Methods: A Process of Inquiry, Allyn and Bacon, 2009

### e- Resources & other digital material

- 1. https://www.youtube.com/watch?v=8iFfzYVuCuM
- 2. https://onlinecourses.nptel.ac.in/noc22\_ge08
- 3. <u>https://www.youtube.com/watch?v=GSeeyJVD0JU</u>

### e-WASTE MANAGEMENT

### (Open Elective-III)

| Course             | 20EC2701B | Year               | IV    | Semester           | Ι      |
|--------------------|-----------|--------------------|-------|--------------------|--------|
| Code               |           |                    |       |                    |        |
| Course             | OE3       | Branch             | ECE   | <b>Course Type</b> | Theory |
| Category           |           |                    |       |                    |        |
| Credits            | 3         | L-T-P              | 3-0-2 | Prerequisites      |        |
| Continuous         | 30        | Semester           | 70    | Total              | 100    |
| Internal           |           | End                |       | Marks:             |        |
| <b>Evaluation:</b> |           | <b>Evaluation:</b> |       |                    |        |

|            | Course Outcomes                                                                                                      |  |  |  |  |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Upon       | Upon successful completion of the course, the student will be able to                                                |  |  |  |  |  |  |  |  |  |
| <b>CO1</b> | Understand the environmental impacts of e-waste.                                                                     |  |  |  |  |  |  |  |  |  |
| CO2        | Apply concepts of e-waste management hierarchy.                                                                      |  |  |  |  |  |  |  |  |  |
| CO3        | Distinguished the role of various national and internal act and laws applicable for e-waste management and handling. |  |  |  |  |  |  |  |  |  |
| CO4        | Analyze the e – waste management measures proposed under national and global legislations.                           |  |  |  |  |  |  |  |  |  |

| Note: 1 | Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)           Note: 1- Weak correlation         2-Medium correlation         3-Strong correlation           * - Average value indicates course correlation strength with mapped PO |         |     |     |     |     |     |     |     |          |          |          |          |          |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|----------|----------|
| COs     | PO1                                                                                                                                                                                                                                                 | PO<br>2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO1<br>0 | PO1<br>1 | PO1<br>2 | PS<br>O1 | PSO<br>2 |
| CO1     | 2                                                                                                                                                                                                                                                   |         |     |     |     | 2   | 2   |     |     | 2        |          | 2        |          |          |
| CO2     | 2                                                                                                                                                                                                                                                   |         |     |     |     | 2   | 2   |     |     | 2        |          | 2        |          |          |
| CO3     |                                                                                                                                                                                                                                                     | 2       |     |     |     | 2   | 2   |     |     | 2        |          | 2        |          |          |
| CO4     |                                                                                                                                                                                                                                                     | 3       |     |     |     | 2   | 2   |     |     | 2        |          | 2        |          |          |

|             | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No. | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mapped<br>CO |
| I           | <b>Introduction.</b><br>E- waste; composition and generation. Global context in e- waste; E-<br>waste pollutants, E waste hazardous properties, Effects of pollutant (E-<br>waste) on human health and surrounding environment, domestic e-waste<br>disposal, Basic principles of E waste management, Component of E<br>waste management, Technologies for recovery of resources from<br>electronic waste, resource recovery potential of e-waste, steps in<br>recycling and recovery of materials-mechanical processing, technologies<br>for recovery of materials, occupational and environmental health | CO1          |
| II          | perspectives of recycling e-waste in India.<br><b>E-waste hazardous on Global trade</b><br>Essential factors in global waste trade economy, Waste trading as a quint<br>essential part of electronic recycling, Free trade agreements as a means of<br>waste trading. Import of hazardous e-waste in India; India's stand on<br>liberalizing import rules, E-waste economy in the organized and unorganized<br>sector. Estimation and recycling of e-waste in metro cities of India.                                                                                                                       | CO1,<br>CO2  |
| III         | <b>E-waste control measures</b><br>Need for stringent health safeguards and environmental protection laws in<br>India, Extended Producers Responsibility (EPR), Import of e-waste<br>permissions, Producer-Public-Government cooperation, Administrative<br>Controls & Engineering controls, monitoring of compliance of Rules,<br>Effective regulatory mechanism strengthened by manpower and technical<br>expertise, Reduction of waste at source.                                                                                                                                                       | CO1,<br>CO3  |
| IV          | E-waste (Management and Handling) Rules, 2011; and E-Waste (Management) Rules, 2016 - Salient Features and its likely implication. Government assistance for TSDFs.                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO1,<br>CO4  |
| V           | The international legislation: The Basel Convention; The Bamako<br>Convention. The Rotterdam Convention. Waste Electrical and Electronic<br>Equipment (WEEE) Directive in the European Union, Restrictions of<br>Hazardous Substances (RoHS) Directive                                                                                                                                                                                                                                                                                                                                                     | CO1,<br>CO4  |

**Text Books** 

1.E-waste: implications, regulations, and management in India and current global best practices", Johri R., TERI Press, New Delhi

### **Reference Books**

- 1. Electronic Waste 1st Edition (Toxicology and Public Health Issues), Fowler B. 2017Elsevier
- 2. Electronic Waste Management. Science ,Hester R.E., and Harrison R.M. 2009

### NON-CONVENTIONAL ENERGY SOURCES

| Course<br>Code                                                                                                                                |       |        | 20EE2              | 2701A | Year | r       |                   | Ι        | V            | Sem       | ester     |           | Ι         |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------------------|-------|------|---------|-------------------|----------|--------------|-----------|-----------|-----------|-----------|------|
| Cours<br>Categ                                                                                                                                |       |        | OE -               | – III | Brai | nch     |                   |          | red by<br>EE | Cou       | rse Type  | e         | Theo      | ory  |
|                                                                                                                                               |       |        |                    |       |      |         |                   |          |              | Ni        | 1         |           |           |      |
| Conti                                                                                                                                         | nuous |        |                    |       | Sem  | ester F | End               | U        | 0 0          | Tota      |           |           | - 1-      |      |
| Intern                                                                                                                                        | nal   |        | 30                 | 0     | Eval | uation  | 1                 | 7        | 70           | Mar       | ks        |           | 10        | 0    |
| Evalu                                                                                                                                         | ation |        |                    |       |      |         |                   |          |              |           |           |           |           |      |
| Course Outcomes                                                                                                                               |       |        |                    |       |      |         |                   |          |              |           |           |           |           |      |
| Upon successful completion of the course, the student will be able to                                                                         |       |        |                    |       |      |         |                   |          |              |           |           |           |           |      |
| CO1 Understand the process of energy collection, quantification, storage, conversion and applications of non-conventional sources. (L2) 12345 |       |        |                    |       |      |         |                   |          |              |           |           |           |           |      |
| CO2                                                                                                                                           |       |        | knowle<br>eat, wi  |       |      |         | rsion b<br>L3) 12 |          | esting e     | energy fi | om diffe  | erent nat | ural sour | ces  |
| CO3                                                                                                                                           |       |        | c laws<br>, fuel c |       |      |         | oductio           | on of en | ergy fr      | om Sola   | ar, wind, | ocean, ł  | piomass,  |      |
| CO4                                                                                                                                           |       |        | e theor            |       |      |         | d mills           | , MHD    | , Fuel c     | cells. (  | L4)       | 35        |           |      |
| CO5                                                                                                                                           |       |        |                    |       |      |         |                   |          |              |           | conomic   | aspects   | of MHE    | )    |
|                                                                                                                                               |       |        | d Ôcea             |       |      |         |                   |          | -            |           |           | -         |           |      |
| CO6                                                                                                                                           |       |        |                    |       |      | rgy gei | neratio           | n techn  | iques a      | nd to m   | easure th | ne basic  | paramet   | ers  |
|                                                                                                                                               |       |        | t a repo           |       |      |         |                   |          |              |           |           |           |           |      |
|                                                                                                                                               | Co    | ontrib |                    |       |      |         |                   |          |              |           | rogram    | Outcom    | es &      |      |
|                                                                                                                                               |       |        |                    | 0     |      |         | ,                 | 0        | -            | edium, 1  | ,         | TT        |           |      |
| ~~ .                                                                                                                                          | PO1   | PO2    | PO3                | PO4   | PO5  | PO6     | PO7               | PO8      | PO9          | PO10      | PO11      | PO12      | PSO1      | PSO2 |
| CO1                                                                                                                                           | 2     |        |                    |       |      |         |                   |          |              |           |           |           |           | 1    |
| CO2                                                                                                                                           | 3     |        |                    |       |      |         | 3                 |          |              |           |           |           | 2         | 1    |
| CO3                                                                                                                                           | 3     |        |                    |       |      |         | 3                 |          |              |           |           |           | 2         | 1    |
| CO4                                                                                                                                           |       | 3      |                    |       |      |         |                   |          |              |           |           |           | 2         | 1    |
| CO5                                                                                                                                           |       | 3      |                    |       |      |         | 3                 |          |              |           |           |           | 2         | 1    |
| CO6                                                                                                                                           |       |        |                    |       |      |         |                   |          | 3            | 2         |           | 3         | 2         | 1    |

| 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>PRINCIPLES OF SOLAR RADIATION</b> : Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extra-terrestrial and terrestrial solar radiation, solar radiation on titled surface.                                                                                      | Iapped CO <sup>3</sup><br>CO1,<br>CO2,CO<br>CO6 |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|--|--|--|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | renewable source, the solar energy option, Environmental impact of solar power,<br>physics of the sun, the solar constant, extra-terrestrial and terrestrial solar<br>radiation, solar radiation on titled surface.<br>Measurement of Solar Radiation: Pyrometer, shading ring pyrheliometer,                                                                           |                                                 |  |  |  |  |  |  |
| sunshine recorder, schematic diagrams and principle of working.         2       SOLAR ENERGY COLLECTION AND STORAGE:         Solar Light Energy: Photovoltaic effect, characteristics of photovoltaic cells, conversion efficiency, solar batteries and applications of photovoltaic energy conversion.         Solar Heat Energy: Sensible, latent heat of Heat storage, solar ponds.         Applications- solar heating/cooling technique, solar distillation and drying. |                                                                                                                                                                                                                                                                                                                                                                         |                                                 |  |  |  |  |  |  |
| 3 WIND ENERGY: Sources and potentials, horizontal and vertical axis<br>windmills, performance characteristics, Betz criteria<br>OCEAN ENERGY: OTEC, types of OTEC plants, mini-hydel power plants                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                         |                                                 |  |  |  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul><li>BIO-MASS: Principles of Bio-Conversion, Anaerobic/aerobic digestion,types of Bio-gas digesters.</li><li>GEOTHERMAL ENERGY: Resources, methods of harnessing the energy.</li></ul>                                                                                                                                                                               | CO1,<br>CO3,C<br>O5,<br>CO6                     |  |  |  |  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5MHD Generators: Basic principles of MHD generator and Hall Effect,<br>different types of MHD generators.CFuel Cells: Introduction, principle of fuel cells, thermodynamic analysis<br>offuel cells, types of fuel cells, fuel cell batteries, applications of fuel cells.C                                                                                             |                                                 |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Learning Resources                                                                                                                                                                                                                                                                                                                                                      |                                                 |  |  |  |  |  |  |
| Text Book                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS :                                                                                                                                                                                                                                                                                                                                                                    |                                                 |  |  |  |  |  |  |
| 2. S. F<br>Kha                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D. Rai, Non-Conventional Energy Sources, Khanna publishers, 5th edition,2014.<br>Rao and B. B.Parulekar, Energy Technology- Non conventional, Renewable and Co<br>anna Pub ,3rd Edition, 1999.                                                                                                                                                                          | nventional,                                     |  |  |  |  |  |  |
| Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |                                                 |  |  |  |  |  |  |
| <ol> <li>B.F. edit</li> <li>3. B.T</li> <li>4. Tiw</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>hok V Desai, Non-Conventional Energy, New age publishers, 1st edition 1990.</li> <li>H.Khan, Non-Conventional Energy Sources, Tata Mc Graw-hill Publishing Compartion, 2013.</li> <li>T. Nijaguna, Biogas Technology, New Age International Pub, First edition 2002.</li> <li>vari and Ghosal, Renewable Energy resources, Narosa, 2nd edition 2005</li> </ul> | ny, 2nd                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /www.coursera.org/learn/renewable-energy-technology-fundamentals/<br>/nptel.ac.in/courses/121106014                                                                                                                                                                                                                                                                     |                                                 |  |  |  |  |  |  |

### **OPERATION RESEARCH**

| (Open Elective-3) |
|-------------------|
|-------------------|

| Course code                          | 20ME2701A | Year                          | IV    | Semester      | Ι      |
|--------------------------------------|-----------|-------------------------------|-------|---------------|--------|
| Course<br>category                   | OE-III    | Offering<br>Branch            | ME    | Course Type   | Theory |
| Credits                              | 3         | L-T-P                         | 3-0-0 | Prerequisites | Nil    |
| Continuous<br>Internal<br>Evaluation | 30        | Semester<br>End<br>Evaluation | 70    | Total Marks   | 100    |

| Course   | Upon successful completion of the course, the student                                                                                           | BTL | Units     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| Outcomes | will be able to                                                                                                                                 |     |           |
| CO1      | Understand the basics of linear programming,<br>transportation, queueing, sequencing of jobs,<br>replacement, inventory and simulation problems | L2  | 1,2,3,4,5 |
| CO2      | Apply linear programming, transportation and assignment models to solve real life problems                                                      | L3  | 1,2       |
| CO3      | Apply Sequencing, queueing, Game and<br>Replacement theories to solve problems                                                                  | L3  | 3,4       |
| CO4      | Apply knowledge of inventory control and simulation<br>to solve practical industrial problems                                                   | L3  | 5         |

|            | Contribution of Course outcomes towards achievement of Program outcomes<br>&Strength of correlations (High:3, Medium: 2, Low:1) |   |  |  |  |  |  |  |  |   |   |      |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|--|---|---|------|--|--|
|            | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2                                                                    |   |  |  |  |  |  |  |  |   |   | PSO2 |  |  |
| CO1        | 3                                                                                                                               | 3 |  |  |  |  |  |  |  | 3 | 2 |      |  |  |
| CO2        | 3                                                                                                                               | 3 |  |  |  |  |  |  |  | 3 | 2 |      |  |  |
| CO3        | 3                                                                                                                               | 3 |  |  |  |  |  |  |  | 3 | 2 |      |  |  |
| <b>CO4</b> | 3                                                                                                                               | 3 |  |  |  |  |  |  |  | 3 | 2 |      |  |  |

|      | Syllabus                                                                                                                                                                                                                                                                                                                                                     |              |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| UNIT | Contents                                                                                                                                                                                                                                                                                                                                                     | Mapped<br>CO |
| I    | <ul> <li>Introduction to Operations Research: History, definition, operations research models, phases of implementing operations research in practice, applications.</li> <li>Linear Programming: Introduction, formulation, graphical solution, simplex method, artificial variable techniques – Big M and two-phase methods, duality principle.</li> </ul> | CO1<br>CO2   |
| п    | <b>Transportation</b> : Formulation, initial feasible solution, optimal solution – MODI method, unbalanced transportation problems, degeneracy in transportation problems.<br><b>Assignment</b> : Formulation, optimal solution, Hungarian method, travelling salesman problem.                                                                              | CO1<br>CO2   |
| III  | Queuing theory: Introduction, Kendall's notation, classification of                                                                                                                                                                                                                                                                                          | CO1          |

|    | queuing models, single server and multi-server models, Poisson arrival,<br>exponential service, infinite population<br><b>Sequencing</b> : Introduction, assumptions, processing n-jobs through two<br>machines, n-jobs through three machines, and graphic solution for<br>processing 2 jobs through n machines with different order of sequence.                                                                               | CO3        |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| IV | <b>Game Theory</b> : Introduction, game with pure strategies, game with mixed strategies, dominance principle, graphical method for 2xn and mx2 games. <b>Replacement Theory</b> : Introduction, replacement of items that deteriorate with time - value of money unchanging and changing, simple probabilistic model for replacement of items that fail completely                                                              | CO1<br>CO3 |
| V  | <b>Inventory control</b> : Introduction, inventory costs, Economic Order<br>Quantity (EOQ)Demand rate Uniform and replenishment rate infinite,<br>demand rate non-uniform replenishment rate infinite, Demand rate<br>uniform, models with and without shortages, inventory model with single<br>price break.<br><b>Simulation</b> : Definition, Types of simulation models, phases of simulation,<br>applications of simulation | CO1<br>CO4 |

### Text books:

- 1. Operations Research, by S.D.Sharma, Kedarnath& Ramnath publications (15th edition),2013.
- 2. Introduction to Operations Research, by Taha, Pearson Education, New Delhi, (8th edition), 2008

### **Reference books**

- 1. Operations Research, (4th edition) by A.M. Natarajan, P. Balasubramani, ATamilarasi, Pearson Education, New Delhi, 2009.
- 2. Operations Research, (2nd edition) by R.Pannerselvam, 2009, PHI Publications, Noida
- 3. Operations Research, (2nd edition) by Wagner, 2007, PHI Publications, Noida
- 4. Operation Research, (4th edition) by J.K.Sharma, 2009, MacMilan publishers, india Ltd. New Delhi.

### **E-Resources & other digital Material:**

- 1. http://nptel.ac.in/courses/112106134/
- 2. http://nptel.ac.in/courses/112106131/

| Course Code                          | 20ME2701B | Year                          | IV    | Semester      | Ι      |
|--------------------------------------|-----------|-------------------------------|-------|---------------|--------|
| Course<br>Category                   | OE-III    | Offering<br>Branch            | ME    | Course Type   | Theory |
| Credits                              | 3         | L-T-P                         | 3-0-0 | Prerequisites | Nil    |
| Continuous<br>Internal<br>Evaluation | 30        | Semester<br>End<br>Evaluation | 70    | Total Marks   | 100    |

### MANAGEMENT INFORMATION SYSTEMS

| Course   | Upon successful completion of the course, the student                                                                      | BTL | Units     |
|----------|----------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| Outcomes | will be able to                                                                                                            |     |           |
| CO1      | Understand the basic concepts of MIS, Decision making, Applications of MIS, Decision support systems, BPR and E- Commerce. | L2  | 1,2,3,4,5 |
| CO2      | Interpret the MIS decision making and its applications.                                                                    | L3  | 2,3       |
| CO3      | Categorize Decision support systems and Business<br>Process Re-Engineering                                                 | L3  | 4         |
| CO4      | Summarize the Electronic commerce environment and its opportunities.                                                       | L3  | 5         |

|     | Contribution of Course outcomes towards achievement of Program outcomes<br>&Strength of correlations (High:3, Medium: 2, Low:1) |   |  |  |   |  |  |   |   |   |   |   |      |   |
|-----|---------------------------------------------------------------------------------------------------------------------------------|---|--|--|---|--|--|---|---|---|---|---|------|---|
|     | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02                                                                    |   |  |  |   |  |  |   |   |   |   |   | PSO2 |   |
| CO1 | 2                                                                                                                               | 1 |  |  | 1 |  |  | 1 | 1 | 3 | 2 | 1 | 1    | 3 |
| CO2 | 2                                                                                                                               | 1 |  |  | 1 |  |  | 1 | 1 | 3 | 2 | 1 | 1    | 3 |
| CO3 | 2                                                                                                                               | 1 |  |  | 1 |  |  | 1 | 1 | 3 | 2 | 1 | 1    | 3 |
| CO4 | 2                                                                                                                               | 1 |  |  | 1 |  |  | 1 | 1 | 3 | 2 | 1 | 1    | 3 |

|      | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| UNIT | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mapped<br>CO |
| Ι    | <b>Introduction to MIS</b> : Definition of MIS, Role and Impact of MIS, MIS:<br>Support to the management, As tool for Management Process, Basic<br>model of organization, Modifications to the basic model, organization as a<br>system, MIS: organization, Strategic management of business.                                                                                                                                                 | CO1          |
| п    | <b>Decision Making:</b> Concepts, Methods, Tools, Procedures, Organizational decision making, MIS and Decision making concepts, Information: A Quality Product, Classification of information, Value of information, General model of Human as information processor, Types of systems, Handling system complexity, Development of long range plans of the MIS, Development and implementation of MIS, Factors of Success and failure for MIS. | CO1,<br>CO2  |
| ш    | <b>Applications:</b> Applications in Manufacturing Sector, Personnel, financial, production, materials, marketing management, Applications in service sector, creating a Distinctive service, MIS in service industry, Technology of Information systems, Data processing, Transaction processing, Application processing, TQM of Information systems, Programming languages for system coding.                                                | CO1,<br>CO2  |
| IV   | <b>Decision support systems and BPR:</b> Concept and philosophy,<br>Deterministic systems, Artificial Intelligence systems, Knowledge based<br>expert system, Enterprise Management systems, ERP basic features EMS<br>and MIS, Business Process Re- Engineering, Process model of<br>organization, Value stream model of the organization MIS and BPR.                                                                                        | CO1,<br>CO3  |
| V    | <b>E-Commerce:</b> Electronic commerce environment and opportunities: back ground, electronic commerce Environment, Modes of electronic commerce: Approaches to safe electronic commerce, Overview, Secure transport protocols, Secure Transactions, Secure Electronic Payment Protocol, and Secure Electronic Transaction.                                                                                                                    | CO1,<br>CO4  |

### Text books:

- 1. W.S. Jawadekar, Management Information Systems: A Global Digital Enterprise Perspective, 5<sup>th</sup> Edition, McGraw Hill Education, 2013.
- 2. D. Minoli, Web Commerce Technology Hand Book, 1st edition, McGraw Hill Education, 2000.

### **Reference books**

- 1. K.C. Laudon and J. Laudon, Management Information Systems: Managing a Digital firm, 11t<sup>h</sup> Edition, Pearson Education, 2012.
- 2. D. Gordon and M. Oslon, Management Information Systems: Conceptual Foundations, Structure and Development, 2nd Edition, McGraw Hill Education Pvt Ltd, India, 2001.
- 3. R.G. Murdic, J.E. Ross and J.R. Clagget, Information Systems for Modern Management, 3<sup>rd</sup> Edition, PHI, 2008.
- 4. K.Ravi and A.B. Whinston, Frontiers of Electronic Commerce, 1st edition, Pearson India, 2002.

### **E-Resources & other digital Material:**

- 1. http://nptel.ac.in/courses/112106134/
- 2. http://nptel.ac.in/courses/112106131/

### FUNDAMENTALS OF ARTIFICIAL INTELLEGENCE

### (Open Elective-IV)

| Course Code                        | 20IT2702A | Year                           | IV               | Semester      | Ι      |
|------------------------------------|-----------|--------------------------------|------------------|---------------|--------|
| Course Category                    | OE4       |                                | Offered<br>by IT | Course Type   | Theory |
| Credits                            | 3         | L-T-P                          | 3-0-0            | Prerequisites | -      |
| Continuous Internal<br>Evaluation: | 30        | Semester<br>End<br>Evaluation: | 70               | Total Marks:  | 100    |

| Unon Su | Course Outcomes                                                   | Blooms<br>Taxonomy<br>Level |  |  |  |  |  |  |  |  |
|---------|-------------------------------------------------------------------|-----------------------------|--|--|--|--|--|--|--|--|
| Upon Su | Upon Successful completion of course, the student will be able to |                             |  |  |  |  |  |  |  |  |
| CO1     | Know the challenges and concepts of AI.                           | L2                          |  |  |  |  |  |  |  |  |
| CO2     | Solve problems using heuristics search algorithms                 | L3                          |  |  |  |  |  |  |  |  |
| CO3     | Transform knowledge into rules.                                   | L3                          |  |  |  |  |  |  |  |  |
| CO4     | Demonstrate Symbolic reasoning under uncertainty                  | L3                          |  |  |  |  |  |  |  |  |
| CO5     | Acquainted with expert systems.                                   | L3                          |  |  |  |  |  |  |  |  |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations(3:Substantial,2:Moderate,1:Slight)

| ······································ |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|----------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|                                        | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1                                    | 3   |     |     |     |     |     |     |     |     |      |      |      | 2    | 3    |
| CO2                                    |     | 3   |     |     |     |     |     |     |     |      |      |      | 3    | 3    |
| CO3                                    |     | 3   |     |     |     |     |     |     |     |      |      |      | 3    | 3    |
| CO4                                    |     | 3   |     |     |     |     | 3   |     |     |      |      |      | 3    | 3    |
| CO5                                    |     |     |     | 3   |     |     |     |     |     |      |      |      | 3    | 3    |

|            | Syllabus                                                                                                                                                                                                                                      |                  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                      | Map<br>ped<br>CO |
| I          | What is AI: The AI Problems, What is an AI Techniques, Criteria for Successes?<br>Problems and problem spaces and Search: Problem as a state space search,<br>Production systems, Problem Characteristics, Production system characteristics. | CO1              |
| II         | Heuristic search technique: Generate and test, Hill climbing, Best First search, Problem reduction, Constraint satisfaction.                                                                                                                  | CO1<br>,<br>CO2  |
| III        | <b>Knowledge Representation issues</b> : Representations and mappings.<br><b>Representing knowledge using rules</b> : Procedural knowledge Vs Declarative knowledge, Forward Vs Backward reasoning, matching.                                 | CO3              |
| IV         | <ul> <li>Symbolic reasoning under uncertainty: Introduction to Non monotonic reasoning, Implementation in DFS and BFS.</li> <li>Weak, strong slot and filler structures: Semantic nets, Frames Conceptual dependency, Scripts.</li> </ul>     | CO4              |
| V          | <b>Planning</b> : Goal stack planning, Hierarchical planning<br><b>Expert Systems</b> : Expert system shells, Knowledge acquisition.                                                                                                          | CO5              |

|        | Learning Resources                                                        |  |
|--------|---------------------------------------------------------------------------|--|
| Text B | ooks                                                                      |  |
| 1.4    | Artificial Intelligence, 2 <sup>nd</sup> Edition, E.RichandK.Knight(TMH). |  |
| Refere | nces                                                                      |  |
| 1.     | Artificial Intelligence and Expert Systems–Patterson PHI                  |  |
| 2.     | ExpertSystemsPrinciplesandProgramming-FourthEdn,Giarrantana/Riley,Thomson |  |
| 3.     | PROLOGProgrammingforArtificialIntelligence.IvanBratka-ThirdEdition-       |  |
|        | PearsonEducation.                                                         |  |

### e-Resources& other digital material

http://www.jntuk-coeerd.in/

http://nptel.ac.in/video.php?subjectId=106105079

http://nptel.iitk.ac.in/courses/Webcourse-

contents/IIT%20Kharagpur/Artificial%20intelligence/New\_index1.html

### 20CE2702A - ENVIRONMENTAL MANAGEMENT AND AUDIT

| Cou        | rse Ca                                                                                                                                  | tegory                                                                                                                                                                |        | Open I  | Electiv               | e -IV    |                  |          |          |           | Credit       | s:        |              | 3        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-----------------------|----------|------------------|----------|----------|-----------|--------------|-----------|--------------|----------|
|            |                                                                                                                                         |                                                                                                                                                                       |        | •       |                       |          |                  |          |          | Le        | cture-Tu     |           |              | 0-0      |
|            | ourse [                                                                                                                                 | I ype:                                                                                                                                                                |        | Theory  | /                     |          |                  |          |          |           | Practic      |           | 3-           | 0-0      |
|            |                                                                                                                                         |                                                                                                                                                                       |        |         |                       |          |                  |          |          |           | Continu      |           |              | 30       |
| _          |                                                                                                                                         |                                                                                                                                                                       |        |         | Environmental Science |          |                  |          |          |           | Evaluat      |           | 0            |          |
| Pı         | rerequi                                                                                                                                 | sites:                                                                                                                                                                |        |         |                       |          |                  |          |          |           | Semester End |           |              |          |
|            |                                                                                                                                         |                                                                                                                                                                       |        |         |                       |          |                  |          |          |           | Evaluat      |           |              | 70       |
| Course     | . <b>O</b> +                                                                                                                            |                                                                                                                                                                       |        |         |                       |          |                  |          |          |           | Fotal Ma     | arks:     | 1            | 00       |
| -          | fourse Outcomes                                                                                                                         |                                                                                                                                                                       |        |         |                       |          |                  |          |          |           |              |           |              |          |
| <b>CO1</b> |                                                                                                                                         |                                                                                                                                                                       |        |         |                       | solid v  |                  |          |          | 10.       |              |           |              | L2       |
| CO1        |                                                                                                                                         |                                                                                                                                                                       |        |         | <u> </u>              |          |                  | <u> </u> |          | isposal   |              |           |              | L2<br>L3 |
| CO2        |                                                                                                                                         |                                                                                                                                                                       |        |         | <u> </u>              |          |                  |          |          | sures and | d E-was      | te rules  |              | L3       |
| CO4        |                                                                                                                                         | <u> </u>                                                                                                                                                              | basic  |         |                       |          | <b>ere</b> 1115, | Contro   | )i illou | Sur es un |              | te ruies  |              | L2       |
| CO5        |                                                                                                                                         |                                                                                                                                                                       |        | • •     |                       | viron    | nental           | auditi   | ng.      |           |              |           |              | L2       |
|            |                                                                                                                                         |                                                                                                                                                                       |        |         |                       |          |                  |          | 0        | nent of l | Progran      | n Outco   | mes          |          |
|            | PO1                                                                                                                                     | PO2                                                                                                                                                                   | PO3    | PO4     | PO5                   | PO6      | <b>PO7</b>       | PO8      | PO9      | PO10      | PO11         | PO12      | PSO1         | PSO2     |
| <b>CO1</b> | 2                                                                                                                                       | 2                                                                                                                                                                     | 2      |         |                       |          | 2                |          |          |           |              |           | 2            | 2        |
| CO2        | 2                                                                                                                                       | 2                                                                                                                                                                     | 2      |         |                       |          | 2                |          |          |           |              |           | 2            | 2        |
| <b>CO3</b> | 3                                                                                                                                       | 3                                                                                                                                                                     | 3      |         |                       |          | 2                |          |          |           |              |           | 3            | 2        |
| CO4        | 2                                                                                                                                       | 2                                                                                                                                                                     | 2      |         |                       |          | 2                |          |          |           |              |           | 2            | 2        |
| CO5        | 2                                                                                                                                       | 2                                                                                                                                                                     | 2      |         |                       |          | 2                |          |          |           |              |           | 2            | 2        |
| Avg.       | 2                                                                                                                                       | 2                                                                                                                                                                     | 2      |         |                       |          | 2                |          |          |           |              |           | 2            | 2        |
|            | 1.                                                                                                                                      | Low                                                                                                                                                                   |        |         |                       |          | 2-Me             |          |          |           |              | 3-Hi      | gh           |          |
|            |                                                                                                                                         |                                                                                                                                                                       |        |         |                       |          | urse (           |          |          |           |              |           |              |          |
|            |                                                                                                                                         |                                                                                                                                                                       |        |         |                       |          |                  |          |          | EMENT     |              |           |              |          |
| UNIT-      |                                                                                                                                         |                                                                                                                                                                       |        |         |                       |          |                  |          |          |           |              | rates-fa  |              | CO1      |
| UNII       |                                                                                                                                         | affecting generation, characteristics, segregation of solid wastes – source reduction of waste – objectives of waste processing, elements of solid waste management – |        |         |                       |          |                  |          |          |           |              | COI       |              |          |
|            |                                                                                                                                         |                                                                                                                                                                       | -      |         |                       | anager   |                  | g, cici  | nents    | or sond   | waste n      | lanagen   | ient –       |          |
|            |                                                                                                                                         |                                                                                                                                                                       |        |         |                       | MANA     |                  | ENT      |          |           |              |           |              |          |
|            |                                                                                                                                         |                                                                                                                                                                       | 21011  |         |                       |          |                  |          |          |           |              |           |              |          |
| UNIT       | -2 D                                                                                                                                    | Definition-Sources-Classification of biomedical waste – Objectives of Biomedical                                                                                      |        |         |                       |          |                  |          |          |           |              | edical    | CO2          |          |
|            |                                                                                                                                         | waste management-segregation-containers for biomedical waste-Labelling                                                                                                |        |         |                       |          |                  |          |          |           |              |           |              |          |
|            |                                                                                                                                         |                                                                                                                                                                       |        |         | -                     | sal me   | thods            |          |          |           |              |           | -            |          |
| _          | E                                                                                                                                       | -WAS'                                                                                                                                                                 | TE M   | ANAG    | EME                   | NT       |                  |          |          |           |              |           |              |          |
|            |                                                                                                                                         |                                                                                                                                                                       | _      |         |                       |          |                  |          |          |           |              |           |              |          |
| UNIT       |                                                                                                                                         |                                                                                                                                                                       |        |         |                       |          |                  |          |          |           |              | tion-Dis  |              | CO3      |
|            | methods; Effect on air, water and soil; Health hazards; Role of individual for E-<br>waste management. Current E-waste Management Rules |                                                                                                                                                                       |        |         |                       |          |                  |          | or E-    |           |              |           |              |          |
|            |                                                                                                                                         |                                                                                                                                                                       |        |         |                       |          |                  |          |          |           |              |           |              |          |
|            | ENVIRONMENTAL IMPACT ASSESSMENT (EIA)                                                                                                   |                                                                                                                                                                       |        |         |                       |          |                  |          |          |           |              |           |              |          |
| UNIT       | . <u>1</u> In                                                                                                                           | troduc                                                                                                                                                                | tion D | ofiniti | on Soo                | no Oh    | inotivo          | e ~4     | : EI     | A-Basic   | EIA          | Dring     | inlag        | CO4      |
|            |                                                                                                                                         |                                                                                                                                                                       |        |         |                       | pe-Ob    |                  |          |          |           |              | Princ     | <b>.</b> .   | CO4      |
|            |                                                                                                                                         | Classification of EIA-Life Cycle Assessment-Environmental Policy of India.<br>Baseline Data Acquisition: Environmental Inventory- Rapid EIA.                          |        |         |                       |          |                  |          |          |           |              |           |              |          |
|            |                                                                                                                                         |                                                                                                                                                                       |        |         |                       | DIT IN   |                  |          |          | rupiu I   |              |           |              |          |
| UNIT       |                                                                                                                                         |                                                                                                                                                                       |        |         |                       |          |                  |          |          | ents of   | Environ      | mental    | audit.       | CO5      |
| ~          |                                                                                                                                         |                                                                                                                                                                       |        |         |                       |          |                  |          |          |           |              | Post auc  |              |          |
| ι          |                                                                                                                                         | 00033                                                                                                                                                                 |        | uonne   | mai al                | iuit-F10 | c audit          |          | ny -A    | CHVILIES  | ai 5110-     | I USI aut | <i>41</i> 1. |          |

|                    | Learning Resources                                                                                      |
|--------------------|---------------------------------------------------------------------------------------------------------|
|                    | 1. Agarwal, K.M., Sikdar, P.K., Deb., S.C (2005) A Text Book of Environment,<br>Macmillan IndiaLimited. |
| Text Books         | 2. Sharma, R.D. (1976), Organisational Management, Light and Life Publishers,<br>New Delhi.             |
|                    | 3. Varma and Agarwal, Theory & amp; practice of Management Forward                                      |
|                    | BookDepot, NewDelhi<br>1. Kovntz, H and C. Danvel (1978): Essential of management, second edition, Tata |
| Reference          | Mc Graw Hillpublishing company, New Delhi.                                                              |
| Books              | 2. Erickson, P.A. (1977) Environmental Impact Assessment – Principles and                               |
|                    | Erickson, P.A. (1977)                                                                                   |
| <b>E-Resources</b> |                                                                                                         |
| & other            | http://nptel.ac.in                                                                                      |
| digital            |                                                                                                         |
| material           |                                                                                                         |

### TELECOMMUNICATIONS

(Open Elective-IV

\_\_

| Course                 | 20EC2702A   | Year                        | IV    | Semester      | Ι      |
|------------------------|-------------|-----------------------------|-------|---------------|--------|
| Code                   |             |                             |       |               |        |
| Course                 | Open        | Branch                      | ECE   | Course Type   | Theory |
| Category               | Elective-IV |                             |       |               |        |
| Credits                | 3           | L-T-P                       | 3-0-0 | Prerequisites |        |
| Continuous<br>Internal | 30          | Semester End<br>Evaluation: | 70    | Total Marks:  | 100    |
| <b>Evaluation:</b>     |             |                             |       |               |        |

|            | Course Outcomes                                                          |  |  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Upon       | successful completion of the course, the student will be able to         |  |  |  |  |  |  |  |
| CO1        | Infer the basic knowledge of telecommunication system, regulations (L2). |  |  |  |  |  |  |  |
| CO2        | Make use of revolutionary changes in Telecommunication technologies      |  |  |  |  |  |  |  |
|            | (L3).                                                                    |  |  |  |  |  |  |  |
| CO3        | Analyse different components of telecommunication system. (L4).          |  |  |  |  |  |  |  |
| <b>CO4</b> | Appraise the use of various components of telecommunication systems      |  |  |  |  |  |  |  |
|            | (L4).                                                                    |  |  |  |  |  |  |  |

| Note:  | Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)Note: 1- Weak correlation2-Medium correlation3-Strong correlation |     |     |     |     |     |     |     |     |      |    |      |   |   |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|----|------|---|---|
| * - Av | * - Average value indicates course correlation strength with mapped PO COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO PO12 PS0 PS0   |     |     |     |     |     |     |     |     |      |    |      |   |   |
| COI    | 2                                                                                                                                     | 102 | 105 | 104 | 105 | 100 | 10/ | 100 | 109 | 1010 | 11 | 1012 | 1 | 2 |
| COI    | 2                                                                                                                                     |     |     |     |     |     |     |     |     |      |    |      |   |   |
| CO2    | 3                                                                                                                                     |     |     |     |     |     |     |     |     | 2    |    |      |   |   |
| CO3    |                                                                                                                                       | 2   |     |     |     |     |     |     |     | 2    |    |      | 2 | 2 |
| CO4    |                                                                                                                                       | 2   |     |     |     |     |     |     |     | 2    |    |      | 2 | 2 |

---

|             | Syllabus                                                                                                                                                                                                                                 |              |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Unit<br>No. | Contents                                                                                                                                                                                                                                 | Mapped<br>CO |
| Ι           | <b>Telecommunication Systems:</b> Evolution of Tele Communication<br>Systems, Simple telephone communication, Telephones, Telephone<br>System, Facsimile, Internet Telephony, Tele Communication<br>Standards.                           | CO1CO4       |
| II          | <b>Cell Phone Technologies</b> : Cellular Telephone Systems, A Cellular<br>Industry Overview, 2G and 3G Digital Cell Phone Systems, Long<br>Term Evolution and 4G Cellular Systems                                                       | CO1 -CO4     |
| III         | <b>Wireless Technologies:</b> Wireless LAN, PANs and Bluetooth,<br>ZigBee and Mesh Wireless Networks, WiMAX and Wireless Metrop<br>olitan-Area Networks- Infrared wireless- Ultra wideband wireless-<br>Additional wireless applications | CO1 -CO4     |
| IV          | <b>Optical Communication:</b> Optical Principles, Optical Communication Systems, Fiber-Optic Cables, Optical Transmitters and Receivers.                                                                                                 | CO1 –CO4     |
| V           | <b>Satellite Communication:</b> Satellite Orbits, Satellite Communication<br>Systems, Satellite Subsystems, Ground Stations, Satellite<br>Applications, Global Navigation Satellite Systems.                                             | CO1 –CO4     |

### Text Books

- 1. Louis E. Frenzel Jr., Principles of Electronic Communication Systems, 4/e, Mc Graw Hill Publications, McGraw-Hill Education, 2016.
- 2. Telecommunication Switching Systems and Networks, by Thiagarajan Viswanathan, PHI

### **Reference Books**

1.Telecommunication Switching and Networks. By P.Gnanasivam, New Age International

2. Willium C. Y. Lee, "Wireless & Cellular Telecommunications", McGraw-Hill Companies Inc, Third Edition, 2006.1.

2. Wayne Tomasi, Advanced Electronic Communication Systems, 4/e, Pearson Education, 2013.

3. Dennis Roddy, Electronic Communications, 4/e, Pearson Education, 2003.

---

### SATELLITE COMMUNICATIONS Open Elective-IV

| Course<br>Code                        | 20EC2702B | Year                           | IV    | Semester      | Ι      |
|---------------------------------------|-----------|--------------------------------|-------|---------------|--------|
| Course<br>Category                    | OE-IV     | Offering<br>Branch             | ECE   | Course Type   | Theory |
| Credits                               | 3         | L-T-P                          | 3-0-0 | Prerequisites |        |
| Continuous<br>Internal<br>Evaluation: | 30        | Semester<br>End<br>Evaluation: | 70    | Total Marks:  | 100    |

|      | Course Outcomes                                                                                                                  |  |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Upon | Upon successful completion of the course, the student will be able to                                                            |  |  |  |  |  |  |  |
| CO1  | <b>Illustrate</b> the basic concepts of satellite communication and different Frequency allocations for satellite services. (L2) |  |  |  |  |  |  |  |
| CO2  | <b>Analyze</b> the satellite orbits and link design for transmission & reception of signals (L4)                                 |  |  |  |  |  |  |  |
| CO3  | Analyze various satellite subsystems and its functionality. (L4)                                                                 |  |  |  |  |  |  |  |
| CO4  | <b>Choose</b> appropriate multiple access technique for a given satellite communication application (L3)                         |  |  |  |  |  |  |  |

-----

|     | Contribution of Course Outcomes towards achievement of Program Outcomes & |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|---------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | Strength of correlations (3:High, 2: Medium, 1:Low)                       |     |     |     |     |     |     |     |     |      |      |      |      |      |
|     |                                                                           |     |     |     |     |     |     |     |     |      |      |      |      |      |
|     | PO1                                                                       | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 | 2                                                                         |     |     |     |     |     |     |     |     | 1    |      |      |      |      |
| CO2 |                                                                           | 3   |     |     |     |     |     |     |     | 2    |      |      |      |      |
| CO3 |                                                                           | 3   |     |     |     |     |     |     |     | 2    |      |      |      |      |
| CO4 | 2                                                                         |     |     |     |     |     |     |     |     | 2    |      |      |      |      |

\_\_\_\_\_

|             | Syllabus                                                                                                                                                                                                                                                          |               |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Unit<br>No. | Contents                                                                                                                                                                                                                                                          | Mappe<br>d CO |
| Ι           | <b>Introduction:</b> Historical Back-ground, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications.                                                                                                              | CO1           |
| II          | <b>Orbital Mechanics And Launchers:</b> Orbital Mechanics, Look Angle determination, Orbital perturbations, Orbit determination, launches and launch vehicles, Orbital effects in communication systems performance.                                              | CO1,<br>CO2   |
| III         | <b>Satellite</b> Subsystems: Attitude and orbit control system, telemetry, tracking, Command and monitoring, power systems, communication subsystems, Satellite antenna Equipment reliability and Space qualification.                                            | CO1,<br>CO3   |
| IV          | <b>Satellite Link Design:</b> Basic transmission theory, system noise temperature and G/T ratio, Design of down links, up link design, Design of satellite links for specified C/N, System design example.                                                        | CO1,<br>CO2   |
| V           | Multiple Access: Frequency division multiple access (FDMA)<br>Intermodulation, Calculation of C/N. Time division Multiple Access<br>(TDMA) Frame structure, Examples. Satellite Switched TDMA On-board<br>processing, DAMA, Code Division Multiple access (CDMA). | CO4           |

\_\_\_

# Text Books 1. Satellite Communications – Timothy Pratt, Charles Bostian and Jeremy Allnutt, WSE, Wiley Publications, 2rd Edition, 2003

2. Satellite Communications Engineering – Wilbur L. Pritchard, Robert A Nelson and Henri G.SuyderhoudPearson Publications, 2nd Edition, 2003.

### **Reference Books**

1. Satellite Communications : Design Principles - M. Richharia, BS Publications, 2rd Edition, 2003

2. Satellite Communication - D.C Agarwal, Khanna Publications, Mc.Graw Hill, 5th Edition, 2008.

3. Fundamentals of Satellite Communications – K.N. Raja Rao, PHI, 2004.

4. Satellite Communications – Dennis Roddy, McGraw Hill, 2nd Edition, 1996

e- Resources & other digital material

1.

https://nptel.ac.in/courses/117/105/117105131/3.https://nptel.ac.in/courses/108/105/108105159/

\_\_\_

### UTILIZATION OF ELECTRICAL POWER Open Elective-IV

| Course<br>Code                             | 20EE2702A | Year                           | IV                | Semester        | Ι      |
|--------------------------------------------|-----------|--------------------------------|-------------------|-----------------|--------|
| Course<br>Category                         | OE-IV     | Branch                         | Offered by<br>EEE | Course Type     | Theory |
| Credits                                    | 3         | L-T-P                          | 3-0-0             | Prerequisites   |        |
| Continuou<br>s Internal<br>Evaluation<br>: | 30        | Semester<br>End<br>Evaluation: | 70                | Total<br>Marks: | 100    |

| Course Outcomes |                                                                                               |  |  |  |  |  |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Upon s          | Upon successful completion of the course, the student will be able to                         |  |  |  |  |  |  |  |  |  |
|                 | Understand the utilization of electrical systems and their advantages in industrial           |  |  |  |  |  |  |  |  |  |
| CO1             | applications. (L2)                                                                            |  |  |  |  |  |  |  |  |  |
| CO2             | Apply the knowledge to select suitable motor for electric drives, appropriate heating /       |  |  |  |  |  |  |  |  |  |
|                 | welding techniques and Illumination systems in various industrial applications. (L3)          |  |  |  |  |  |  |  |  |  |
| CO3             | Apply the knowledge to select suitable track electrification system and traction motors. (L3) |  |  |  |  |  |  |  |  |  |
| CO4             | Analyze the concepts of electric drives, different heating/welding techniques and various     |  |  |  |  |  |  |  |  |  |
|                 | Illumination systems for industrial applications. (L4)                                        |  |  |  |  |  |  |  |  |  |
| CO5             | Analyze the performance parameters of speed-time curves for different services and the        |  |  |  |  |  |  |  |  |  |
|                 | mathematical concepts to design traction system. (L4)                                         |  |  |  |  |  |  |  |  |  |
| CO6             | Submit a report on electric drives, electric heating & welding, illumination and electric     |  |  |  |  |  |  |  |  |  |
|                 | traction system.                                                                              |  |  |  |  |  |  |  |  |  |

| Contribution of Course Outcomes towards achievement of Program Outcomes &                          |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|----------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Strength of correlations (3:High, 2: Medium, 1:Low)PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PSO1PSO2 |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|                                                                                                    | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO/ | PO8 | PO9 | POI0 | POIT | PO12 | PSOI | PSO2 |
| CO1                                                                                                |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO2                                                                                                | 3   |     |     |     |     | 1   |     |     |     |      |      |      |      |      |
| CO3                                                                                                | 3   |     |     |     |     |     | 1   |     |     |      |      |      |      |      |
| CO4                                                                                                |     | 3   |     |     |     | 1   |     |     |     |      |      |      |      |      |
| CO5                                                                                                |     | 3   |     |     |     |     | 1   |     |     |      |      |      |      |      |
| CO6                                                                                                |     | 3   |     |     |     | 3   |     |     | 3   | 3    |      |      |      |      |

|          | SYLLABUS                                                                                                                                                                                                                                                                                                                                                                              |                          |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Unit No. | Contents                                                                                                                                                                                                                                                                                                                                                                              | Mapped<br>CO             |
| Ι        | <b>Electric Drives</b><br>Type of electric drive, choice of motor, starting and running characteristics, speed control, temperature rise of electrical machines, heating-time and cooling-time curves, selecting motor power rating for continuous, intermittent and short timeduty, types of industrial loads, applications of electric drives.                                      | CO1<br>CO2<br>CO4<br>CO6 |
| П        | <b>Electric Heating &amp; Electric Welding</b><br>Advantages and methods of electric heating, methods of heat transfer, Stefan's<br>law, design of heating elements, resistance heating, construction and working<br>principle of induction furnaces, arc furnaces and dielectric heating.<br>Types of welding, resistance and arc welding, comparison between A.C and<br>D.CWelding. | CO1<br>CO2<br>CO4<br>CO6 |
| III      | <b>Illumination</b><br>Introduction, Terms used in illumination, laws of illumination, sources of light,<br>Incandescent lamps, Discharge lamps, MV and SV lamps, fluorescent lamps-<br>CFL-LED lamps, Types of lighting schemes, factory lighting, flood lighting<br>and street lighting.                                                                                            | CO1<br>CO2<br>CO4<br>CO6 |
| IV       | <b>Electric Traction-I</b><br>Systems of electric traction and systems of track electrification, special features of traction motors, methods of electric braking-plugging, rheostat braking and regenerative braking, Speed-time curves for different services-trapezoidal and quadrilateral speed time curves.                                                                      | CO1<br>CO3<br>CO5<br>CO6 |
| V        | <b>Electric Traction-II</b><br>Mechanics of train movement, Calculations of tractive efforts and power output<br>of traction motor, Specific energy consumption for given run, effect of varying<br>acceleration and braking retardation, dead weight, accelerating weight, adhesive<br>weight and coefficient of adhesion, Current collectors for overhead system.                   | CO1<br>CO3<br>CO5<br>CO6 |

### Learning Resources

| Ι | ext | Books: |
|---|-----|--------|
|   |     |        |

 H. Partab, "Art & Science of Utilization of Electrical Energy", Dhanpat Rai & Sons, 12<sup>th</sup> edition, 2012.

2. E. Openshaw Taylor, "Utilization of Electrical Energy", Orient Longman, 15<sup>th</sup> edition, 2012.

### **Reference Books:**

 J.B.Gupta, "Utilization of Electric Power and Electric Traction", S.K. Kataria & Sons, 10<sup>th</sup> edition, 2012.

2. C.L.Wadhwa, "Generation, Distribution and Utilization of Electrical Energy", New Age international (P) Limited Publishers, 2015.

### e- Resources

https://nptel.ac.in/courses/108105060

## MECHATRONICS

Open Elective-IV

|            | Statem                                                                                                      | ent                              |                               |              |                   | BTL                              | Units     |  |
|------------|-------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------|--------------|-------------------|----------------------------------|-----------|--|
|            | urse<br>ode                                                                                                 | 20ME2702A                        | Year                          | IV           | Semester          |                                  | Ι         |  |
|            | urse<br>egory                                                                                               | Open<br>Elective-4               | Offering<br>Branch            | ME           | Course Type       | Th                               | eory      |  |
| Cre        | edits                                                                                                       | 3                                | L - T - P                     | 3 - 0 - 0    | Prerequisites     | Basic electrical and electronics |           |  |
| Inte       | inuous<br>ernal<br>uation                                                                                   | 30                               | Semester<br>End<br>Evaluation | 70           | Total Marks       | 100                              |           |  |
| <b>CO1</b> | Explain                                                                                                     | the concepts rela                | ted to elements of            | of Mechatron | ic systems.       | L2                               | 1,2,3,4,5 |  |
| CO2        |                                                                                                             | rize the const g mechatronic s   |                               | working of   | E sensors used in | <sup>1</sup> L3                  | 1         |  |
| CO3        | Illustrat                                                                                                   | e various types                  | of actuation sys              | stems and th | eir components.   | L3                               | 2         |  |
| CO4        |                                                                                                             | p mathematical<br>models to find | •                             | 0            | ocks and make use | L3                               | 3         |  |
| CO5        | Summarize the construction and working of closed loop controllers,<br>Micro processor and Microcontrollers. |                                  |                               |              |                   |                                  | 4         |  |
| CO6        | Illustrat<br>Fuzzy l                                                                                        |                                  | and application               | s of digital | logic, PLC and o  | f L3                             | 5         |  |

### Contribution of Course outcomes towards achievement of Program outcomes &Strength of correlations (High:3, Medium: 2, Low:1)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|------------|------------|------------|------|------|------|------|------|
| CO1 | 3   |     |     |     |     |            |            |            | 2    |      | 2    |      |      |
| CO2 | 3   |     |     |     |     |            |            |            | 2    |      | 2    |      |      |
| CO3 | 3   |     | 3   |     |     |            |            |            | 2    |      | 2    |      |      |
| CO4 | 3   | 3   |     |     | 2   |            |            |            | 2    |      | 2    |      |      |
| CO5 | 3   |     |     |     | 2   |            |            |            | 2    |      | 2    |      |      |
| CO6 | 3   |     |     |     | 2   |            |            |            | 2    |      | 2    |      |      |

|      | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| UNIT | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mapped<br>CO |
| Ι    | <ul> <li>INTRODUCTION: Definition of Mechatronics, evolution of mechatronics, systems, measurement systems, control systems, mechatronic design process, traditional design and mechatronic design, applications of mechatronic systems, advantages and disadvantages of mechatronic systems.</li> <li>SENSORS: classification of sensors, basic working principles, Velocity sensors – Proximity and Range sensors, ultrasonic sensor, laser interferometer transducer, Hall Effect sensor, inductive proximity switch. Light sensors – Photodiodes, phototransistors, tactile sensors –PVDF tactile sensor, micro-switch and reed switch, Piezoelectric sensors, vision sensor</li> </ul> | CO1<br>CO2   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GOI          |
| II   | PNEUMATICAND HYDRAULIC ACTUATION SYSTEMS: Actuation systems,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO1          |
|      | Pneumatic and Hydraulic systems- constructional details of filter, lubricator, regulator,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO3          |

|     | direction control valves, pressure control valves, flow control valves, actuators-linear         |            |
|-----|--------------------------------------------------------------------------------------------------|------------|
|     | and rotary.                                                                                      |            |
|     | ELECTRICAL ACTUATION SYSTEMS: Electrical systems, Mechanical switches,                           |            |
|     | solid state switches, solenoids, DC motors, AC motors, stepper motors. Characteristics           |            |
|     | of pneumatic, hydraulic, electrical actuators and their limitations.                             |            |
|     | BASIC SYSTEM MODELS: Mathematical models, mechanical system building                             |            |
| III | blocks, electric system building blocks, fluid system building blocks, thermal system            | CO1        |
| 111 | building blocks.                                                                                 | CO1<br>CO4 |
|     | DYNAMIC RESPONSES OF SYSTEMS: Transfer function, Modelling dynamic                               | 04         |
|     | systems, first order and second order systems.                                                   |            |
|     | CLOSED LOOP CONTROLLERS: Classification of control systems, feedback,                            |            |
|     | closed loop and open loop systems, continuous and discrete processes, control modes,             |            |
| IV  | two step mode, proportional mode, derivative control, integral control, PID controller.          | <b>CO1</b> |
|     | MICROPROCESSOR AND MICRO CONTROLLER: Introduction, Architecture of                               | CO5        |
|     | a microprocessor (8085), Architecture of a Micro controller, Difference between                  |            |
|     | microprocessor and a microcontroller.                                                            |            |
|     | DIGITAL LOGIC: Digital logic, number systems, logic gates, Boolean algebra,                      |            |
|     | Karnaugh maps, application of logic gates, sequential logic, transducer Signal                   |            |
|     | Conditioning and devices for data conversion.                                                    |            |
| V   | PROGRAMMABLE LOGIC CONTROLLERS :Introduction, basic structure,                                   | CO1        |
| v   | input/output processing, programming, mnemonics, timers, internal relays and counters,           | CO6        |
|     | shiftregister, master and jump controls. Data handling, Analog input/output, selection of a PLC. |            |
|     | FUZZY LOGIC APPLICATIONS IN MECHATRONICS: Fuzzy logic systems,                                   |            |
|     | Fuzzy control, Uses of Fuzzy expert systems.                                                     |            |

#### Learning Resource

#### Text books:

- 1. Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering, (3rdedition), by WBolton, Pearson Education Press, 2005.
- 2. Mechatronics System Design, 5<sup>th</sup>Indian reprint, 2009, by Devdas shetty, Richard A.kolk, PWS Publishing Company

#### **Reference books**

- 1. Mechatronics Sou rce Book, by Newton C Braga, Thomson Publications, Chennai.
- 2. Mechatronics, by N. Shanmugam, Anuradha Agencies Publishers.
- 3. Control sensors and actuators, by C. W. Desilva, Prentice Hall.
- 4. Design with Micro processors for Mechanical Engineers, by Stiffler, A. K. McGraw-Hill(1992).

#### **E-Resources & other digital Material:**

1. https://onlinecourses.nptel.ac.in/noc22\_me54/course

### ROBOTICS

### Open Elective-IV

| Course code | 20ME2702B  | Year       | IV    | Semester           | Ι      |
|-------------|------------|------------|-------|--------------------|--------|
| Course      | Open       | Offering   | ME    | Course Type        | Theory |
| category    | Elective-4 | Branch     |       | 000130 - JPC       |        |
| Credits     | 3          | L-T-P      | 3-0-0 | Prerequisites      | Nil    |
| Continuous  |            | Semester   |       |                    |        |
| Internal    | 30         | End        | 70    | <b>Total Marks</b> | 100    |
| Evaluation  |            | Evaluation |       |                    |        |

| Cours | e Outcomes: Upon successful completion of the course,                                                          | the student will be able    | to    |           |
|-------|----------------------------------------------------------------------------------------------------------------|-----------------------------|-------|-----------|
|       | Statement                                                                                                      | Skill                       | Level | Units     |
| C01   | Understand the basic anatomy of robots, actuators, end effectors, robot sensors, programming and applications. | Understand                  | L2    | 1,2,3,4,5 |
| CO2   | Understand the working principles of robot actuators, end effectors                                            | Understand                  | L2    | 2         |
| CO3   | Apply robot programming skills                                                                                 | Apply, Modern Tool<br>Usage | L3    | 3         |
| CO4   | Apply knowledge of robot sensors and their applications in industries                                          | Apply                       | L3    | 4,5       |

|            | (   | C <b>ontri</b> b |     |     |     |     |     |     |     | of Prog<br>m, 1:Lo |      | itcome | 5 <b>&amp;</b> |      |
|------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|--------------------|------|--------|----------------|------|
|            | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10               | PO11 | PO12   | PSO1           | PSO2 |
| CO1        | 3   |                  |     |     |     |     |     |     |     |                    |      |        |                |      |
| CO2        | 3   | 3                |     |     |     |     |     |     |     |                    |      |        |                |      |
| CO3        | 3   | 3                | 2   |     | 2   |     |     |     |     |                    |      |        |                |      |
| <b>CO4</b> | 3   |                  | 2   |     |     |     |     |     |     |                    |      |        |                |      |

|      | Syllabus                                                                                                                                                                                                                    |               |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| UNIT | Contents                                                                                                                                                                                                                    | Mapped<br>COs |
| Ι    | <b>Introduction:</b> Automation and robotics – History of robots -Robot anatomy – classification of robots, major components-robot specifications, selection of robots.                                                     | CO1           |
| Π    | <b>Robot actuators-</b> Pneumatic, Hydraulic actuators, electric & stepper motors<br><b>End Effectors-</b> types of end effectors, grippers and tools, Requirements and challenges of end effectors.                        | CO1,<br>CO2   |
| III  | <b>Robot Programming:</b> - Robot programming languages - programming methods - off<br>and on-line programming - Lead through method - Teach pendent method, simple<br>programs.                                            | CO1,<br>CO3   |
| IV   | <b>Sensors used in robots:</b> Sensor devices, Types of sensors - contact, position and displacement sensors, Force and torque sensors - Proximity and range sensors - acoustic sensors –slip sensors, Robot vision systems | CO1,<br>CO4   |

| V | Applications of robots: Application of robots in industry - material handling, | CO1, |
|---|--------------------------------------------------------------------------------|------|
| v | processing operations, assembly, and inspection operations.                    | CO4  |

| Text books:                                                                        |
|------------------------------------------------------------------------------------|
| 1. Mikell P. Groover. Industrial Robotics Technology Programming and Applications, |
| McGraw Hill Co., Singapore, 1995.                                                  |
| 2. Robotic Engineering by Richard D.Klafter, Prentice Hall                         |
| Reference books                                                                    |
| 1. Introduction to Robotics – Saeed B.Niku, Prentice Hall                          |
| 2. Introduction to Robotics – John J. Craig, Addison Wesley                        |

 E-Resources & other digital Material:

 1.
 http://nptel.ac.in/downloads/112101098/

### DATABASE MANAGEMENT SYSTEMS Open Elective-IV

| Course<br>Code            | 20CS2702A | Year                        | IV    | Semester       | Ι      |
|---------------------------|-----------|-----------------------------|-------|----------------|--------|
| Course<br>Category:       | OE-IV     | Offering<br>Branch          | CSE   | Course Type    | Theory |
| Credits:                  | 3         | L - T - P                   | 3-0-0 | Prerequisites: | Nil    |
| Continuous<br>Evaluation: | 30        | Semester End<br>Evaluation: | 70    | Total Marks:   | 100    |

| <b>Course Outc</b> | omes                                                         |    |
|--------------------|--------------------------------------------------------------|----|
| Upon success       | ful completion of the course, the student will be able to:   |    |
| CO1                | Understand the basic concepts of database management systems | L2 |
| CO2                | Apply SQL commands to find solutions for a given application | L3 |
| CO3                | Apply ER Modeling to design a database application           | L3 |
| <b>CO4</b>         | Apply normalization techniques to improve database design.   | L3 |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 2   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO2 | 3   |     |     |     |     |     |     |     | 2   | 2    |      |      | 3    |      |
| CO3 | 3   |     |     |     |     |     |     |     | 2   | 2    |      |      | 3    |      |
| CO4 |     | 2   |     |     |     |     |     |     | 2   | 2    |      |      | 3    | 3    |

| Unit No. | CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mapped CO |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Ι        | <ul> <li>Introduction to Databases: Characteristics of the Database Approach,<br/>Advantages of using the DBMS Approach, A Brief History of Database<br/>Applications.</li> <li>Overview of Database Languages and Architectures: Data Models,<br/>Schemas and Instances, Three-Schema Architecture and Data<br/>Independence, Database Languages and Interfaces, Database System<br/>environment, Centralized and Client-Server Architecture for<br/>DBMS.</li> </ul> | CO1       |
| П        | <ul> <li>Relational Model: The Relational Model Concepts, Relational Model Constraints and Relational Database Schemas.</li> <li>SQL: Data Definition, Constraints, Basic Queries and Updates, Views (Virtual Tables) in SQL</li> </ul>                                                                                                                                                                                                                                | CO2       |
| ш        | <ul> <li>Conceptual Data Modeling: High-Level Conceptual Data Models for Database Design, A Sample Database Application, Entity Types, Entity Sets, Attributes and Keys, Relationship Types, Relationship Sets, Roles, and Structural Constraints, Weak Entity Types.</li> <li>ER-Diagrams: Refining the ER Design, ER Diagrams, Naming Conventions and Design Issues</li> </ul>                                                                                       | CO3       |
| IV       | <b>Database Design Theory</b> : Functional Dependencies, Normal forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form.                                                                                                                                                                                                                                                                                                                    |           |
| V        | <ul> <li>Transaction Processing: Introduction, Transaction and System Concepts, Desirable Properties of Transactions.</li> <li>Introduction to Protocols for Concurrency Controlling Databases: Two-Phase Locking Techniques for Concurrency Control- Types of Locks and System Lock Tables.</li> </ul>                                                                                                                                                                | CO1       |

| Learning Resources                                                              |  |
|---------------------------------------------------------------------------------|--|
| Textbooks                                                                       |  |
| 1.Database Systems Models, Languages, Design and Application Programming, Ramez |  |
| Elmasri, Shamkant B.Navathe,6 <sup>th</sup> Edition, Pearson.                   |  |
| References                                                                      |  |

- 1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, 3rd Edition, TMH.
- 2. Database System Concepts, Abraham Silberschatz, Henry FKorth,S.Sudarshan,5<sup>th</sup> Edition,McGrawHill.

### e-Resources and other Digital Material

1.<u>https://nptel.ac.in/courses/106/105/106105175/</u>

- $2. \underline{https://online courses.nptel.ac.in/noc21\ cs04/}$
- 3.<u>https://nptel.ac.in/courses/106/106/106106093/</u>

### MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

| Course Code                       | 20HS7701A | Year                       | IV    | Semester      | Ι      |
|-----------------------------------|-----------|----------------------------|-------|---------------|--------|
| Course Category                   | HSS       | Offering<br>Branch         | ME    | Course Type   | Theory |
| Credits                           | 3         | L-T-P                      | 3-0-0 | Prerequisites | Nil    |
| Continuous Internal<br>Evaluation | 30        | Semester End<br>Evaluation | 70    | Total Marks   | 100    |

| Course | Course Outcomes: Upon successful completion of the course, the student will be able to                                                                               |            |     |           |  |  |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-----------|--|--|--|--|--|
|        | Statement                                                                                                                                                            | Skill      | BTL | Units     |  |  |  |  |  |
| CO1    | Understand basics of managerial economics, demand<br>forecasting, cost analysis, industrial organization,<br>financial accounting and capital and capital budgeting. | Understand | L2  | 1,2,3,4,5 |  |  |  |  |  |
| CO2    | Apply the managerial economics, e-commerce, demand forecasting and cost analysis techniques in economics related problems.                                           | Apply      | L3  | 1,2       |  |  |  |  |  |
| CO3    | Summarize different types of industrial organization                                                                                                                 | Apply      | L3  | 3         |  |  |  |  |  |
| CO4    | Analyze the financial accounting and depreciation related problems.                                                                                                  | Analyze    | L4  | 4,5       |  |  |  |  |  |

|     | Contribution of Course outcomes towards achievement of Program outcomes<br>&Strength of correlations (High:3, Medium: 2, Low:1) |     |     |  |          |   |  |   |          |     |         |      |      |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-----|-----|--|----------|---|--|---|----------|-----|---------|------|------|
|     | PO1                                                                                                                             | PO2 | PO3 |  | <u> </u> |   |  |   | <u> </u> | · / | · · · · | PO12 | PSO2 |
| CO1 | 3                                                                                                                               |     |     |  |          | 2 |  | 2 |          |     | 3       |      |      |
| CO2 | 3                                                                                                                               |     |     |  |          | 2 |  | 2 |          |     | 3       |      |      |
| CO3 | 3                                                                                                                               |     |     |  |          | 2 |  | 2 |          |     | 3       |      |      |
| CO4 | 3                                                                                                                               |     |     |  |          | 2 |  | 2 |          |     | 3       |      |      |

|      | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| UNIT | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mappe<br>d CO |
| I    | IntroductionToManagerialEconomics:Introduction,characteristics, scope & definition of Managerial Economics, its relationwith other subjects, Basic economic tools in Managerial Economics.Demand Analysis:Meaning-Demand distinctions-Demanddeterminants-Law of Demand and its exceptions.Elasticity Of Demand & Demand Forecasting:Definition -Types ofElasticity of demand -Measurement of price elasticity of demand and it'ssignificance:Total outlay method, Point method and Arc method.Forecasting:Meaning -Factors governing demand forecasting -Methodsof demand forecasting.Methods | C01<br>C02    |
| п    | Theory Of Production And Cost Analysis- Introduction To<br>Markets-Pricing Policies & E-Commerce: Production Function-<br>Isoquants and Isocosts, Law of variable proportions- Law of returns to<br>scale- Least Cost Combination of Inputs, Cobb-Douglas Production<br>function-Economies of ScaleCost Analysis: Cost concepts, Determination of Break Even Point<br>(BEP) with simple problems, Managerial Significance and limitations of<br>BEP. Market structures: Types of competition, Features of Perfect                                                                             | CO1<br>CO2    |

|     | Competition, Monopoly and Monopolistic Competition. Pricing strategies.                                                                                                                                                                                                                                                                                                                                                                                          |            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| III | Types Of Industrial Organization & Introduction To Business Cycles:Characteristic features of Industrial organization, Features and evaluationof Sole Proprietorship, Partnership, Joint Stock Company, State/PublicEnterprises and their types. Changing business environment in post-liberalization scenario.                                                                                                                                                  | CO1<br>CO3 |
| IV  | <b>Financial Management And Introduction To Financial Accounting</b> :<br>Functions of financial management, simple and compound interest,<br>Methods of evaluating alternatives- Present Worth method. Future worth<br>Method, Annual equivalent method. Introduction to Double-entry system                                                                                                                                                                    | CO1<br>CO4 |
| V   | <ul> <li>Depreciation: Introduction, common methods of depreciation: straight line method, Declining balance method, sum of year's digits method.</li> <li>Capital And Capital Budgeting: Meaning of capital budgeting, Need for capital budgeting – Capital budgeting decisions (Examples of capital budgeting) - Methods of Capital Budgeting: Payback Method, Accounting Rate of Return (ARR), IRR and Net Present Value Method (simple problems).</li> </ul> | CO1<br>CO4 |

#### Learning Resources

| -    |               |  |
|------|---------------|--|
| Text | <b>Books:</b> |  |

- 1. Engineering economics, R. Panneerselvam, 2nd Edition, PHI Learning Pvt. Ltd., 2013.
  - 2. Managerial Economics and Financial Analysis, by J.V.Prabhakar Rao, Maruthi Publications, 2011.

#### **Reference Books:**

- 1. Managerial Economics and Financial Analysis, by A R Aryasri, TMH 2011.
- 2. Financial Accounting, SNMaheswari, SKMaheswari, Vikas Publishing House Pvt Ltd., NewDelhi, 4th Edition,2006.
- 3. Managerial Economics by Suma damodaran, Oxford 2011.
- 4. Mangerial Economice and Financial Analysis by S.A. Siddiqui & A.S. Siddiqui, New Age International Publishers, 2011.
- 5. Engineering economy- Theusen&Theusen, 8th edition,1993,Prentice Hall.

#### **E-Resources & other digital Material:**

- 1. www.tectime.com
- 2. www.exinfm.com
- 3. www.economywatch.com

#### HUMAN RESOURCES MANAGEMENT

| Course Code     | 20HS7701B | Year         | IV    | Semester      | Ι      |
|-----------------|-----------|--------------|-------|---------------|--------|
| Course Category | HSS       | Branch       | IT    | Course Type   | Theory |
| Credits         | 3         | L-T-P        | 3-0-0 | Prerequisites | -      |
| Continuous      |           | Semester End |       |               |        |
| Internal        | 30        | Evaluation:  | 70    | Total Marks:  | 100    |
| Evaluation:     |           |              |       |               |        |

|      | Course Outcomes                                                                             | Level | Unit       |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------|-------|------------|--|--|--|--|--|
| Upon | successful completion of the course, the student will be able to                            |       | No         |  |  |  |  |  |
| CO1  | CO1 Understand the basic concepts, techniques and applications of Human Resource Management |       |            |  |  |  |  |  |
| CO2  |                                                                                             | L2    | 4,5<br>2,3 |  |  |  |  |  |
| CO3  | Illustrate different Training and development of human resources                            | L3    | 4          |  |  |  |  |  |
| CO4  | Summarize e-Human Resource Management and Human resource for small scale industries         | L3    | 5          |  |  |  |  |  |

|            | Contribution of Course Outcomes towards achievement of Program Outcomes &<br>Strength of correlations (H:High(3), M: Medium(2), L:Low(1)) |     |     |     |     |     |     |     |     |      |      |      |      |      |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|--|
|            | PO1                                                                                                                                       | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |  |
| CO1        | 1                                                                                                                                         |     | 2   |     |     | 3   |     |     |     |      | 3    | 1    | 1    | 3    |  |
| CO2        | 1                                                                                                                                         |     | 2   |     |     | 3   |     |     |     |      | 3    | 1    | 1    | 3    |  |
| CO3        | 1                                                                                                                                         |     | 2   |     |     | 3   |     |     |     |      | 3    | 1    | 1    | 3    |  |
| <b>CO4</b> | 1                                                                                                                                         |     | 2   |     |     | 3   |     |     |     |      | 3    | 1    | 1    | 3    |  |

|      | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| UNIT | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mapped<br>CO |
| Ι    | <ul> <li>Introduction: Functions, Policies &amp; Roles, Skills for HR Professionals, HRM Models, Evolution of HRM, Recent developments in HRM, Nature of Strategic HRM, Strategic HRM versus Conventional HRM, Strategic Management Process, Benefits of SHRM, Barriers to Strategic HRM, Typical HR Strategies, Selecting Strategies to Enhance Performance.</li> <li>Human Resource Planning: Nature of HRP, Importance of HRP, Factors Affecting HRP, The Planning Process, Human Resource Planning and the Resource Planning Process.</li> </ul>                                                                                           | CO1          |
| II   | Government Requisites for Successful HRP, Barriers to HRP<br><b>Analysis of Work, Designing Jobs and Job Evaluation:</b> Nature of Job<br>analysis, Job Analysis and Competitive Advantage, The Process of Job Analysis,<br>Methods of Collecting Job Data, Job Analysis and Strategic HRM, Potential<br>Problems with Job Analysis. Requisites for Job Analysis, Competency-based<br>Job Analysis, Job Design, Significance of Jobs Design, Factors Affecting Job<br>Design, Job Design Approaches, Contemporary Issues in Job Design, Job<br>Evaluation, Job Evaluation Process, Methods of Job Evaluation, Alternative to<br>Job Evaluation | CO1,CO2      |
| III  | Recruiting Talent: Nature of Recruitment, Purposes and Importance, Factors<br>Governing Recruitment, Recruitment Process, Evaluation and Control,<br>Philosophies of Recruiting, Alternatives to Recruitment<br>Selecting Right Talent: Nature of Selection, Selection as a Source of<br>Competitive Advantage, Organisation for Selection, Selection Process,<br>Assessment Centres, Barriers to Effective Selection, Evaluation of Selection<br>Process, Making Selection Effective.                                                                                                                                                         | CO1,CO3      |
| IV   | <b>Training and Development, Career Management and Talent</b><br><b>Management</b> Orientation, Orientation Programme, Requisites of an Effective<br>Programme, Evaluation of Orientation Programme, Problems of Orientation,<br>Typical Orientation Programme, Nature of Training and Development, Inputs in<br>Training and Development, Training and Development as Source of<br>Competitive Advantage, The Training Process, Impediments to Effective<br>Training Government Initiative, Management Development, Career<br>Development, Talent Management.                                                                                 | C01,C03      |
| V    | e-Human Resource Management: Nature of e-HRM, e-HR Activities, e-<br>Recruitment, e-Selection, e-Performance Management, e-Learning, e-<br>Compensation<br>Human Resource Management in Small Scale Units: Introduction to Small<br>Business Unit, Significance of MSM Enterprises, Facilities<br>Problems, People Practices in Small Units, Challenges in Introducing HR<br>Practices, Current Practices, Guidelines for Application of HR Practices.<br>Learning Resources                                                                                                                                                                   | C01,C04      |

#### **Reference Books**

- 1. Human Resource Management, by S. Khandkar, S. Chand Publications
- 2. Personnel Management Text & Cases, By C. B. Mamoria& V. S. P. Rao, Himalaya
- 3. Human Resource Management by Gary Dessler, Pearson Education

#### **E-Resources & other digital Material**

- 1. https://onlinecourses.swayam2.ac.in/cec20 mg19/preview
- 2. <u>https://onlinecourses.swayam2.ac.in/ntr22\_ed08/preview</u>

### ENTREPRENEURSHIP MANAGEMENT

| Course Code                       | 20HS7701C                                                    | Year                       | IV    | Semester      | Ι      |
|-----------------------------------|--------------------------------------------------------------|----------------------------|-------|---------------|--------|
| Course Category                   | Course CategoryHumanities and<br>Social Science<br>Electives |                            | ME    | Course Type   | Theory |
| Credits                           | 3                                                            | L-T-P                      | 3-0-0 | Prerequisites | Nil    |
| Continuous<br>Internal Evaluation | 30                                                           | Semester End<br>Evaluation | 70    | Total Marks   | 100    |

| Course | Outcomes: Upon successful completion of the course, the                                                                  | student will b | e able t | 0         |
|--------|--------------------------------------------------------------------------------------------------------------------------|----------------|----------|-----------|
|        | Statement                                                                                                                | Skill          | BTL      | Units     |
| CO1    | Understand the basic concepts and factors for starting<br>and successful running of different forms of an<br>enterprise. | Understand     | L2       | 1,2,3,4,5 |
| CO2    | Describe characteristics, values and attitudes of an entrepreneur.                                                       | Understand     | L2       | 2         |
| CO3    | Illustrate different forms of Entrepreneurial structures and Intrapreneurship.                                           | Application    | L3       | 3,4       |
| CO4    | Summarize critical Factors for starting a new enterprise<br>and ethics to be followed during running of enterprise.      | Application    | L3       | 5         |

|     | Contribution of Course outcomes towards achievement of Program outcomes<br>&Strength of correlations (High:3, Medium: 2, Low:1) |     |     |            |     |            |            |            |            |      |      |      |      |      |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-----|-----|------------|-----|------------|------------|------------|------------|------|------|------|------|------|--|
|     | <b>PO1</b>                                                                                                                      | PO2 | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 | PSO1 | PSO2 |  |
| CO1 | 1                                                                                                                               |     | 2   |            |     | 3          |            |            | 3          |      | 3    | 2    |      |      |  |
| CO2 | 1                                                                                                                               |     | 2   |            |     | 3          |            |            | 3          |      | 3    | 2    |      |      |  |
| CO3 | 1                                                                                                                               |     | 2   |            |     | 3          |            |            | 3          |      | 3    | 2    |      |      |  |
| CO4 | 1                                                                                                                               |     | 2   |            |     | 3          |            | 3          | 3          |      | 3    | 2    |      |      |  |

|      | Syllabus                                                                                                                                                                                                                                                                                             |              |  |  |  |  |  |  |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|--|--|--|--|--|
| UNIT | Content                                                                                                                                                                                                                                                                                              | Mapped<br>CO |  |  |  |  |  |  |  |  |  |  |  |
| I    | <b>Introduction to Entrepreneurship</b> : Meaning, Nature, origin and development of entrepreneurship in India, Need and Importance, Core elements, Principles, Essentials, Types, Functions, Concept of entrepreneurship management, Motives behind being an entrepreneur, Entrepreneurial Process. |              |  |  |  |  |  |  |  |  |  |  |  |

| п  | <ul> <li>Entrepreneurial Values and Attitudes: Introduction to entrepreneurial Values and Attitudes, Dominant characteristics of successful entrepreneurs, Internal and external factors for entrepreneurial motivation, Entrepreneurial Skills, Identifying business opportunities.</li> <li>Role of creativity in Entrepreneurship- the creative process, the Innovation process, types of innovation, sources of innovation, principles of innovation, Sources of Business Ideas.</li> </ul> | CO1, CO2 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| ш  | <b>Forms of Entrepreneurial structures</b> : Sole Proprietorship-meaning, merits and limitations, Partnership-Meaning, Forms, merits and limitations.<br><b>Corporations</b> -Meaning, merits and limitations, Limited Liability partnerships and corporations, Franchising-Meaning, types, merits and limitations.                                                                                                                                                                             | CO1, CO3 |
| IV | <b>Intrapreneurship</b> : Meaning, Characteristics, Intrapreneurs Activities, types of Corporate Entrepreneurs, Corporate V/s Intrapreneurial culture, Climate, Fostering Intrapreneurial culture.<br><b>Promoting intrapreneurship</b> - Pinchot's Spontaneous teams and Formal Venture teams, establishing intrapreneurial ventures.                                                                                                                                                          | CO1, CO3 |
| v  | <b>Critical Factors for starting a new enterprise</b> : Personal, Environmental,<br>Sociological factors, Problems of a new venture- Financial, administrative,<br>marketing, production and other problems <b>Ethics and Entrepreneurship</b> :<br>Defining Ethics, Approaches to Managerial ethics, ethics and business<br>decisions, Ethical practices and code of conduct, Ethical considerations in<br>corporate entrepreneurship.                                                         | CO1, CO4 |

### Learning Resources

| Text Books                                                                      |
|---------------------------------------------------------------------------------|
| 1. Entrepreneurship development, Moharanas and Dash C.R., RBSA Publishing,      |
| Jaipure.                                                                        |
| 2. Beyond entrepreneurship, Collins and Lazier W, Prentice Hall, New Jersey,    |
| 1992.                                                                           |
| 3. Entrepreneurship, Hisrich Peters Sphephard, Tata McGraw Hill.                |
| 4. Fundamentals of entrepreneurship, S.K. Mohanty, Prentice Hall of India.      |
| Reference Books                                                                 |
| 1. Small scale industries and entrepreneurship, Dr. Vasant Desai, Himalayan     |
| Publishing House.                                                               |
| 2. Management of small scale industries, Dr. Vasant Desai, Himalayan Publishing |
| House.                                                                          |
| 3. Management of small scale industries, J.C. Saboo Megha Biyani, Himalayan     |
| Publishing House.                                                               |
| 4. A Guide to Entrepreneurship, David Oates, Jaico Publishing House, Mumbai,    |
| Edn 2009.                                                                       |
| E-Resources & other digital Material                                            |
| 1 https://onlinecourses.swayam2.ac.in/cec20_mg19/preview                        |

<u>https://onlinecourses.swayam2.ac.in/cec20\_mg19/preview</u>
 <u>https://onlinecourses.swayam2.ac.in/ntr22\_ed08/preview</u>

### 20HS7701E - CONSTRUCTION MANAGEMENT

|            | urse          |                                                                       |        | Huma      |              | and So   |              | ciences |        |        | Credit                  | s:         | 3      |          |
|------------|---------------|-----------------------------------------------------------------------|--------|-----------|--------------|----------|--------------|---------|--------|--------|-------------------------|------------|--------|----------|
| Cate       | egory         | :                                                                     |        |           | ł            | Elective | e            |         |        |        | <b>T</b> (              |            | _      |          |
| Course     | а Т. <i>т</i> |                                                                       |        |           |              | Theory   |              |         |        |        | Lectur<br>Tutoria       |            | ,      | 3-0-0    |
| Cours      | ery           | Je.                                                                   |        |           |              | Theory   |              |         |        |        | Practic                 |            | -      | 5-0-0    |
|            |               |                                                                       |        |           |              |          |              |         |        |        | Continu                 |            |        |          |
|            |               |                                                                       |        | ~         |              |          |              | 1.0     |        |        | Evaluat                 |            | 30     | )        |
| Prerec     | uisite        | es:                                                                   |        | Cons      | tructio      | on mate  |              |         | ncrete |        | Semester                |            | 70     | \<br>\   |
|            | -             |                                                                       |        |           |              | Tech     | nology       | /       |        |        | Evaluat                 | ion:       | 70     | )        |
|            |               |                                                                       |        |           |              |          | _            |         |        |        | Total Ma                | arks:      |        | 100      |
|            |               | * *                                                                   |        | 6 1       |              | Course   |              |         | . 1    |        |                         |            |        |          |
|            |               |                                                                       |        |           |              |          |              |         |        |        | l be able to            |            |        |          |
| CO1        |               | o <b>wledge</b><br>trolling                                           |        |           |              |          |              |         | nning, | sch    | eduling a               | nd         |        | L2       |
|            |               |                                                                       |        |           |              |          |              |         | nd pro | hlem   | s on netwo              | ork        |        |          |
| CO2        |               | lysis.                                                                | Juca   | on ucv    | ciopii       | ig tille | , coun       | lates a | nu pro | UICIII | s on netwo              | ЛК         |        | L2       |
| CO3        |               |                                                                       | ding ( | of cost a | analys       | is and 1 | esour        | ce allo | cation | and s  | cheduling               |            |        | L2       |
| CO4        | An            | idea or                                                               |        |           |              |          |              |         |        |        | fferent sta             |            |        | L2       |
|            | holo          | ders<br>owledge                                                       | on tr  | magaf     |              | Totion   | and no       | latad   |        | and    | aata                    |            |        | L2<br>L2 |
| CO5        |               | _                                                                     | -      | -         | -            |          |              | -       |        |        |                         | utcomes    |        | L2       |
|            | P             | ntribution of Course Outcomes towards achievement of Program Outcomes |        |           |              |          |              |         |        |        |                         |            |        |          |
|            | P<br>O        | P<br>O                                                                | P<br>O | P<br>O    | P<br>O       | P<br>O   | P<br>O       | P<br>O  | P<br>O | 0      | 0                       | 0          | S<br>O | S        |
|            | 1             | 2                                                                     | 3      | 4         | 5            | 6        | 7            | 8       | 9      | 1<br>0 | 1<br>1                  | 1<br>2     | 1      | 0<br>2   |
| <b>CO1</b> |               | 2                                                                     | 2      |           |              | 2        |              | 3       | 2      |        | 2                       | 1          | 1      | 2        |
| CO2        |               | 2                                                                     | 2      |           |              | 2        |              | 3       | 2      |        | 2                       | 1          | 2      | 1        |
| CO3        |               | 2                                                                     | 2      |           |              | 2        |              | 3       | 2      |        | 2                       | 1          | 2      | 1        |
| <b>CO4</b> |               | 2                                                                     | 2      |           |              | 2        |              | 1       | 1      |        | 1                       | 1          | 2      | 2        |
| CO5        |               | 2                                                                     | 2      |           |              | 2        |              | 1       | 2      |        | 2                       | 1          | 2      | 2        |
| Avg.       |               | 2                                                                     | 2      |           |              | 2        |              | 3       | 2      |        | 2                       | 1          | 1      | 2        |
|            | 1- L          | OW                                                                    |        |           |              |          | <b>Iediu</b> |         |        |        |                         | 3-High     |        |          |
|            |               |                                                                       |        |           | Co           | ourse    | e Co         | nten    | t      |        |                         |            |        |          |
|            | ]             | [ <mark>ntrod</mark> ı                                                | ictior | to C      | onstr        | uction   | Mai          | nagen   | nent : | Intr   | oduction                | : Origin   | of     |          |
|            |               |                                                                       |        |           |              | 0        |              | 0       |        |        | rolling, H              |            |        |          |
| UNII       |               |                                                                       |        | ,         |              |          |              |         | ·      |        | d CPM ne                |            |        | C01      |
| 1          |               |                                                                       |        | -         |              |          |              | •       |        |        | drawing                 | -          |        | 001      |
|            |               |                                                                       | •      |           | nts (F       | ulkers   | on's l       | aw), I  | Dumm   | y act  | ivities, W              | ork Bre    | ak-    |          |
|            |               | lown st                                                               |        |           |              |          |              |         |        |        |                         |            |        |          |
|            |               |                                                                       |        |           |              | •        |              |         |        | -      | pected tir              |            |        |          |
|            |               |                                                                       |        |           |              |          |              |         |        |        | ence time               |            |        |          |
| UNII       |               |                                                                       |        |           |              |          |              | •       |        |        | ration, pr              | •          |        | CO2      |
| 2          |               | -                                                                     |        |           |              |          |              |         |        |        | nd Proble               |            | ·      |          |
|            |               |                                                                       | -      |           | and s        | sub-cri  | tical j      | path. l | Jpdati | ng –   | Process of              | or updati  | ng;    |          |
|            |               | when to                                                               | 1      |           | <u>е</u> , п | 000000   |              | loost   |        | 00077  | oo cohod                | ulince (   | 7004   |          |
| UNIT       |               |                                                                       |        |           |              |          |              |         |        |        | ce sched<br>al and cras | 0          |        |          |
| 3          |               | -                                                                     |        |           |              |          | -            |         |        |        | crash lim               |            |        | CO3      |
|            |               | imit, Oj                                                              |        |           |              | -        | -            |         |        |        |                         | ., _ 100 1 | 240    |          |

| -                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |  |  |  |  |  |  |  |  |  |  |
|------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|--|--|--|--|--|
| UNIT-<br>4                         | Cons<br>Cons<br>effec<br>ii) as<br>v) as | <b>agement:</b> Scope of Construction Management; Significance of<br>struction Management, Concept of Scientific Management; Safety in<br>struction, Qualities of Manager; The roles/functions performed by<br>tive and competent Managers, The Manager: i) as a decision maker;<br>a motivator; iii) as a communication-link; iv) as a conflict resolver;<br>a well – wisher of co-employees and the employer; etc Role play<br>roles of different stakeholders of construction industry.                                                                                | CO4 |  |  |  |  |  |  |  |  |  |  |  |
| UNIT-<br>5                         | Organ<br>organ<br>India                  | anization – Types of organization; Merits and demerits of different types of<br>nization – Authority –Policy– Labour Problems; Labour Legislation in<br>a; 'Workmen's compensation Act of 1923 and Minimum Wages Act of<br>3', and subsequent amendments.<br><b>Learning Resources</b>                                                                                                                                                                                                                                                                                    |     |  |  |  |  |  |  |  |  |  |  |  |
|                                    |                                          | Learning Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |  |  |  |  |  |  |  |  |  |  |  |
| Text Bo                            | ooks                                     | <ol> <li>Dr. B. C. Punmia and K. K. Khandelwal, Project Planning and<br/>Control with PERT and CPM, 4/e, Laxmi Publications, 2016</li> <li>Kumar Neeraj Jha, Construction Project Management: Theory and<br/>Practices, 2/e, Pearson Education, 2015</li> </ol>                                                                                                                                                                                                                                                                                                           |     |  |  |  |  |  |  |  |  |  |  |  |
| Reference<br>Books                 |                                          | <ol> <li>Dr. P. N. Modi, Rajeev Modi, PERT and CPM - Project Evaluation<br/>Review Technique and Critical Path Method, 5/e, Standard Book House,<br/>2012.</li> <li>L S Srinath, PERT and CPM Principles and Applications, 3/e,<br/>Affiliated East-West Press, 2001.</li> <li>U.K. Shrivastava, Construction Planning and Management, 2/e,<br/>Galgotia Publications- New Delhi, 2000.</li> <li>Kerzner H., Project Management- A systems approach to planning,<br/>scheduling and controlling, 10/e, John Wiley &amp; Sons, Inc., New Jersey,<br/>USA, 2009.</li> </ol> |     |  |  |  |  |  |  |  |  |  |  |  |
| e-<br>Resourc<br>other di<br>mater | gital                                    | <ol> <li><u>https://nptel.ac.in/courses/105104161/</u></li> <li><u>http://jntuk-coeerd.in/</u></li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |  |  |  |  |  |  |  |  |  |

### 20HS7701D - ORGANIZATIONAL BEHAVIOR

| Course<br>Category    |                                                | Human<br>Social S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Science                                           |                                                                   |                |                  |                  |               | Cred   | its:     |         |                                          | 3       |   |          |
|-----------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------|----------------|------------------|------------------|---------------|--------|----------|---------|------------------------------------------|---------|---|----------|
| Course<br>Type:       |                                                | CODemonstrate the applicability of analysing the complexities<br>associated with management of individual behaviour in the<br>organization.COAnalyse the complexities associated with Personality Development<br>in the organization and role of leadership.COAnalyse the complexities associated with Personality Development<br>in the organization and role of leadership.CODemonstrate how the organizational behaviour can integrate in<br>understanding the motivation between the formation of teams and<br>stages of group development.CODemonstrate how the organizational behaviour can influence in<br>understanding the development and culture of the individuals in the<br>organization.COPO1PO2PO3PO4PO5PO6PO<br>7PO9PO10PO11PO1<br> |                                                   |                                                                   |                |                  |                  |               |        |          |         |                                          |         |   |          |
|                       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                                   |                |                  | C                | ontin         | uous F | Evaluati | on:     |                                          | -       |   |          |
| Prerequisit<br>:      | tes                                            | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jil                                               |                                                                   |                |                  | Ser              | neste         | r End  | Evaluat  | tion:   |                                          | 70      |   |          |
|                       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                                   |                |                  |                  | Т             | otal M | larks:   |         |                                          | 100     |   |          |
|                       | Up                                             | on succ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | essful                                            | compl                                                             | etion          | of the           | course           | e, the        | stude  | ent will | be able | e to:                                    |         |   |          |
|                       | CO<br>1                                        | Dem<br>beha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | onstra<br>viour                                   | te the the                                                        | e app          | licabil          | ity of           | f the         | e cor  | ncept    | of orga | nizational                               |         |   |          |
|                       | CO<br>2                                        | Dem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | onstra                                            | te th<br>with                                                     |                |                  |                  |               |        |          |         |                                          |         |   |          |
| Course<br>Outcome     | c CO                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                   | velopment      |                  |                  |               |        |          |         |                                          |         |   |          |
| Outcome               | <b>3</b>                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                                   |                |                  |                  |               |        |          |         |                                          |         |   |          |
|                       | CO<br>4                                        | unde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                   |                |                  |                  |               |        |          |         |                                          |         |   |          |
|                       | CO<br>5                                        | understanding the development and culture of the individuals in the organization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                                                   |                |                  |                  |               |        |          |         |                                          |         |   |          |
|                       |                                                | PO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PO2                                               | PO3                                                               | PO4            | PO5              | PO6              | 0             |        | PO9      | PO10    | PO11                                     |         |   | PS<br>O2 |
| Contributi            | 1                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                 | -                                                                 | -              | -                | -                | -             | 3      | 3        | -       | 2                                        | -       | - | -        |
| of Course<br>Outcome  |                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                 | -                                                                 | -              | -                | -                | -             | 3      | 3        | -       | 2                                        | -       | - | -        |
| towards<br>achieveme  | nt $\frac{CO}{3}$                              | ) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                 | -                                                                 | -              | -                | -                | -             | 3      | 3        | -       | 2                                        | -       | - | -        |
| of Program<br>Outcome | m CO                                           | ) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                 | -                                                                 | -              | -                | -                | -             | 3      | 3        | -       |                                          | -       | _ | -        |
|                       | CO                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                 | _                                                                 | -              | -                | _                | -             | 3      | 3        | -       | 2                                        | -       | - | -        |
|                       | 5                                              | 1- Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                 |                                                                   |                | 2.               | ·Mediu           | m             |        |          | 3       | -High                                    |         |   |          |
|                       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                                   |                | e Cont           | ent              |               |        |          |         |                                          |         |   |          |
| UNIT-1                | Behav:<br>Organi                               | iour-Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ture a<br>l Beh                                   | nd Sc<br>aviour                                                   | ope o<br>Linka | of Org<br>age of | anizat<br>f Orga | iona<br>aniza | l Beh  | aviour   | -Opport | unizational<br>cunities of<br>with other | CO<br>1 |   |          |
| UNIT-2                | Found<br>Factor<br>Motiva<br>Herzbe<br>Definit | ations<br>s of Po<br>ation-Th<br>erg's Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of Ind<br>ercepti<br>neories<br>wo-Fac<br>arning- | erception-<br>inition of<br>of Needs-<br>Learning:<br>'heories of | CO<br>2        |                  |                  |               |        |          |         |                                          |         |   |          |

| UNIT-3              | <b>Personality Development and Leadership: Personality Development</b> -<br>Definition of Personality-Objectives of Personality-Dimensions of Personality-<br>Stages of Personality Development- <b>Leadership</b> - Definition of Leadership –<br>Objectives of Leadership –Styles of Leadership in Organization                                                                                                                                                                                                                                                                                                                                                                                                  | CO<br>3        |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| UNIT-4              | <b>Formation of Teams and Group Dynamics: Formation of Teams</b> -<br>Definition of Team- Objectives of Teams - Types of Teams- Team Building-<br>Creating Effective teams- <b>Group Dynamics:</b> Definition of Group- Formal Vs<br>Informal Groups- Stages of Group Development-Johari Window-<br>Transactional Analysis- Conflict -Definition, Conflict Resolution Mechanisms<br>in Groups                                                                                                                                                                                                                                                                                                                      | <b>CO</b><br>4 |
| UNIT-5              | <b>Organizational Change and Culture: Organizational Change-</b> Definition-<br>Change Models- Organizational resistance to change Management of Change<br>Process- Organizational Culture- Definition- Objectives-Distinction between<br>Organizational Culture and Organisational Climate                                                                                                                                                                                                                                                                                                                                                                                                                        | CO<br>5        |
| Text<br>Books       | Learning Resources           1. Fred Luthans, Organizational Behaviour, McGraw Hill, 11th Edition, 2001.           2. Stephen P. Robins, Organisational Behaviour, PHI Learning / Pearson Education, 11 <sup>th</sup> edition, 2008.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| Referenc<br>e Books | <ol> <li>Hellrigal, Slocum and Woodman, Organizational Behaviour, Cengage<br/>Learning, 11<sup>th</sup> Edition 2007.</li> <li>Aswathappa K., "Organizational Behaviour-Text, Cases and Games",<br/>Himalaya Publishing House, New Delhi, 2008.</li> <li>Schermerhorn, Hunt and Osborn, Organizational Behaviour, John Wiley,<br/>9th Edition, 2008.</li> <li>Udai Pareek, Understanding Organizational Behaviour, 2nd Edition, Oxford<br/>Higher Education, 2004.</li> <li>Ivancevich, Konopaske &amp;Maheson, Organizational Behaviour &amp;<br/>Management, 7th edition, Tata McGraw Hill, 2008.</li> <li>Hitt, Michael .A., Organizational Behaviour- A Strategic Approach, Wiley,<br/>India, 2008.</li> </ol> |                |

### INDUSTRIAL ENGINEERING MANAGEMENT

| Course Code                           | 20HS7701F                                     | Year                       | IV    | Semester      | Ι      |
|---------------------------------------|-----------------------------------------------|----------------------------|-------|---------------|--------|
| Course Category                       | Humanities and<br>Social Science<br>Electives | Offering<br>Branch         | ME    | Course Type   | Theory |
| Credits                               | 3                                             | L-T-P                      | 3-0-0 | Prerequisites | Nil    |
| Continuous<br>Internal<br>Evaluation: | 30                                            | Semester End<br>Evaluation | 70    | Total Marks   | 100    |

| Course | Course Outcomes: Upon successful completion of the course, the student will be able to                                            |            |     |           |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|------------|-----|-----------|--|--|--|--|
|        | Statement                                                                                                                         | Skill      | BTL | Units     |  |  |  |  |
| CO1    | Understand the basic concepts of management, organizational structures, leadership, operations management and project management. | Understand | L2  | 1,2,3,4,5 |  |  |  |  |
| CO2    | Explain the leadership qualities and concept of plant layout.                                                                     | Understand | L2  | 2         |  |  |  |  |
| CO3    | Apply different quality control techniques.                                                                                       | Apply      | L3  | 3         |  |  |  |  |
| CO4    | Illustrate various operations management Techniques                                                                               | Apply      | L3  | 4         |  |  |  |  |
| CO5    | Solve operations management and project management problems                                                                       | Apply      | L3  | 5         |  |  |  |  |

|            | Contribution of Course outcomes towards achievement of Program outcomes<br>&Strength of correlations (High:3, Medium: 2, Low:1) |     |     |     |     |            |            |            |            |      |      |      |      |      |
|------------|---------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|------|------|
|            | PO1                                                                                                                             | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1        | 1                                                                                                                               |     |     |     |     | 3          |            | 2          |            |      | 3    |      |      | 1    |
| CO2        | 1                                                                                                                               |     |     |     |     | 3          |            | 2          |            |      | 3    |      |      | 1    |
| <b>CO3</b> | 1                                                                                                                               |     |     |     |     | 3          |            | 2          |            |      | 3    |      |      | 1    |
| CO4        | 1                                                                                                                               |     |     |     |     | 3          |            | 2          |            |      | 3    |      |      | 1    |
| CO5        | 1                                                                                                                               |     |     |     |     | 3          |            | 2          |            |      | 3    |      |      | 1    |

|      | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|
| UNIT | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mapped<br>CO |  |  |  |  |
| I    | <ul> <li>INTRODUCTION: Definition of Industrial Engineering, Applications, Role of Industrial Engineer, Quantitative tools of IE, Functions of Management, Taylor's Scientific Management, Fayol's Principles of Management, Douglas Mc-Gregor's Theory X and Theory Y, Hertzberg's Two Factor Theory of Motivation, Maslow's Hierarchy of Human Needs.</li> <li>ORGANISATIONAL STRUCTURES: Basic concepts related to Organization – Depart mentation and Decentralization, Flat and Tall organizations, Organizational chart, Line organization, Line and staff organization, functional organization</li> </ul> | CO1          |  |  |  |  |
| II   | <b>LEADERSHIP</b> : Introduction, Definition, Types of leadership based on authority- their area of applicability and suitability, advantages and limitations, Traits approach to leadership                                                                                                                                                                                                                                                                                                                                                                                                                      | CO1,<br>CO2  |  |  |  |  |

|    | <b>PLANT LOCATION:</b> Definition, factors affecting the plant location, comparison of rural and urban sites. Plant Layout – definition, objectives, types of production, types of plant layout – various data analyzing forms-travel chart.                                                                                                                                                                       |             |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Ш  | <ul> <li>INSPECTION AND QUALITY CONTROL:<br/>Types of inspections, Statistical Quality Control techniques, variables and<br/>attributes, assignable and non-assignable causes. Control Charts:variable<br/>control charts- X -bar and R charts, Attribute control charts- P-charts and C-<br/>charts.</li> <li>Acceptance sampling- Single Sampling, Double sampling, Multiple<br/>Sampling, OC curves.</li> </ul> | CO1,<br>CO3 |
| IV | <ul> <li>WORK STUDY: Definition, objectives, method study - definition, objectives, steps involved- various types of associated charts-out line process charts, flow process charts, two handed process charts and SIMO charts.</li> <li>TIME STUDY: definition, time study, steps involved-equipment, different methods of performance rating- allowances, standard time calculation.</li> </ul>                  | CO1,<br>CO4 |
| V  | <ul> <li>PROJECT MANAGEMENT: Network modeling, Probabilistic model-various types of activity times estimation, programme evaluation review techniques (PERT), probability of completing the project,</li> <li>Deterministic model- critical path method (CPM), critical path calculation, crashing of simple of networks.</li> </ul>                                                                               | CO1,<br>CO5 |

#### **Learning Resources**

#### **Text Books:**

- 1. S.Bhaskar, "Management Science", Anuradha Publications
- 2. O.P. Khanna, "Industrial Engineering and Management", DhanpatRai
- 3. T. R. Banga, S. C. Sharma, N. K. Agarwal, "Industrial Engineering and Management Science" Khanna Publishers.

#### **Reference Books:**

1. PannerSelvam, Production and Operations Management, PHI, 2004.

- 2. Ralph M Barnes, Motion and Time Studies, John Wiley and Sons, 2004.
- 3. Chase, Jacobs, Aquilano, Operations Management, TMH 10th Edition, 2003.
- 4. L.S.Srinath, PERT / CPM, affiliate East-West Press, New Delhi, 2000.

5. Phillip Kotler, Marketing Management, Pearson, 2004. 6. S. Bhaskar, "Management Science" Anuradha Publications.

### PROJECT MANAGEMENT

| Course Code                          | 20HS7701G                                     | Year                       | IV    | Semester       | Ι      |
|--------------------------------------|-----------------------------------------------|----------------------------|-------|----------------|--------|
| Course<br>Category                   | Humanities and<br>Social Science<br>Electives | Offering<br>Branch         | ME    | Course<br>Type | Theory |
| Credits                              | 3                                             | L-T-P                      | 3-0-0 | Prerequisites  | Nil    |
| Continuous<br>Internal<br>Evaluation | 30                                            | Semester End<br>Evaluation | 70    | Total<br>Marks | 100    |

| Co  | Course Outcomes: Upon successful completion of the course, the student will be able to                                                        |            |     |           |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-----------|--|--|
|     | Statement                                                                                                                                     | Skill      | BTL | Units     |  |  |
| CO1 | Understand the concepts of project management.                                                                                                | Understand | L2  | 1,2,3,4,5 |  |  |
| CO2 | Explain procedure for analyzing the project risk, market risk and firm risk.                                                                  | Understand | L2  | 2         |  |  |
| CO3 | Apply social-cost benefit analysis on a project.                                                                                              | Apply      | L3  | 3         |  |  |
| CO4 | Analyze a project by applying various network<br>techniques for planning, scheduling and controlling of<br>different activities of a project. | Analyze    | L4  | 4         |  |  |
| CO5 | Analyze various aspects to be considered for technical<br>and financial analysis of the Project and the<br>Environmental appraisal            | Analyze    | L4  | 5         |  |  |

|            |            | Co  | ontribu |     |     |            |            |            |     |      |      | Progra<br>Low:1) |      | omes |
|------------|------------|-----|---------|-----|-----|------------|------------|------------|-----|------|------|------------------|------|------|
|            | <b>PO1</b> | PO2 | PO3     | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 | PO11 | PO12             | PSO1 | PSO2 |
| <b>CO1</b> | 2          | 1   |         |     |     |            |            |            | 2   |      | 3    | 2                | 2    | 1    |
| CO2        | 2          | 1   |         |     |     |            |            |            | 2   |      | 3    | 2                | 2    | 1    |
| CO3        | 2          | 1   |         |     |     |            |            |            | 2   |      | 3    | 2                | 2    | 1    |
| CO4        | 2          | 1   |         |     |     |            |            |            | 2   |      | 3    | 2                | 2    | 1    |
| CO5        | 2          | 1   |         |     |     |            |            |            | 2   |      | 3    | 2                | 2    | 1    |

|      | Syllabus                                                                                                                                                                                                                                                                                                                                                           |              |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| UNIT | Contents                                                                                                                                                                                                                                                                                                                                                           | Mapped<br>CO |
| I    | Meaning, Nature and Importance of Project:Introduction, Concept of project and project management, Characteristics of<br>project, Project Family tree, Classification of Project, Project selection<br>process,Project life cycle, Project report, Project appraisal, Tools and techniques for<br>project management, Project manager's roles and responsibilities | C01          |
| Π    | <ul> <li>Analysis Of Project Risk, Market Risk And Firm Risk: Introduction,<br/>Analysis of project risks- Projects with quantified benefits and not quantifiable<br/>benefits,</li> <li>Market risk- Security market risk, Interest rate risk, Purchasing Power Risk,<br/>Firm risk- Business risk, financial risk.</li> </ul>                                    | CO1<br>CO2   |
| III  | <b>Cost-Benefit Analysis:</b><br>Introduction, need for social cost benefit analysis, Procedure of social cost benefit analysis, Main feature of social cost benefit analysis,                                                                                                                                                                                     | CO1<br>CO3   |

|    | <b>Cost-Benefit Analysis Approachs:</b> Unido approach, Little-Mirrless approach, SCBA in India, Public investment decision making in India, Limitation of SCBA.                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| IV | NETWORK TECHNIQUES FOR PROJECTMANAGEMENT:Introduction, Network modelling, Probabilistic model-various types of activitytimes estimation, Programme evaluation review techniques (PERT),probability of completing the project,Deterministic model- critical path method (CPM), critical path calculation,crashing of simple of networks                                                                                                                                                                                                                                          | CO1<br>CO4 |
| V  | <ul> <li>TECHNICAL AND FINANCIAL ANALYSIS OF PROJECT:</li> <li>Introduction, Technical Analysis-Materials and inputs, Production, Choice of technology, Product Mix, Plant capacity, Location and site, Structures and civil works, Project charts and layouts, financial analysis -Significance of financial analysis, Utility of financial and accounting statements,</li> <li>ENVIRONMENTAL APPRAISAL OF PROJECTS:</li> <li>Introduction, Types and Environmental Dimensions of a Project, Stresses on Environment, Environmental Impact Assessment Methodologies</li> </ul> | CO1<br>CO5 |

|                        | Learning Resource                                                        |
|------------------------|--------------------------------------------------------------------------|
| Text books:            |                                                                          |
| 1. Prasanna (          | Chandra, Projects Planning, Implementation and Control, Tata McGraw Hill |
| Publishing             | Company Limited, New Delhi, 1995.                                        |
| <b>Reference books</b> |                                                                          |
| 1. Project             | Management Institute (PMI), A Guide to the Project Management of         |
| Knowle                 | lge Newton Square, PA, 1996                                              |
| 2. J.R. Met            | redith and S.J. Mantel. Project Management: A Managerial Approach. John  |
| Wiley an               | nd Sons, New York, 1995.                                                 |
| 3. L.S. Srin           | nath, PERT & CPM Principles & Applications, 3rd edition, East west       |
| Press,20               | 01.                                                                      |
| e- Resources & o       | ther digital material                                                    |
| 1. <u>https://npte</u> | l.ac.in/courses/105/106/105106149/                                       |
|                        |                                                                          |

2. https://nptel.ac.in/courses/110/104/110104073/

#### SALES FORCE TECHNOLOGIES

| Course Code                           | 20SA8756 | Year                        | IV    | Semester        | Ι         |
|---------------------------------------|----------|-----------------------------|-------|-----------------|-----------|
| Course<br>Category                    | SC       | Branch                      | IT    | Course Type     | Practical |
| Credits                               | 2        | L-T-P                       | 1-0-2 | Prerequisites   | -         |
| Continuous<br>Internal<br>Evaluation: | -        | Semester End<br>Evaluation: | 50    | Total<br>Marks: | 50        |

| Course  | Course Outcomes                                                                           |    |  |  |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
| Upon Su | Upon Successful completion of course, the student will be able to                         |    |  |  |  |  |  |  |  |
| CO1     | Understand the basics of CRM, multi-tenancy, Data modelling and management in Salesforce. | L2 |  |  |  |  |  |  |  |
| CO2     | Use basic programming constructs of Apex.                                                 | L3 |  |  |  |  |  |  |  |
| CO3     | Use advance programming constructs like class, interface triggers in Apex.                | L3 |  |  |  |  |  |  |  |
| CO4     | Demonstrate the usage of Visual force and Lightening component framework                  | L3 |  |  |  |  |  |  |  |
| CO5     | Use various debugging and deployment tools of Salesforce                                  | L3 |  |  |  |  |  |  |  |

Contribution of Course Outcomes towards the achievement of Program Outcomes & Strength of correlations (H: High, M: Medium, L: Low)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 |     |     |     | 3   |     |     |     |     |     |      |      |      | 3    | 3    |
| CO2 |     |     |     | 3   |     |     |     |     |     |      |      |      | 3    |      |
| CO3 |     |     |     | 3   |     |     |     |     |     |      |      |      | 3    |      |
| CO4 |     |     |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO5 |     |     |     |     |     |     |     |     |     |      |      |      | 3    |      |

| No         Contents           Salesforce Fundamentals: What is a multi-tenancy, considerations, M paradigm, Core CRM objects.         Data Modeling and Management: Data modeling, Relationship type Visualizing and creating entity relationships, Importing and exporting d into development environments.           I         Practical Exercises:           1.         Create, setup Salesforce developer account and access developer console.           2.         Exercise on Standard and custom objects, Relationship fields.           3.         Exercise on how to import and export data.           Apex: Apex Basics, Class and instance, Features of Apex, Apex variab constants and expressions, Access modifiers, Control flow statemeters | pes,<br>lata CO1 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| paradigm, Core CRM objects.Data Modeling and Management: Data modeling, Relationship typ<br>Visualizing and creating entity relationships, Importing and exporting d<br>into development environments.Practical Exercises:1. Create, setup Salesforce developer account and access developer conso<br>2. Exercise on Standard and custom objects, Relationship fields.3. Exercise on how to import and export data.Apex: Apex Basics, Class and instance, Features of Apex, Apex variab                                                                                                                                                                                                                                                                     | pes,<br>lata CO1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                |
| <ul> <li>Working with data in salesforce.</li> <li>Practical Exercises: <ol> <li>Exercise on install Force.com IDE and create projects.</li> <li>Exercise on primitive data types, sObject, Enum and collections.</li> <li>Exercise on control statements and looping statements.</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| <ul> <li>Apex Classes, Interfaces &amp; Triggers: Apex classes, interfaces, Aptriggers, sObject relationships, Implementing SOQL &amp; SOSL queries, order of execution, Exception handling, Security in Apex, Web serv callouts</li> <li>III Practical Exercises:         <ol> <li>Exercise on creating Apex class.</li> <li>Exercise on SOQL and SOSL Queries.</li> <li>Exercise on working with Apex Triggers.</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                    | the              |
| <ul> <li>Salesforce user interface: Introduction, Displaying Salesforce data us Visualforce, Lightning component framework, Benefits of Lightn component framework, Resources in Lightning component.</li> <li>IV Practical Exercises:         <ol> <li>Exercise on displaying data using Visualforce and Visualforce pages.</li> <li>Practice components in Lightning component framework.</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                          |                  |
| <b>Debugging and Deployment tools:</b> Debugging and Deployment to<br>Monitoring and accessing debug logs, deploying metadata to another org. <b>VPractical Exercises:</b><br>1. Exercise on creating sandbox and deployment strategies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cos              |
| Learning Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ·              |
| Text Books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| 1. Salesforce Platform Developer I Certification Guide, John Vandevelde, Gunth Packt Publishing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | er Roskams,      |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| 1. Beginning Salesforce Developer, Michael Wicherski, Apress.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| E-Recourses and other Digital Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| 1. Salesforce Platform Developer I, Trail:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| https://trailhead.salesforce.com/content/learn/trails/platform-developer-i-cert<br>271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ification        |

| Course Code                | 20IT3781B/C | Year               | IV    | Semester            | Ι         |
|----------------------------|-------------|--------------------|-------|---------------------|-----------|
| Course Category            | PC          | Branch             | IT    | Course Type         | Practical |
| Credits                    | 3           | L-T-P              | 0-0-0 | Prerequisites       | -         |
| <b>Continuous Internal</b> |             | Semester End       |       |                     |           |
| Evaluation :               | 0           | <b>Evaluation:</b> | 50    | <b>Total Marks:</b> | 50        |

### **INDUSTRIAL/RESEARCH INTERNSHIP**

|         | Course Outcomes                                                                                                                                                                                                          |    |  |  |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
| Upon Su | Upon Successful completion of course, the student will be able to                                                                                                                                                        |    |  |  |  |  |  |  |  |
| CO1     | Formulate problem analysis by gaining domain knowledge elaborate<br>through modeling and implementation through state of the art<br>technology available                                                                 | L3 |  |  |  |  |  |  |  |
| CO2     | Design solutions for engineering problems that meet specific needs for the societal and environmental consideration.                                                                                                     | L4 |  |  |  |  |  |  |  |
| CO3     | Usage of modern tools to get appropriate solutions for the given requirements                                                                                                                                            | L3 |  |  |  |  |  |  |  |
| CO4     | Prepare proper documentation consisting of Software Requirements<br>Specification (SRS), Modeling techniques, Development Strategies,<br>Implementation and testing strategies as a member of individual /<br>Team work. | L3 |  |  |  |  |  |  |  |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations(3:Substantial,2: Moderate, 1:Slight)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   | 2   | 2   |     |     |     | 1   |     |     |      |      | 3    | 2    | 2    |
| CO2 | 1   | 2   | 2   | 1   | 1   |     |     |     |     |      |      | 3    | 2    | 2    |
| CO3 |     |     |     |     | 1   |     | 1   | 3   | 2   |      |      | 2    | 2    | 2    |
| CO4 |     |     |     |     |     |     |     |     | 2   | 2    | 2    | 2    | 2    | 2    |

#### **CLOUD COMPUTING**

|                            | (MINOR)  |                    |       |               |        |  |  |  |  |  |  |
|----------------------------|----------|--------------------|-------|---------------|--------|--|--|--|--|--|--|
| Course Code                | 20IT5701 | Year               | IV    | Semester      | Ι      |  |  |  |  |  |  |
|                            |          |                    |       |               |        |  |  |  |  |  |  |
| Course Category            | Minor    | Branch             | IT    | Course Type   | Theory |  |  |  |  |  |  |
| Credits                    | 4        | L-T-P              | 4-0-0 | Prerequisites | DCCN   |  |  |  |  |  |  |
| <b>Continuous Internal</b> |          | Semester End       |       |               |        |  |  |  |  |  |  |
| Evaluation:                | 30       | <b>Evaluation:</b> | 70    | Total Marks:  | 100    |  |  |  |  |  |  |

|           | Course Outcomes                                                                                                             | Blooms<br>Taxonomy<br>Level |
|-----------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Upon Suco | cessful completion of course, the student will be able to                                                                   |                             |
| CO1       | Understand Fundamental Concepts and Models of Cloud Computing and Cloud<br>Enabling Technologies, Infrastructure Mechanisms | L2                          |
| CO2       | Determine Cloud Infrastructure Mechanisms                                                                                   | L3                          |
| CO3       | Determine different Cloud Maintenance strategies                                                                            | L3                          |
| CO4       | Analyze Cloud Architectures.                                                                                                | L3                          |

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations(3:Substantial,2:Moderate,1:Slight)

| correlati  |                                                                                                                                                                                                                         | ubstan   | ului,2.111 | louerate  | ,1.0116 | ,,      |         |         |         |      |      |      |            |      |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-----------|---------|---------|---------|---------|---------|------|------|------|------------|------|
|            | PO1                                                                                                                                                                                                                     | PO2      | PO3        | PO4       | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO10 | PO11 | PO12 | PSO1       | PSO2 |
| CO1        | 3                                                                                                                                                                                                                       |          |            |           |         |         |         |         |         |      |      |      | 2          |      |
| CO2        | 3                                                                                                                                                                                                                       |          |            | 3         |         |         |         |         |         |      |      |      | 2          |      |
| CO3        | 3                                                                                                                                                                                                                       |          |            | 3         |         |         |         |         |         |      |      |      | 2          |      |
| CO4        | 3                                                                                                                                                                                                                       | 3        |            |           |         |         |         |         |         |      |      |      | 2          |      |
|            |                                                                                                                                                                                                                         |          |            |           | S       | yllabu  | IS      |         |         |      |      |      |            |      |
| Unit<br>No |                                                                                                                                                                                                                         |          |            |           | C       | ontent  | s       |         |         |      |      |      | Mapp<br>CO |      |
| I          | Understanding Cloud Computing: Cloud origins and influences, basic concepts and terminology, goals and benefits, risks and challenges.<br>Fundamental Concepts and Models: Roles and boundaries, cloud characteristics. |          |            |           |         |         |         |         | C       | 01   |      |      |            |      |
|            | cloud                                                                                                                                                                                                                   | delivery | v models   | , cloud o | deploy  | ment n  | nodels  |         |         |      |      |      |            |      |
|            |                                                                                                                                                                                                                         |          |            |           |         | ~       | 270     |         |         |      |      |      |            |      |

| II        | <b>Cloud Enabling Technology:</b> Datacenter technology, virtualization technology, web technology, multitenant technology, service technology.                                                                                                                                                                                 | CO1         |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| III       | <b>Cloud Infrastructure Mechanisms:</b> Logical network perimeter, virtual server, cloud storage device, cloud usage monitor, resource replication                                                                                                                                                                              | CO1,<br>CO2 |
| IV        | <b>Specialized Cloud Mechanisms :</b> Automated Scaling Listener, Load Balancer, SLA Monitor, Pay-Per- Use Monitor, Audit Monitor, Fail over System, Hypervisor, Resource Cluster, Multi-Device Broker, State Management Database.                                                                                              | CO3         |
| V         | <b>Fundamental Cloud Architectures:</b> Workload distribution Architecture, resource pooling architecture, dynamic scalability architecture, elastic bresource capacity architecture, service load balancing architecture, cloud bursting architecture, elastic disk provisioning architecture, redundant storage architecture. |             |
| Text Bo   | Learning Resources                                                                                                                                                                                                                                                                                                              |             |
| 1.Thoma   | s Erl, Ricardo Puttini, Zaigham Mahmood, Cloud Computing: Concepts ,Technology & .<br>Hall,2013.                                                                                                                                                                                                                                | Architectur |
| Security, | ces<br>W. Rittinghouse, JamesF. Ransome, Cloud Computing: Implementation, Management an<br>CRC Press,2012.<br>onyT.Velte, TobyJVelte Robert Elsenpeter, Cloud Computing a practical approach,<br>Hill,2010.                                                                                                                     | ıd          |

### e-Resources& other digital material

NPTELVIDEOLECTURES

#### APPLICATIONS OF DEEP LEARNING

#### (HONORS)

| Course Code                         | 20IT6701 | Year                        | IV    | Semester      | Ι      |
|-------------------------------------|----------|-----------------------------|-------|---------------|--------|
| Course Category                     | HONORS   | Branch                      | IT    | Course Type   | Theory |
| Credits                             | 4        | L-T-P                       | 4-0-0 | Prerequisites | -      |
| Continuous Internal<br>Evaluation : | 30       | Semester End<br>Evaluation: | 70    | Total Marks:  | 100    |

|      | Course Outcomes                                                                                     | DI |
|------|-----------------------------------------------------------------------------------------------------|----|
| Upon | Blooms<br>Taxonomy Level                                                                            |    |
| CO1  | Understand the fundamental techniques and principles of deep learning.                              | L2 |
| CO2  | Apply concepts and major architectures of deep networks to build solutions for variety of problems. | L3 |
| CO3  | Apply Deep learning techniques to build applications in various domains.                            | L3 |
| CO4  | Analyze CNN techniques to classify images and detect objects and prepare an effective report.       | L4 |

|        |     |               |   |     |   | eveme | nt of P | rogram | Outcor | nes & S  | Strength | of   |
|--------|-----|---------------|---|-----|---|-------|---------|--------|--------|----------|----------|------|
| correi | PO1 | (H: Hi<br>PO2 |   | PO5 |   | PO8   | PO9     | PO10   | PO11   | PO<br>12 | PSO1     | PSO2 |
| CO1    | 3   | 3             | 3 |     |   |       |         |        |        | 3        | 3        | 3    |
| CO2    | 3   | 3             | 3 |     | 2 |       |         |        |        | 3        | 3        | 3    |
| CO3    | 3   | 3             | 2 |     | 3 |       |         |        |        | 3        | 3        | 3    |
| CO4    | 3   | 3             | 3 |     |   |       |         |        |        | 2        | 3        | 3    |

|            | Syllabus                                                                                                                                                                                                                                                                                                                                            |          |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                                                            |          |  |  |  |  |  |
| I          | A Review of Machine Learning–The Learning Machines, How Can Machines Learn?<br>Biological Inspiration, What Is Deep Learning? Fundamentals of Deep Networks –<br>Defining Deep Learning, What Is Deep Learning? Common Architectural Principles of<br>Deep Networks:<br>Parameters, Layers, Activation Functions, Loss Functions, Hyper parameters. | C01,C02  |  |  |  |  |  |
| II         | <ul> <li>Building Blocks of Deep Networks–RBMs, Auto encoders, Variation</li> <li>Auto encoders.</li> <li>Major Architectures of Deep Networks: Unsupervised pre trained networks, Deep</li> <li>Belief Networks, Generative Adversarial Networks.</li> </ul>                                                                                       | CO1,CO2  |  |  |  |  |  |
| III        | Convolution Neural Networks (CNNs) – The Convolution Operation, Motivation,<br>Pooling, Convolution and Pooling as an Infinitely Strong Prior, Variants of the Basic<br>Convolution Function, Structured Outputs, Data Types, Efficient Convolution<br>Algorithms, Random or Unsupervised Features                                                  | CO1, CO4 |  |  |  |  |  |
| IV         | Sequence Modeling – Recurrent and Recursive Nets – Unfolding Computational<br>Graphs, Recurrent Neural Networks, Encoder-Decoder Sequence-to-Sequence<br>Architectures, Deep Recurrent Networks, Recursive Neural Networks, The Long Short-<br>Term Memory                                                                                          | CO1, CO3 |  |  |  |  |  |
| V          | Deep Learning applications – Computer Vision, Speech Recognition, Natural Language Processing, Other Applications.                                                                                                                                                                                                                                  | CO1, CO3 |  |  |  |  |  |

### Learning Resources

### Text books

- 1. Deep learning: A practitioner's approach,
- JoshPattersonandAdamGibson,FirstEdition,2017,O'ReillyMedia.
- 2. Deep Learning, Iam Good fellow, Yoshua Bengio, AaronCourville, 2016, MITPress.

### References

- 1. FundamentalsofDeepLearning,Designingnext-generationmachineintelligencealgorithms,NikhilBuduma, O"Reilly,
- 2. Deep learning Cook Book, Practical recipes to ge tstarted Quickly, Douwe Osinga, O"Reilly, 2019, Shroff Publishers.

### e-Resources and other Digital Material

- $1. \ https://www.deeplearningbook.org/$
- $2. \ https://onlinecourses.nptel.ac.in/noc20\_cs62/preview$
- $3. \ https://www.udemy.com/share/101X6W/ \ (or) \ https://www.udemy.com/course/deep-learning-advanced-nlp/$
- 4. https://www.youtube.com/watch?v=5tvmMX8r\_OM&list=PLtBw6njQRUrwp57C0oIVt26ZgjG9NI

### INFORMATION RETRIEVAL SYSTEMS (Honors)

| Course Code                | 20IT6701 | Year               | IV    | Semester      | Ι      |
|----------------------------|----------|--------------------|-------|---------------|--------|
| Course Category            | Honors   | Branch             | ІТ    | Course Type   | Theory |
| Credits                    | 4        | L-T-P              | 4-0-0 | Prerequisites | -      |
| <b>Continuous Internal</b> |          | Semester End       |       |               |        |
| Evaluation :               | 30       | <b>Evaluation:</b> | 70    | Total Marks:  | 100    |

|        | Course Outcomes                                                 | Di                          |
|--------|-----------------------------------------------------------------|-----------------------------|
| Upon s | uccessful completion of the course, the student will be able to | Blooms<br>Taxonomy<br>Level |
| CO1    | Introduction to Information Retrieval Systems.                  | L2                          |
| CO2    | Gain knowledge on capabilities of IRS.                          | L2                          |
| CO3    | Applying various indexing techniques for information search.    | L3                          |
| C04    | Gain knowledge on applying various data structures.             | L3                          |

# Contribution of Course Outcomes towards the achievement of Program Outcomes & Strength of correlations (H: High, M: Medium, L: Low)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 3   | 3   |     |     |     | 3   |     |     |      |      | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   |     |     |     | 3   |     |     |      |      | 3    | 3    | 3    |
| CO3 | 3   | 3   | 3   |     |     |     | 2   |     |     |      |      | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   |     |     |     | 2   |     |     |      |      | 3    | 3    | 3    |

|            | Syllabus                                                                                                                                                                                                                                   |               |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Unit<br>No | Contents                                                                                                                                                                                                                                   | Mapped<br>COs |
| Ι          | <b>Introduction</b> : Definition of Information Retrieval systems, Objectives of Information Retrieval systems, Functional Overview, Relationship to DBMS, Digital libraries and Data Warehouses.                                          | CO1           |
| II         | <b>Information Retrieval System Capabilities:</b> Search Capabilities,<br>Browse Capabilities, Miscellaneous Capabilities, Z39.50 and WAIS<br>Standards                                                                                    | CO1           |
| III        | <b>Cataloging and Indexing</b> : History and Objectives of Indexing,<br>Indexing Process, Automatic Indexing, Information Extraction.                                                                                                      | CO1<br>CO2    |
| IV         | <b>Data Structures</b> : Introduction to Data Structures, Stemming Algorithms,<br>and Inverted file structures, N-gram data structure, PAT data structure,<br>Signature file structure, Hyper text data structure, Hidden Markov<br>Model. | CO1<br>CO4    |
| V          | AutomaticIndexing:Classes of Automatic Indexing, Statisticalindexing:Probabilistic Weighting,Vector Weighting, Naturallanguage, Concept indexingVector Weighting,Vector Weighting,                                                         | CO1<br>CO3    |

#### Learning Resources :

#### Textbooks:

1. M.T.M. Gerald J Kowalski, Information Storage and Retrieval Systems: Springer International Edition, 2018

#### **Reference Books**

[1]W.B. Frakes, Ricardo Baeza-Yates, Information Retrieval Data Structures and Algorithms: Prentice Hall PTR, 2015.

[2]R. Baeza-Yates, Modern Information Retrieval: Pearson Education, 2012.

#### e-Learning Resources

[1]https://nlp.stanford.edu/IR- book/pdf/01bool.pdf[2] [2]http://shodhganga.inflibnet.ac.in/jspui/bitstream/10603/141878/10/10\_chapter02.pdf

#### PERCEPTION AND COMPUTER VISION

| (Honors)                            |          |                             |       |                    |        |  |  |  |  |
|-------------------------------------|----------|-----------------------------|-------|--------------------|--------|--|--|--|--|
| Course Code                         | 20IT6701 | Year                        | IV    | Semester           | Ι      |  |  |  |  |
| Course Category                     | Honors   | Branch                      | IT    | <b>Course Type</b> | Theory |  |  |  |  |
| Credits                             | 4        | L-T-P                       | 4-0-0 | Prerequisites      |        |  |  |  |  |
| Continuous Internal<br>Evaluation : | 30       | Semester End<br>Evaluation: | 70    | Total Marks:       | 100    |  |  |  |  |

|        | Course Outcomes                                                                                                                                                               | Blooms<br>Taxonomy Level |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|--|--|--|--|
| Upon s | Upon successful completion of the course, the student will be able to                                                                                                         |                          |  |  |  |  |  |  |
| CO1    | Identify basic concepts, terminology, theories, models, and methods in the field of computer vision                                                                           | L2                       |  |  |  |  |  |  |
| CO2    | Understand known principles of the human visual system                                                                                                                        | L2                       |  |  |  |  |  |  |
| CO3    | Apply basic methods of computer vision related to multi-scale representation,<br>edge detection, and detection of other primitives, stereo, motion, and object<br>recognition | -                        |  |  |  |  |  |  |
| CO4    | Analyze the design of a computer vision system for a specific problem                                                                                                         | L4                       |  |  |  |  |  |  |
| C05    | Evaluate the efficiency of computerVision                                                                                                                                     | L5                       |  |  |  |  |  |  |

Contribution of Course Outcomes towards the achievement of Program Outcomes & Strength of correlations (H: High, M: Medium, L: Low)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 2   | 3   |     |     |     | 3   |     |     |      |      | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   |     |     |     | 3   |     |     |      |      | 3    | 3    | 3    |
| CO3 | 3   | 3   | 3   |     |     |     | 3   |     |     |      |      | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   |     |     |     | 3   |     |     |      |      | 3    | 3    | 3    |
| CO5 | 3   | 3   | 2   |     |     |     | 2   |     |     |      |      | 2    | 2    | 2    |

|            | Syllabus                                                                                                                                                                                      |          |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| Unit<br>No |                                                                                                                                                                                               |          |  |  |
| Ι          | Introduction, the challenges, images and imaging operations in low-level vision edge detection, corner, interest point, and invariant feature detection                                       | ,<br>CO1 |  |  |
| II         | Texture analysis, binary shape analysis, boundary pattern analysis, detection of linear, circular, and elliptic structures, the generalized Hough transform, pattern matching techniques      | CO2      |  |  |
| III        | object segmentation and shape models, basic classification concepts, the three-<br>dimensional world, invariants and perspective, image transformations and<br>camera calibration, and motion |          |  |  |
| IV         | Real-time vision systems, face detection, and recognition, surveillance in-vehicle vision systems                                                                                             | CO4      |  |  |
| V          | Machine learning and deep learning concepts in computer vision.                                                                                                                               | CO5      |  |  |

### Learning Resources

#### Text Books

- 1. Computer vision by Dana H. Ballard, Christopher M. Brown, Prentice Hall
- 2. 3D computer vision: efficient methods and applications by Christian Wohler, Springer Berlin Heidelberg

#### MULTI AGENT SYSTEMS

#### (Honors)

| Course Code                         | 20IT6701 | Year                        | IV    | Semester      | Ι      |
|-------------------------------------|----------|-----------------------------|-------|---------------|--------|
| Course Category                     | Honors   | Branch                      | IT    | Course Type   | Theory |
| Credits                             | 4        | L-T-P                       | 4-0-0 | Prerequisites | -      |
| Continuous Internal<br>Evaluation : |          | Semester End<br>Evaluation: | 70    | Total Marks:  | 100    |

|        | Course Outcomes                                                 | Blooms            |
|--------|-----------------------------------------------------------------|-------------------|
| Upon s | uccessful completion of the course, the student will be able to | Taxonomy<br>Level |
| CO1    | Gain Knowledge in Multi-agent and intelligent agents            | L1                |
| CO2    | Understand the development of software agents                   | L2                |
| CO3    | Understand Agents and security                                  | L2                |
| CO4    | Analyze the applications of agents                              | L4                |
| CO5    | Evaluate the Multi agent efficiency.                            | L5                |

Contribution of Course Outcomes towards the achievement of Program Outcomes & Strength of correlations (H: High, M: Medium, L: Low)

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 3   | 3   |     |     |     | 3   |     |     |      |      | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   |     |     |     | 3   |     |     |      |      | 3    | 3    | 3    |
| CO3 | 3   | 3   | 3   |     |     |     |     |     |     |      |      | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   |     |     |     | 3   |     |     |      |      | 2    | 3    | 3    |
| CO5 | 2   | 2   |     |     |     |     |     |     |     |      |      | 2    | 2    | 2    |

|            | Syllabus                                                                                                                                                                                                                                                                                                              |               |  |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|--|
| Unit<br>No | Contents                                                                                                                                                                                                                                                                                                              | Mapped<br>COs |  |  |  |  |  |  |  |
|            | Agent Definition And Programming:, Agent Programming Paradigms, Agent Vs. Object, Aglet, Mobile Agents, Agent Frameworks, Agent Reasoning                                                                                                                                                                             |               |  |  |  |  |  |  |  |
| Ι          | <b>Interface Agents</b> : Metaphors with Character, Processes, threads, Components, Java Beans, ActiveX, Sockets, RPCs, Distributed Computing                                                                                                                                                                         | CO1           |  |  |  |  |  |  |  |
| II         | Agent-Oriented Programming: Jini Architecture, Actors and Agents, Typed<br>and proactive messages, Interaction between agents, Reactive Agents, Agent<br>negotiation, Software Agent for Cooperative Learning, , Self - interested agents                                                                             |               |  |  |  |  |  |  |  |
|            | in electronic commerce applications, Agent Communication Languages                                                                                                                                                                                                                                                    | CO2           |  |  |  |  |  |  |  |
| III        | Agent adaptability: Agent-Based Framework for Interoperability, Agents for<br>Information Gathering, Mobile Agent Applications, Towards an Industrial-<br>Strength Open Agent Architecture, Agent Security Issues, Mobile Agents<br>Security, Untrusted Agent, Authentication for agents, Security issues for aglets. | CO3           |  |  |  |  |  |  |  |
| IV         | <b>Multi-Agent System</b> : Theoretical approaches and NASA applications – Agent-<br>based control for multi-UAV information collection- Agent-based decision<br>support system for Glider pilots                                                                                                                     | CO4           |  |  |  |  |  |  |  |
| V          | Multi-agent system in E-Health Territorial Emergencies – Software Agents<br>for computer network security- Multi-Agent Systems, Ontologies, and<br>Negotiation for Dynamic Service Composition in Multi Organizational<br>Environmental Management.                                                                   | CO5           |  |  |  |  |  |  |  |

#### Learning Resources:

#### Textbooks:

- 1. Jeffrey M. Bradshaw, Software Agents, AAAI Press, 1997
- 2. Richard Murch, Tony Johnson, Intelligent Software Agents, Prentice Hall, 1999

#### **References Text books:**

1. Information Storage and Retrieval Systems: Theory and Implementation by Gerald J.Kowalski, Mark T.Maybury, Second Edition, Kluwer Academic Publishers

### **PROJECT WORK**

| Course Code                         | 20IT3861 | Year                        | IV    | Semester           | П         |
|-------------------------------------|----------|-----------------------------|-------|--------------------|-----------|
| Course Category                     | PC       | Branch                      | IT    | <b>Course Type</b> | Practical |
| Credits                             | 8        | L-T-P                       | 0-0-0 | Prerequisites      | -         |
| Continuous Internal<br>Evaluation : | 60       | Semester End<br>Evaluation: | 140   | Total Marks:       | 200       |

|         | Blooms<br>Taxonomy Level                                                                              |    |  |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Upon su |                                                                                                       |    |  |  |  |  |  |  |
| CO1     | L4                                                                                                    |    |  |  |  |  |  |  |
| CO2     | Design and document technical ideas, strategies and methodologies.                                    | L6 |  |  |  |  |  |  |
| CO3     | <b>CO3</b> Use tools, algorithms and/or techniques that contribute to the development of the project. |    |  |  |  |  |  |  |
| CO4     | Role-Play as a member and/or leader of a team to present the project.                                 | L6 |  |  |  |  |  |  |

| Contribution of Course Outcomes towards achievement of Program Outcomes &<br>Strength of correlations (3:High, 2: Medium, 1:Low) |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|----------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|                                                                                                                                  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1                                                                                                                              | 3   | 3   | 3   | 3   |     | 3   | 3   |     |     |      |      |      | 3    | 3    |
| CO2                                                                                                                              |     | 3   | 3   | 3   |     |     |     | 3   |     | 3    |      |      | 3    | 3    |
| CO3                                                                                                                              |     |     |     |     | 3   |     |     |     |     |      |      |      | 3    | 3    |
| CO4                                                                                                                              |     |     |     |     |     |     |     |     | 3   |      | 3    | 3    | 3    | 3    |