PRASAD V POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY (Autonomous)

ACADEMIC RULES & REGULATIONS (PVP19) and

FOUR YEAR B.Tech Course Structure, First Year Syllabus

Applicable for the batch of students admitted from the Academic Year 2019-2020

PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY (Autonomous)

AICTE approved, NBA & NAAC Accredited, An ISO 9001:2015 certified Institution Permanently Affiliated to Jawaharlal Nehru Technological University Kakinada Kanuru, Vijayawada -520 007, Andhra Pradesh Phone:0866 2581699 e-mail: principal@pvpsiddhartha.ac.in www.pvpsiddhartha.ac.in

w.e.f. A.Y 2019 - 2020

PREFACE

PVP Siddhartha Institute of technology, established in 1998, is one of the seventeen educational institutions sponsored and run by Siddhartha Academy of General & Technical Education. The 250 members of the Academy are a group of industrialists, educationists, auditors and philanthropists with vast experience in their respective fields and above all with an ardent desire to spread quality Education. All the academic organizations of Siddhartha Academy stand symbolic of the pragmatic vision of its founders. PVP Siddhartha Institute of Technology has the advantage of inheriting the higher academic standards. The college is approved by AICTE and is permanently affiliated to JNTUK. It is certified by ISO 9001-2015 for its quality standard. It is accredited by the National Board of Accreditation and NAAC with A⁺ grade. Moreover, it is an Autonomous College.

The curriculum is revised continuously to address the challenges of industry and academia and to foster the global competencies among the students. The curriculum is revised two times since 2012. The present curriculum(PVP19) is designed incorporating the features such as outcome based approach, Choice Based Credit System, encouraging self-learning through MOOCs platforms i.e., Swayam, Courses Era, EDX, NPTEL, etc., Transformation of creative ideas into a prototype through project phase I & phase II, enhancing depth & breadth by introducing more number of programs, open & interdisciplinary electives in core and multi-disciplinary areas, offering courses by industry experts to improve Industry Institute Interaction in addition to internships at industry and introduction of wide range of value added courses beyond curriculum to choose according to their interest to enhance their skills and employability.

Institute Vision

To provide rich ambience for Academic and Professional Excellence, Research, Employability skills, Entrepreneurship and Social responsibility.

Institute Mission

To empower the students with Technical knowledge, Awareness of up-to-date technical trends, Inclination for research in the areas of human needs, Capacity building for Employment / Entrepreneurship, Application of technology for societal needs.

Quality Policy

At PVPSIT, We commit ourselves to offer Quality professional education in engineering & Management by adhering to applicable statutory and regulatory requirements and through continuous improvement in the Quality of our services by,

- Regular up gradation of knowledge and skills of faculty
- Improving the teaching methods and strategies
- Providing state of art infrastructure
- Recruiting competent faculty and maintaining prescribed Teacher Student ratio
- Improving the employability of students
- > Enhanced Collaboration with industry and institutions of National Repute

EEE Department Vision

To mould young and fresh minds into well disciplined and competent engineers to excel in the field of Electrical & Electronics Engineering to cater the industrial /societal needs and compete at global level.

EEE Department Mission

To produce competent and quality technical professionals with strong basics of electrical engineering principles and techniques

To facilitate the students to work with modern tools, state of art technologies, innovative research capabilities besides inculcating leadership abilities and ethical values.

EEE Department Program Educational Objectives

PEO-I: Have a strong foundation in engineering fundamentals, mathematics, basic sciences, humanities and modern software tools with ability to apply them to conceive, analyze, design and implement solutions to problems in electrical engineering field.

PEO-II: Have a broad based background to practice electrical engineering in the areas of control systems, machines, measurements, power systems, power electronics and their applications in industry and government sectors meeting the growing expectations of stake holders.

PEO-III: Have requisite skills to excel in a multidisciplinary engineering environment with awareness of contemporary issues, professional responsibility, impact of technology on society, and the need for life-long learning.

PEO-IV: Have an ability to pursue higher studies to meet the needs of global standards and participate in team oriented, open ended activities both as team members and as leaders with professional communication skills to compete in global scenario.

Program Outcomes

PO - 1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO - 2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO - 3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO - 4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO - 5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO - 6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO - 7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO - 8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO - 9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO - 10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO - 11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO - 12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

EEE Department Program Specific Outcomes

PSO - 1: To develop technical knowledge, skill and competence to identify, comprehend and solve problems in Electrical and Electronics Engineering.

PSO - 2: To demonstrate technical competence in solving problems related to electrical engineering applying updated and apt methodologies which lead for sustainable development.

CONTENTS

- 1. SHORT TITLE AND COMMENCEMENT
- 2. DEFINITIONS
- 3. ACADEMIC PROGRAMMES
 - 3.1 Nomenclature of Programmes
- 4 DURATION OF THE PROGRAMMES
 - 4.1 Normal Duration
 - 4.2 Maximum Duration
 - 4.3 Minimum Duration of Semester
- 5. ADMISSION CRITERIA
 - 5.1 CATEGORY A Seats
 - 5.2 CATEGORY B Seats
 - 5.3 CATEGORY Lateral Entry Seats
- 6. CREDIT SYSTEM AND GRADE POINTS
 - 6.1 Credit Definition
 - 6.2 Semester Course Load
 - 6.3 Grade Points and Letter Grade for a Course
 - 6.4 Semester Grade Point Average (SGPA)
 - 6.5 Cumulative Grade Point Average (CGPA)

7. CURRICULUM FRAMEWORK

- 7.1 General Issues
- 7.2 Curriculum Structure
- 7.3 Course Numbering Scheme
- 7.4 Medium of Instruction and Examination
- 7.5 Registration
- 8. CHOICE BASED CREDIT SYSTEM (CBCS)
 - 8.1 CBCS Course Registration Policy
 - 8.2 Continuous Evaluation for CBCS Opted Courses
 - 8.3 Eligibility to Appear CBCS Registered Courses For Semester End Examinations
 - 8.4 CBCS Course Detention
- 9. EXAMINATIONS AND SCHEME OF EVALUATION
 - 9.1 Description
 - 9.2 Continuous Internal Evaluation(CIE)
 - 9.2.1 Theory Courses
 - 9.2.2 Mandatory Learning Courses
 - 9.2.3 Drawing Based Courses
 - 9.2.4 Laboratory Courses
 - 9.2.5 Project Phase I
 - 9.2.6 Project Phase II
 - 9.2.7 MOOCs Courses

- 9.3 Semester End Examinations (SEE)
 - 9.3.1 Theory Courses
 - 9.3.2 Laboratory Courses
 - 9.3.3 Project Phase I
 - 9.3.4 Project Phase II
 - 9.3.5 Internships/Industry Interaction
- 9.4 Conditions for Pass Marks
- 9.5 Revaluation
 - 9.5.1 Continuous Internal Evaluation
 - 9.5.2 Semester End Examinations
- 9.6 Withholding Results

10. CRITERIA TO ATTEND SEMESTER END EXAMINATION AND PROMOTION TO HIGHER SEMESTER

- 10.1 Eligibility for Semester End Examinations
- 10.2 Conditions for Promotion

11. SUPPLEMENTARY EXAMINATIONS

- 11.1 General
- 11.2 Advanced Supplementary
- 12. READMISSION CRITERIA
- 13. BREAK IN STUDY
- 14. TRANSITORY REGULATIONS
- 15. ELIGIBILITY FOR AWARD OF B.TECH. DEGREE
- 16. CONDUCT AND DISCIPLINE
- 17. MALPRACTICES
- 18. OTHER MATTERS
- 19. GENERAL
- 20. INSTITUTE RULES AND REGULATIONS
- 21. AMENDMENTS TO REGULATIONS

1. SHORT TITLE AND COMMENCEMENT

- a. The regulations listed under this head are common for all degree level undergraduate programmes (B.Tech.), offered by the college with effect from the academic year 2019-20 and they are called as "PVP19" regulations.
- b. The regulations here under are subjected to amendments as may be made by the Academic Council of the college from time to time, keeping in view of the recommendations of the Board of Studies. Any or all such amendments will be effective from such date and to such batches of candidates including those already undergoing the programme, as may be decided by the Academic Council.

2. DEFINITIONS

- a. "Commission" means University Grants Commission(UGC);
- b. "Council" means All India Council for Technical Education(AICTE);
- c. "**University**" means Jawaharlal Nehru Technological University Kakinada(JNTUK);
- d. "College" means Prasad V Potluri Siddhartha Institute of Technology, Vijayawada;
- e. An **Academic Programme** means any combination of courses and/or requirements leading to award of a degree.
- f. "**Course**" means a subject either theory or practical identified by its course title and code number and which is normally studied in a semester.
- g. "**Degree**" means an academic degree conferred by the university upon those who complete the undergraduate curriculum.
- h. "CBCS" means Choice Based Credit System
- i. "MOOC" means Massive Open Online Course
- j. "**Regular Students**" means students enrolled into the four year programme in the first year.
- k. "**Lateral Entry Students**" means students enrolled into the four year programme in the second year.

3. ACADEMIC PROGRAMMES

3.1 Nomenclature of Programmes

3.1.1 The nomenclature and its abbreviation given below, shall continue to be used for the Degree programmes under the University, as required by the Council and the Commission:

Bachelor of Technology (B. Tech)

Besides, the name of specialization shall be indicated in brackets after the abbreviation, for example, engineering degree in Mechanical Engineering programme is abbreviated as B.Tech (Mechanical Engineering).

- 3.1.2 Bachelor of Technology (B. Tech.) degree programme is offered in:
 - 1. Civil Engineering(CE)
 - 2. Computer Science and Engineering(CSE)
 - 3. Electronics and Communication Engineering(ECE)
 - 4. Electrical and Electronics Engineering(EEE)
 - 5. Information Technology(IT)
 - 6. Mechanical Engineering(ME)

4. DURATION OF THE PROGRAMMES

4.1 Normal Duration

- 4.1.1. The duration of an academic programme shall be four years consisting of eight semesters.
- 4.1.2. The duration of the programme for lateral entry students who are admitted in II year shall be three years that consists of six semesters.

4.2 Maximum Duration

4.2.1 The maximum period for which a student can take to complete a full time academic programme shall be double the normal duration of the programme, i.e., for regular students eight years, for lateral entry students six years.

4.3 Minimum Duration of a Semester

Each semester consists of a minimum of 90 instruction days with about minimum 20 and maximum 33 contact hours per week.

5. ADMISSION CRITERIA

The eligibility criteria for admission into UG Engineering programmes are as per the norms approved by Government of Andhra Pradesh from time to time.

The sanctioned seats in each programme in the college are classified into CATEGORY-A, and CATEGORY-B at I year level and only CATEGORY-A at Lateral Entry II year level.

The percentages of Category–A, Category-B and Lateral Entry Seats are decided from time to time by the Government of Andhra Pradesh.

5.1 CATEGORY – A Seats

Category - A seats are filled as per the norms approved by the Government of Andhra Pradesh.

5.2 CATEGORY – B Seats

Category - B seats are filled by the College as per the norms approved by the Government of Andhra Pradesh.

5.3 CATEGORY - Lateral Entry Seats

Lateral entry candidates shall be admitted into the III semester directly as per the norms approved by Government of Andhra Pradesh.

6. CREDIT SYSTEM AND GRADE POINTS

6.1 Credit Definition

'Credit' means quantified and recognized learning. Credit is measured in terms of contact hours per week in a semester. Typically one credit is given to:

- (a) Theory/Tutorial course conducted for one contact period.
- (b) Laboratory course conducted for two contact periods.

Each course is assigned a certain number of credits depending upon the number of contact hours (Lectures/Tutorials/Practical) per week.

The curriculum of the eight semesters B.Tech program is designed to have a total of 160 credits for the award of B.Tech degree.

For lateral entry students, the curriculum of six semesters B.Tech program is designed to have a total of 121.5 credits for the award of B.Tech degree.

6.2 Semester Course Load

The average course load shall be fixed at 20 credits per semester with its minimum and maximum limits being set at 13 and 24.5 credits.

6.3 Grade Points and Letter Grade for a Course

The grade points and letter grade will be awarded to each course based on student's performance as per the grading system shown in the Table1.

Theory/Drawing % of Marks	Laboratory/Project % of Marks	Grade Points	Letter Grade
≥ 90%	$\geq 90\%$	10	S
80-89%	80 - 89%	9	А
70 - 79%	70 - 79%	8	В
60 - 69%	60 - 69%	7	С
50 - 59%	55 - 59%	6	D
40 - 49%	50 - 54%	5	E
< 40%	< 50%	0	F (FAIL)
ABSENT	ABSENT	0	AB

Table 1: Grading System for B. Tech Programme

6.4 Semester Grade Points Average (SGPA)

The performance of each student at the end of the each semester is indicated in terms of SGPA calculated as shown in equation (1).

$$SGPA = \frac{\sum (CR \times GP)}{\sum CR \text{ (for all courses offered in the semester)}} \quad -- (1)$$

Where CR= Credits of a course

GP = Grade points awarded for a course

6.5 Cumulative Grade Point Average (CGPA)

The Cumulative Performance of each student at the end of each semester is indicated in terms of CGPA which is calculated as shown in equation (2).

 $CGPA = \frac{\sum CR \times GP}{\sum CR(for all courses of ferd up to that semester/entire prgram)} - -(2)$

Where CR = Credits of a course

GP = Grade points awarded for a course

Percentage equivalent of CGPA = (CGPA - 0.5) * 10

7. CURRICULUM FRAMEWORK

7.1 General Issues

- **7.1.1** Curriculum framework is important in setting the right direction for a degree programme as it takes into account the type and quantum of knowledge necessary to be acquired by a student in order to qualify for the award of degree in his/her chosen branch or specialization.
- **7.1.2** Besides, this also helps in assigning the credits for each course, sequencing the courses semester-wise and finally arriving at the total number of courses to be studied and the total number of credits to be earned by a student in fulfilling the requirements for conferment of degree.
- 7.1.3 Each theory course shall consist of five units.

7.2 Curriculum Structure

The curriculum is designed to facilitate CBCS and incorporates courses required to attain the expected knowledge, skills and attitude by the time of graduation as per the needs of the stakeholders. The curriculum structure consists of various course categories (as described in 7.2.1 to 7.2.6) to cover the depth and breadth required for the programme and for the attainment of programme outcomes of the corresponding programme.

7.2.1 Institutional Core

Institutional Core consists of the courses required for all UG Engineering Programmes offered in this college. The courses offered under this category cover the required knowledge in the following areas:

(a) **Basic Sciences:**

Basic Science courses include Engineering Physics, Applied Physics, Engineering Physics Lab, Applied Physics Lab Engineering Chemistry, Chemistry of Materials, Engineering Chemistry Lab, Chemistry of Materials Lab, Mathematics I (calculus and Algebra), Engineering Mathematics II (ODE, PDE and Multivariable Calculus), Engineering Mathematics III, Engineering Mathematics IV, Life Sciences for Engineers and Life Sciences for Engineers Lab.

(b) Engineering Sciences:

Engineering Science courses include Problem Solving and Programming, AI Tools, Internet of Things, Design Thinking & Product Innovation, Basic Electrical and Electronics Engineering, Engineering Graphics, Problem Solving & Programming Lab, Basic Electrical & Electronics Engineering Lab, AI Tools Lab, Internet of Things Lab, Design Thinking and Product Innovation Lab and Basic Workshop.

(c) Humanities and Social Sciences:

Humanities and Social Science Courses consist of Communicative English I, Communicative English II, HS-I (Engineering Economics & Management), HS-II (Organizational Behavior), Communicative English I Lab and Communicative English II Lab.

7.2.2 Elective Courses

Elective courses are offered across the programmes to enhance the knowledge breadth and professional competency of the students.

Courses	Branch Specific	Compulsory
		Supportive to the discipline
		courses with expanded scope in a
	Program Electives	chosen track of specialization or
		cross track courses
Elective courses		Interdisciplinary exposure &
	Interdisciplinary Electives	nurture the student interests in
		other department courses
		Common to all disciplines that
	Open Electives	helps general interest of a student

Greater flexibility to choose variety of courses is provided through Massive Open Online Courses (MOOCs) during the period of study. Students without any backlog courses upto III semester are permitted to register for MOOCs from IV semester onwards upto a maximum of 15 credits from Program Elective/Interdisciplinary Elective/Open Elective Courses. However, the Departmental Committee (DC) has to approve the courses under MOOCs. The Departmental committee consists of Head of the Department, Program coordinator and Module Coordinator.

Students can register and complete the opted course in approved MOOCs platform on or before the last instruction day of IV/V/VI/VII semester. They have to submit the pass certificate before the last instruction day of that concerned semester.

7.2.3 Programme Core

The Programme core consists of set of courses considered which are necessary for the students of the specific programme. The courses under this category satisfy the Programme Specific Criteria prescribed by the appropriate professional societies.

7.2.4 Project

Project Phase I & Project Phase II will be initiated in VII semester and completed before the end of VIII semester.

Project Phase I can be done by a group of students, working under the guidance of a faculty member and carrying out a detailed feasibility study, literature survey and submit a report regarding work plan for the project phase II.

Project Phase II involves continuation of Project Phase I. The objective is to complete the work as per the prepared work plan and submit a detailed project report.

7.2.5 Industry Interaction

The students may register for either Internship or Industry offered course during the summer break after VI semester to secure 2 credits.

Internship/Industry offered courses are purely meant for internal Assessment which will be evaluated for 75 marks during the VII semester.

a) Internships

The students may undergo Internship for 3 to 6 weeks duration in the industry approved by respective head of the department at the end of VI semester.

b) Industry offered courses

The students can opt for the courses under this category that are offered by the Industry experts whose minimum academic qualification is Bachelor of Engineering or equivalent.

7.2.6 Mandatory Learning Courses

According to the guidelines given by statutory bodies, Courses on Environmental Science, Constitution of India and Engineering Ethics shall be offered.

Induction program shall be offered in I semester for all the branches.

NCC/NSS/NSO/YOGA shall be offered in I & II semesters.

Environmental Science and Constitution of India shall be offered in III & IV semesters.

Engineering Ethics shall be offered in V/VI semesters.

7.3 Course Numbering Scheme

The Course code consists of Eight/Nine characters. The following is the structure of the course Code (Figure 1).

19	C S	1	2	0	3	Α
Regulation	Course Category	Kind of course	Semester	Туре	Course Number	[Elective code]
Last two	HS - Humanities and Social Sciences	1. Institutional	1- First	0- Theory	i.e. Course	Incase if the course
digits of	including Management courses	Core			sequence	is Elective then this
Regulation		(i.e. HS, BS,	2- Second	1-Theory	Number in that	field will specify the
offered	BS - Basic Science courses	ES, MC)		studied in	semester	elective code
(i.e. 19 for			3- Third	MOOCS		(i.e. A, B, C.)
PVP19	ES - Engineering Science	2. Inter		Mode		
regulations)		Disciplinary	4- Fourth			
	MC - Mandatory Courses	Elective		5- Practical		
			5- Fifth			
	In case of Professional Core/ Professional	3. Program Core		6- Project		
	Elective courses department code is placed:		6- Sixth	Work		
	CE - Civil Engineering	4. Program	7- Seventh	7- Industrial		
	CS - Computer Science & Engineering	Elective		Training/		
	EC - Electronics and Communication		8- Eight	Internship		
	Engineering	5. Open Elective				
	EE - Electrical & Electronics Engineering					
	IT - Information Technology					
	ME - Mechanical Engineering					

Figure 1: Course numbering scheme

7.4 Medium of Instruction and Examination

The medium of instruction and examinations shall be English.

7.5 Registration

Every student has to register himself/herself for the courses in each semester individually at the time as specified in academic calendar.

8. Choice Based Credit System (CBCS)

Choice Based Credit System (CBCS) shall be introduced with effect from 2019-20 academic year, based on guidelines of the statutory bodies in order to promote:

- Activity based learning
- o Student centered learning
- o Students to choose courses of their choice
- Learning at their own pace
- Interdisciplinary learning

Flexibility is extended to the fast learning students to take the courses of higher semesters in advance as per their convenience to concentrate on their placement activity/ project work, etc., during the VII/VIII semesters.

8.1 CBCS Course Registration Policy

Fast learning students can register for additional courses from higher semesters by satisfying the pre-requisite course(s) to a maximum of 8 credits in each of the semesters from III semester onwards along with the regular semester courses as prescribed. There is no minimum limit to the credits for taking additional courses.

Eligibility for choosing CBCS flexibility:

- **Regular Students (4 Year duration),** entering the nth semester with no backlog courses up to (n-1)th semester, are only eligible to opt for this flexibility.
- Lateral entry students (3 year duration) with 70% Marks in their Diploma are eligible to opt for this flexibility during III and IV Semesters. Those students entering into V/ VI /VII semester with no backlog courses up to (n-1)th semester, are only eligible to opt for this flexibility.

The list of additional courses offered in the even & odd semesters, registration dates will be notified by the respective departments well in advance.

A student can withdraw from the respective course within 15 days after the commencement of the course.

The choice of utilizing this flexibility is purely optional to the students.

A minimum number of students required to register for an additional course shall be

twenty (20). In case, the registered strength for the additional course is less than twenty (20), the course may be offered on the recommendation of the Head of the Department and subsequent approval of the Principal.

8.2 Continuous Internal Evaluation (CIE) for CBCS opted Courses

The contact hours, continuous assessment pattern, eligibility criteria to write end semester examinations and revaluation scheme for these additional courses will be as per the current academic regulations [PVP19].

8.3 Eligibility to appear CBCS registered courses for Semester End Examinations

The registered additional courses will be dealt separately as individual courses for the calculation of attendance and continuous assessment of marks for assessing the eligibility to write the end semester examinations for these courses.

The performance of the student in the registered additional courses will be separately mentioned in the semester end grade card and it will not be taken into account for the calculation of the SGPA for that semester.

The performance of the student in the registered additional courses will be taken into account in the corresponding semesters.

8.4 CBCS Course Detention

- **84.1** In case, the student is detained for want of minimum specified attendance and continuous assessment marks criterion either in the regular semester or in the additional courses, he/she will forfeit the eligibility for registering additional courses from that semester onwards. However, the additional courses completed by the students in the earlier semesters will be valid and taken into consideration.
- **842** In case, the student is detained for want of minimum specified attendance and continuous assessment marks criterion in the regular semester but meets minimum specified attendance and continuous assessment marks criterion in the registered additional courses, he/she shall write the end semester examinations for these additional courses along with the regular students in the corresponding semester only.
- **843** In case, the student fails/is absent in the end semester examinations of the registered additional courses or in the regular semester courses in a particular semester, he will forfeit the eligibility for registering additional courses from that semester onwards. However, the additional courses completed by the students in the earlier semesters will be valid and taken into consideration. They can write the end semester examinations for additional courses in which they failed/were absent, along with regular students in the corresponding semesters only.
- **844** The criterion for the promotion to higher semesters will be as per PVP19 regulations, taking only the regular semester courses into consideration for the fast learners.
- **845** Additional courses, in which the fast learning student fails, will not be considered as backlogs for them.

- **846** The fast learning students shall register for all the courses of a regular semester excluding the courses completed in the previous semesters.
- **84.7** The credits scored by students through CBCS subjects shall not be considered for credit promotion from II year to III year or from III year to IV year B.Tech.
- **848** The student opting for the said flexibility will be considered for the award of the division on par with other regular students.
- **849** The students who have earlier history of indulging in malpractices in semester end examinations are not eligible for opting CBCS.
- **84.10** If the student fails to register for opted CBCS courses for semester end examination, he/she will forfeit the eligibility for registering additional courses from that semester onwards and marks secured through continuous assessment will not be considered.
- **8411** The choice of utilizing this flexibility is purely optional to the students.
- **84.12** If a student fails/absent in a CBCS course, he/she is bound to appear in the same course when studied in regular semester.

9. EXAMINATIONS & SCHEME OF EVALUATION

9.1 Description of Evaluation

- **9.1.1 Continuous Internal Evaluation (CIE):** The performance of the student in each course is evaluated by the faculty/course coordinator all through the semester; with mid-term tests (sessional-1and sessional-2), assignments, project reviews, viva-voce, laboratory assessment and other means covering the entire syllabus of the course.
- **9.1.2 Semester End Examination (SEE):** It shall be conducted by chief controller of examinations at the end of each semester, as per the academic calendar and with a written examination for theory courses and practical/project examination with built-in oral part for laboratory/project.

9.2 Continuous Internal Evaluation (CIE)

9.2.1 Theory Courses

Each course is evaluated for 30 marks (a+b+c)

a) Two assignment tests (Assignment Test-1 & Assignment Test-2) for 10 marks each will be conducted with1 hour duration. Assignment-1 shall be conducted from Unit-1 and Assignment-2 shall be conducted from Unit-4. The assignment test marks shall be awarded taking the average of two assignment tests.

The Assignment test shall be held in the zero hour and the class work will be conducted as usual in those days.

The Question bank with minimum number of 6 comprehensive questions from the concerned UNIT of the syllabus will be given to students at least a week in advance before the commencement of Assignment Test.

The question paper shall contain 2 comprehensive questions, each one is meant for 5 Marks. The student is required to answer all the questions.

- **b**) Home assignment shall be conducted for 5 marks from Unit-3. The question bank with 10 to 15 comprehensive questions from unit-3 shall be given to students. Each student has to answer 3 questions from the question bank which will be assigned by the concerned faculty.
- c) Two Mid-term (Sessional 1 and Sessional 2) examinations with 15 Marks each shall be conducted with **90 minutes** duration.

The Mid-term examinations shall be held in the zero hour and class work shall be conducted as usual in those days.

The Mid-term marks shall be awarded taking the average of two Mid-term examinations.

The question paper shall be given in the following pattern:

- **Part A:** Contains two questions, one from each unit. The student shall answer all questions. Each question is for 2.5 marks.
- Part B: Contains four questions. Two questions shall be given from each unit with internal choice. The student shall answer 1 question from each unit. Each question carries 5 marks.

Name of the Test	Syllabus
Assignment Test – 1	UNIT – I
Sessional – 1	UNIT - I & UNIT – II
Home Assignment	UNIT – III
Assignment Test – 2	UNIT – IV
Sessional – 2	UNIT – IV& UNIT – V

Syllabus for CIE

The questions shall be framed in Assignment tests and Sessional examinations in line with the Course Outcomes defined and cognitive levels.

9.2.2 Mandatory Learning Courses

Each course is evaluated for 100 marks (a+b)

 a) Two Mid-term (Sessional - 1 and Sessional - 2) examinations each for 40 Marks shall be conducted with 90 minutes duration.

The Mid-term examinations shall be held in the zero hour and the class work shall be conducted as usual in those days.

The question paper shall be given in the following pattern:

The question paper contains four questions. Two questions shall be given from each unit with internal choice. The student shall answer one question from each unit. Each question carries 20 marks.

b) Home assignment for 20 marks shall be conducted from Unit-3. The question bank with 10 to 15 comprehensive questions from unit-3 shall be given to students. Each student has to answer 4 questions from the question bank which will be assigned by the concerned faculty.

The Mid-term marks shall be awarded as sum of two Mid-term examinations and home assignment.

Name of the Test	Syllabus
Sessional – 1	UNIT – I & II
Home Assignment	UNIT – III
Sessional – 2	UNIT – IV & V

Syllabus for CIE

9.2.3 Drawing Based Courses:

Each course is evaluated for 30 marks (a+b)

a) Two Mid-term (Sessional - 1 and Sessional - 2) examinations with 15 Marks each shall be conducted with **90 minutes** duration.

The Mid-term examinations shall be held in the zero hour and class work shall be conducted as usual in those days.

The Mid-term marks shall be awarded taking the average of two Mid-term examinations.

The question paper shall be given in the following pattern:

- **Part A:** Contains two questions, one from each unit. The student shall answer all questions. Each question is for 2.5 marks.
- **Part B:** Contains four questions. Two questions shall be given from each unit with internal choice. The student shall answer 1 question from each unit. Each question carries 5 marks.
- b) Home assignment shall be conducted for 5 marks from Unit-3. The question bank with 10 to 15 comprehensive questions from unit-3 shall be given to students. Each student has to answer 3 questions from the question bank which will be assigned by the concerned faculty.

Syllabus for CIE

Name of the Test	Syllabus
Sessional – 1	UNIT – I & II
Home Assignment	UNIT – III
Sessional – 2	UNIT – IV & V

The distribution of marks for continuous internal evaluation is given in the Table 2:

 Table 2: Distribution of Marks (CIE)

S. No.	Criterion	Marks
1	Day to Day Evaluation	10
2	Internal Examination	15
3	Home Assignment	5

9.2.4 Laboratory Courses

For Laboratory courses, there shall be continuous evaluation during the semester for 25 marks and semester end evaluation for 50 marks. The distribution of marks for continuous internal evaluation is given in the Table 3:

Table 3: Distribution of Marks (CIE)

S. No.	Criterion	Marks
1	Day to Day Evaluation	10
2	Record	05
3	Internal Examination	10

9.2.5 Project Phase I

For Project Phase I, there shall be continuous internal evaluation during the semester for 100 marks. The continuous internal evaluation for the Project Phase I shall be on the basis of day to day assessment by the project guide and two reviews conducted by the Project Review Committee (PRC). The PRC consists of Head of the Department, Programme Coordinator, Senior Faculty member of the department and Project guide. The distribution of continuous internal evaluation marks is given in the Table 4:

Table 4: Distribution of Marks (CIE)

S. No.	Criterion	Marks
1	Day to Day Evaluation	40
2	Two Reviews	30+30

9.2.6 **Project Phase II**

For Project Phase II, there shall be continuous internal evaluation during the semester for 100 marks and semester end evaluation for 100 marks. The continuous internal evaluation for the Project Phase II shall be on the basis of day to day assessment by the project guide and two reviews conducted by the Project Review Committee (PRC). The PRC consists of Head of the Department, Programme Coordinator, Senior Faculty member of the department and Project guide. The distribution of marks is given in the Table 5:

Table 5: Distribution of Marks (CIE)

S. No.	Criterion	Marks
1	Day to Day Evaluation	40
2	Two Reviews	30+30

9.2.7 MOOCs Courses

Students who have qualified in the examination conducted by the MOOCs providers as specified in 7.2.2 are exempted from appearing in the continuous and semester end evaluations conducted by the institution.

In case, a student fails to complete the MOOCs course offered by MOOC's providers, he/she may be allowed to register again for the same with any of the providers from the list provided by the department or the student may be allowed to register for the course as and when offered by the college as supplementary candidate.

Students Registered and cleared the opted courses in MOOC's are exempted from appearing Semester end examinations conducted by the Institute.

The Scheme of Evaluation for MOOCs courses shall be scaled to continuous internal evaluation as 30 marks and semester end examination as 70 marks.

9.3 Semester End Examination

9.3.1 Theory Courses : 70 Marks

The Semester end examination shall be conducted with 3 hours duration at the end of the semester. The question paper shall be given in the following pattern:

- a) **Part A:** Contains 5 questions of 2 marks each to test the knowledge level of the student. One question shall be given from each unit of the prescribed syllabus included in five units. The student shall answer all questions.
- b) Part B: Contains 10 questions. Two questions from each unit shall be given with internal choice. Each question carries 12 marks. Each course shall consist of five units of syllabus. The student shall answer one question from each unit.

The questions shall be framed in line with the Course Outcomes defined and cognitive levels.

9.3.2 Laboratory Courses: 50 marks

i. The Semester end examination for laboratory courses shall be conducted with three hour duration at the end of semester for 50 marks as given below:

S. No.	Criterion	Marks
1	Procedure	10
2	Experiment/Programme	20
	Execution	
3	Result	10
4	Viva-Voce	10

 Table 6: Distribution of Marks (SEE)

ii. Each Semester end Laboratory Examination shall be conducted by an External Examiner along with the Internal Examiner.

9.3.3 Project Phase II: 100 marks

The semester end examination for project phase II shall be held for 100 marks by a committee consisting of an external examiner, Head of the Department, Programme coordinator and Project guide. The evaluation of the project work shall be conducted at the end of the VIII Semester.

The average of the marks awarded by the committee members shall be taken into consideration in case of variation among the members.

The evaluation of 100 marks is distributed as given in Table 7:

S. No.	Criterion	Marks
1	Report	40
2	Presentation	30
3	Viva –Voce	30

Table 7: Distribution of Marks in Project Phase II

9.3.4 Internship/Industry Interaction: 75 Marks

a) Internships :

The candidate shall submit the comprehensive report to the department. The report will be evaluated for 75 marks by the Review Committee consisting of Head of the department, Programme Coordinator and Concerned Industry Representative/ Industry Institute Interaction Coordinator.

b) Industry Offered Courses:

The semester end examination for the courses under this category is evaluated for 75 marks and it shall be conducted and evaluated by the industry expert who has delivered the lecture or by the faculty nominated by the head of the department in consultation with the industry expert. The question paper pattern shall be decided by the industry expert at the beginning of the course and the same is to be approved by the Principal.

There will not be continuous internal evaluation for the courses under this category.

9.4 Conditions for Pass Marks

- **9.4.1** A candidate shall be declared to have passed in individual theory/drawing course if he/she secures a minimum of 40% aggregate marks (Continuous Internal Evaluation & Semester End Examination marks put together), subject to a minimum of 35% marks in semester end examination.
- **9.4.2** A candidate shall be declared to have passed in individual laboratory course/project if he/she secures a minimum of 50% aggregate marks (Continuous Internal Evaluation &Semester End Examination marks put together), subject to a minimum of 40% marks in semester end examination.

- **9.4.3** Mandatory Courses are assessed for PASS or FAIL only. No grade will be assigned to these courses. If a candidate secures more than 40 out of 100 marks, he / she will be declared PASS or else FAIL.
- **9.4.4** Mandatory courses NCC/NSS/NSO/YOGA are assessed for satisfactory or not satisfactory only. No grade will be assigned. A candidate has to undergo two hours training per week in any one of the above in both I and II semesters.
- **9.4.4** The student has to get pass marks in the failed course by appearing the supplementary examination as per the requirement for the award of degree.
- **9.4.5** The student shall earn assigned credits for the course on passing a course of a programme.

9.5 Revaluation

9.5.1 Continuous Internal Evaluation

The continuous Evaluation scripts shall be shown to the students before finalizing the marks. However, if the student has any concern, not addressed before the finalization of marks, he/she may submit the application for revaluation to the concerned head of the department.

The Head of the Department may constitute a two member committee for reevaluating the script. The evaluation of the committee is final and binding.

9.5.2 Semester End Examination

- 1. As per the notification issued by the Controller of Examinations, the students can submit the applications for revaluation, along with the requisite fee receipt for revaluation of his/her answer script(s) of theory course(s), if he/she is not satisfied with the marks obtained.
- 2. The Controller of Examinations shall arrange for re-evaluation of those answer script(s).
- 3. A new external examiner, other than the first examiner, shall re-evaluate the answer script(s).
- 4 Revaluation marks will be taken into consideration only if the difference between the two valuations is more than or equal to 15%. Better marks between the two shall be taken into consideration. However, if the revaluation marks facilitates passing of the candidate, then the revaluation marks will be considered even if the difference of marks is less than 15%.
- 5 If the difference of marks between the two valuations is more than 20%, the answer script will be referred to third valuation. The average of nearest two marks will be awarded.

9.6 Withholding of Results

If the student has not paid the dues to the college, or if any case of malpractice or indiscipline is pending against him, the result of the student will be kept as withheld and he/she will not be allowed to enter the next semester. His/her degree shall be considered as withheld in such cases.

10 CRITERIA TO ATTEND SEMESTER END EXAMINATIONAND PROMOTION TO HIGHER SEMESTER

10.1 Eligibility for Semester End Examinations

- **10.1.1** Students shall put in a minimum average attendance of 75% in the courses from category 7.2.1 to 7.2.6 put together, computed by totaling the number of periods of lectures, tutorials, drawing, practical and project work as the case may be, held in every course as the denominator and the total number of periods attended by the student in all the courses put together as the numerator, to be eligible to write semester end examinations.
- **10.1.2** Condonation of shortage in attendance may be recommended by respective Heads of Departments on genuine medical grounds, provided the student puts in at least 65% attendance as calculated above and provided the Principal is satisfied with the genuineness of the reasons and the conduct of the student.
- **10.1.3** Students, having more than 65% and less than 75% of attendance, shall have to pay requisite fee towards condonation.

10.2 Conditions for Promotion

- 10.2.1 A student shall be eligible for promotion to next Semester of B.Tech. programme, if he/she satisfies the conditions as stipulated in Regulations 10.1.
- 10.2.2 Further, a student shall be eligible for promotion to V / VII Semester of B.Tech. programme, if he/she completes the academic requirements of 50% of the credits upto IV/ VI semesters.

10.2.3 Promotion to V Semester

For Four Year B.Tech Course candidates

A four year programme student shall be promoted from IV semester to V semester only if he/she earns 50% credits of the designed programme credits from I semester to IV semester.

10.2.4 Promotion to VII Semester

i) For Four Year B.Tech Course candidates

A four year programme student shall be promoted from VI semester to VII semester only if he/she earns 50% credits of the designed programme credits from I semester to VI semester.

ii) For Lateral Entry candidates

A lateral entry student shall be promoted from VI semester to VII semester only if he/she earns 50% credits of the designed programme credits from III semester to VI semester.

10.2.5 For Detained Students

- a) Students who are already detained for want of credits shall be promoted to
 V Semester if he/she fulfills the 50 % of the credit requirements from all
 the regular and supplementary examinations held upto IV Semester till the
 commencement of next academic year.
- b) Students who are already detained for want of credits shall be promoted to VII Semester if he/she fulfills the 50 % of the credit requirements from all the regular and supplementary examinations held upto VI Semester till the commencement of next academic year.

11. SUPPLEMENTARY EXAMINATIONS

11.1 General

Semester end Supplementary examinations shall be conducted along with regular semester end examinations.

11.2 Advanced Supplementary Exams

Candidate(s), who fails in Theory or Laboratory courses of VIII semester, can appear for advanced supplementary examination conducted within one month after declaration of the revaluation results. However, those candidates who fail in the advanced supplementary examinations of VIII semester shall appear for subsequent examinations along with regular candidates conducted at the end of the respective academic year.

12. READMISSION CRITERIA

A candidate, who is detained in a semester due to lack of attendance/credits, has to obtain written permission from the Principal for readmission into the same semester after duly fulfilling all the required norms stipulated by the college in addition to paying an administrative fee of **Rs. 1,000**/-

Rules for calculation of attendance for readmitted students

- a) Number of classes conducted shall be counted from the commencement day of the semester concerned, irrespective of the date of payment of tuition fee.
- b) They shall submit a written request to the principal of the college, along with a challan paid towards tuition and other fee, for readmission before the commencement of the class work.
- c) They can get the information regarding date of commencement of class work for each semester that will be made available in the college notice boards/website from time to time.

13. BREAK IN STUDY

Student, who discontinues the studies for valid reason permitted by the principal, shall get readmission into appropriate semester of B.Tech. programme after breakin study, with the prior permission of the Principal and following the transitory regulations applicable to such batch in which he/she joins. An administrative fee of **Rs**. 1000/-per each year of break in study, in addition to the prescribed tuition and special fee has to be paid by the candidate to condone his/her break in study.

14. TRANSITORY REGULATIONS

A candidate, who is detained or discontinued in a semester, on re-admission, the academic regulations under which he/she has originally admitted will continue to be applicable to him/her on re-admission.

15. ELIGIBILITY FOR AWARD OF B.TECH. DEGREE

- **15.1** The B.Tech. Degree shall be conferred on a candidate who satisfies the following requirements.
 - **15.1.1** A Regular student (four year programme) shall register and secure himself/herself for **160** Credits from the categories 7.2.1 to 7.2.6
 - **15.1.2** A Lateral Entry student (three year programme) shall register and secure himself/herself for **121.5** credits from the categories 7.2.1 to7.2.6

15.2 Award of Division

The criteria for award of division, after successful completion of programme is as shown in Table 8:

CGPA	DIVISION
≥ 7.5	First Class with distinction*
≥ 6.5 - < 7.5	First Class
≥ 5.5 - < 6.5	Second Class
≥ 5.0 - < 5.5	Pass Class
< 5.0	Fail

- * Awarded only if all the courses prescribed are cleared in single attempt within four years for regular candidates and three years for lateral entry candidates
- * Detained and break-in study candidates are not eligible for the award of First Class with Distinction
- * The cases of students who are absent for semester end examination only once in his/her duration of B.Tech. programme on valid medical grounds/humanitarian grounds shall also be considered for the award of First class with Distinction subject to the recommendations of the committee constituted by the Principal.

For the purpose of awarding First, Second and Pass Class CGPA obtained in the examinations appeared within the maximum period allowed for the completion of the programme shall be considered.

15.3 Consolidated Grade Card

A consolidated grade card containing credits & grades obtained by the students will be issued after successful completion of the four year B.Tech Programme.

16. CONDUCT AND DISCIPLINE

- **16.1** Students shall conduct themselves within and outside the premises of the Institute in a manner befitting the students of our Institution.
- **16.2** As per the order of Honorable Supreme Court of India and AICTE guidelines, ragging in any form is considered a criminal offence and is banned. Ragging within or outside any educational institution is prohibited. Ragging means doing an act, that causes or is likely to cause insult or annoyance or fear of apprehension or threat or intimidation or outrage of modesty or injury to a student. Any form of ragging will be severely dealt with as per AP Prohibition of Ragging Act-1997 section-4.

Nature of ragging	Punishment
Teasing, embarrassing and humiliating	Imprisonment upto 6 months or fine upto Rs.1,000/- or both
Assaulting or using criminal force or criminal intimidation	Imprisonment upto 1 year or fine upto Rs.2,000/- or both
Wrongfully restraining or confining or causing hurt	Imprisonment upto 2 years or fine upto Rs.5,000/- or both
Causing grievous hurt kidnapping or raping or committing unnatural offence	Imprisonment upto 5 years and fine upto Rs.10,000/-
Causing death or abetting suicide	Imprisonment upto 10 years and fine upto Rs.50,000/-

Table – 9: Punishments for Ragging

- **16.3** A student who is convicted of an offence and punished with imprisonment for a term of more than six months shall not be admitted into the institution.
- **16.4** Whenever any student complains of ragging to the head or manager of an educational institution, such head or manager should inquire into the complaint and if the complaint is prima-facie found true, should suspend the student or students complained against.
- **16.5** If the head or manager of an educational institution fails or neglects to take action in the manner specified in the Act, the person shall be deemed to have abetted the offence and shall be punished with the punishment provided for the offence.
- **16.6** If a student commits suicide due to or in consequence of ragging, the person who commits such ragging shall be deemed to have abetted such suicide.

The following acts of omission and/or commission shall constitute gross violation of the code of conduct and are liable to invoke disciplinary measures.

- i. Lack of courtesy and decorum; indecent behaviour anywhere within or outside the campus.
- Possession, consumption or distribution of alcoholic drinks or any kind of narcotics or hallucinogenic drugs.

The following activities are not allowed within the campus:

- Mutilation or unauthorized possession of library books.
- ▶ Noisy and unseemly behaviour, disturbing studies of fellow students.
- Hacking computer systems (such as entering into other person's areas without prior permission, manipulation and/or damage of computer hardware and software or any other cybercrime etc.)
- ➤ Use of mobile phones.
- Plagiarism of any nature.
- Any other act of gross indiscipline as decided by the Institute from time to time.
- Commensurate with the gravity of offense, the punishment may be reprimand, fine, expulsion from the institute/ hostel, debarment from a examination, disallowing the use of certain facilities of the Institute, rustication for a specified period or even outright expulsion from the Institute, or even handing over the case to appropriate law enforcement authorities or the judiciary, as required by the circumstances.
- For an offence committed in (i) a hostel, (ii) a department or in a class room and (iii) elsewhere, the Chief Warden, the Head of the Department and the Principal, respectively, shall have the authority to reprimand or impose fine.
- Cases of adoption of unfair means and/or any malpractice in an examination shall be reported to the Principal for taking appropriate action.
- > Unauthorized collection of money in any form is strictly prohibited.
- Detained and break-in-study candidates are allowed into the campus for academic purposes only with the permission from authorities.
- Misconduct committed by a student outside the Institute campus but having the effect of damaging, undermining & tarnishing the image & reputation of the institution will make the student concerned liable for disciplinary action commensurate with the nature and gravity of such misconduct.
- The disciplinary action committee constituted by the Principal, shall be the authority to investigate the details of the offence, and recommend disciplinary action based on the nature and extent of the offence committed.

- Grievance redressal committee, constituted by the Principal, shall deal with all grievances pertaining to the academic/ administrative and disciplinary matters.
- > All the students must abide by the code and conduct rules of the Institute.

17 MALPRACTICES

The Principal shall refer the cases of malpractices by students in internal assessment tests and end semester examinations, to a malpractice enquiry committee constituted for the purpose. The committee shall follow the approved scales of punishment. The committee consists of:

- 1. Heads of Department (Three)
- 2. Controller of Examinations
- 3. Deputy Controller of Examinations

Table – 10: Disciplinary action for malpractices/improper conduct in examinations

	Nature of Malpractices/Improper	Punishment
	conduct	
1 (a)	If the candidate possesses or keeps accessible, any paper, note book, programmable calculators, mobile phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in the examination hall but has not made use of (material shall include any marks on the student's body that can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
(b)	If the candidate gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through mobile phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2	If the candidate has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work. He shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The hall ticket of the candidate is to be cancelled.
3	If the candidate impersonates any	The candidate who has impersonated shall be

	other candidate in connection with the examination.	expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate, who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.
4	If the candidate smuggles in an answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all other examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat
5	If the candidate uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancellation of the performance in that subject.
6	If the candidate refuses to obey the orders of the Chief Superintendent/Assistant - Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-	In case of students of the Institute, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.

-		
	charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which results in damage to or destruction of property in the examination hall or any part of the Institute campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	
7	If the candidate leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all other examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
8	If the candidate possesses any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.
9	If student of the Institute, who is not a candidate for the particular examination or any person not connected with the Institute indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the Institute: Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work. He shall not be permitted for the remaining examinations of the subjects of that semester/ year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the Institute: Will be handed over to police and a police case will be registered against them.

10	If the candidate comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work. He shall not be permitted for the remaining examinations of the subjects of that semester/year.
11	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.
12	If any malpractice is detected which is not covered in the above clauses 1 to 11, shall be awarded suitable punishment.	

Note: Special squads may be formed to oversee the proper conduct of examinations.

18 OTHER MATTERS

- **18.1** Scribe facility is extended to B Tech students strictly following the guidelines issued under F. No. 16-110/2003-DD.III Dt. 26-02-2013 by the Ministry of Social Justice and Empowerment, Department of Disability Affairs, Govt. of India.
- **18.2** Students who are suffering from contagious diseases are not allowed to appear either continuous internal assessment or semester end examinations.
- **18.3** The students who participate in coaching/tournaments held at State/National/International levels through University/Indian Olympic Association during semester end examination period will be promoted to subsequent semesters till the entire programme is completed as per the guidelines of University Grants Commission Letter No. F.1-5/88 (SPE/PES), dated18-08-1994.
- **18.4** Based on the recommendations of HOD & Principal, exemption from attending the class work shall be given to those students who secure placement and intend to join as the employer in VIII semester of B.Tech. Special Continuous Internal Evaluation (Assignment Tests, Sessional, etc.,) will be arranged to such candidates separately if necessary.

However, they shall appear for Semester End Examinations as per the Academic Calendar

18.5 The Principal shall deal with any academic problem, which is not covered under these rules and regulations, in consultation with the Heads of the Departments in an appropriate manner, and subsequently such actions

shall be placed before the academic council for ratification. Any emergency modification of regulation, approved in the Heads of the Departments Meetings, shall be reported to the academic council for ratification.

19 GENERAL

- 1 Wherever the words "he", "him", "his", occur in the regulations, they may include "she", "her", "hers".
- 2 The academic regulations should be read as a whole for the purpose of any interpretation.
- 3 In case of any doubt or ambiguity in the interpretation of above rules, the decision of the principal is final.

20 INSTITUTE RULES AND REGULATIONS

- 1 Use of **Mobile phones** is strictly prohibited inside the Institute academic area.
- 2 Students should come to Institute in proper dress.
- 3 All students should wear **identity cards** in the Institute premises.
- 4 Students should be present in their respective classrooms before the commencement of class sharply.
- 5 Students should not leave the Institute premises without prior permission of their respective Heads of the departments during Institute working hours.
- 6 Students should maintain silence in the class rooms during working periods.
- 7 Sitting / wandering of the students at the stair cases, corridors, cycle stands or the areas within the Institute premises is strictly prohibited.
- 8 Usage of Vehicle horn inside the Institute premises is prohibited.

21 AMENDMENTS TO REGULATIONS

The Academic Council may, from time to time, revise, amend or change the regulations, schemes of examination and/or syllabi.

Oratory

PRINCIPAL
B.Tech COURSE STRUCTURE

Course Structure for B. Tech under PVP19 regulations (Effective from Academic Year 2019-20)

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Course Code	Title	L	Т	Р	Credits	Internals	Externals	Total
19HS1101	Communicative English I	2	0	0	2	30	70	100
19BS1101	Engineering Mathematics I (Calculus and Algebra)	3	0	0	3	30	70	100
19BS1104	Engineering Physics	3	0	0	3	30	70	100
19ES1101	Basic Electrical and Electronics Engineering	3	1	0	4	30	70	100
19ES1103	Engineering Graphics	1	0	3	2.5	30	70	100
19HS1151	Communicative English I Lab	0	0	3	1.5	25	50	75
19BS1153	Engineering Physics Lab	0	0	3	1.5	25	50	75
19ES1151	Basic Electrical and Electronics Engineering Lab	0	0	3	1.5	25	50	75
19MC1151	NCC/NSS/YOGA/Activity Clubs	0	0	2	0	100		100
Total		12	1	14	19	325	500	825

I B. TECH – I SEMESTER

(Effective from Academic Year 2019-20)

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Course Code	Title	L	Т	Р	Credits	Internals	Externals	Total
19HS1201	Communicative English II	2	0	0	2	30	70	100
19BS1201	Engineering Mathematics II (ODE,PDE and Multivariable Calculus)	3	0	0	3	30	70	100
19BS1203	Engineering Chemistry	3	0	0	3	30	70	100
19ES1202	Problem Solving and Programming	3	1	0	4	30	70	100
19HS1251	Communicative English II Lab	0	0	3	1.5	25	50	75
19BS1251	Engineering Chemistry Lab		0	3	1.5	25	50	75
19ES1252	Problem Solving and Programming Lab	0	0	3	1.5	25	50	75
19ES1253	Basic Workshop		0	3	1.5	25	50	75
19EE3251	Electrical Workshop	0	0	3	1.5	25	50	75
19MC1251	NCC/NSS/YOGA/Activity Clubs		0	2	0	100		100
Total		11	1	17	19.5	345	530	875

I B.TECH - II SEMESTER

Course Structure for B. Tech under PVP19 regulations (Effective from Academic Year 2019-20)

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Course Code	Title	L	Т	Р	Credits	Internals	Externals	Total
19BS1301	Engineering Mathematics III (PDE, Complex Variables and Transform Techniques)	3	0	0	3	30	70	100
19ES1301	AI Tools	2	0	0	2	30	70	100
19ES1302	Design Thinking & Product Innovation	2	0	0	2	30	70	100
19EE3301	Electrical Circuit Analysis	3	0	0	3	30	70	100
19EE3302	Electronic Devices &Circuits	3	0	0	3	30	70	100
19EE3303	Signals and Systems	3	0	0	3	30	70	100
19MC1302	Constitution of India	3	0	0	0	100		100
19ES1351	AI Tools Lab	0	0	2	1	25	50	75
19ES1352	Design Thinking & Product Innovation Lab	0	0	2	1	25	50	75
19EE3351	Electrical Circuit Analysis Lab	0	0	3	1.5	25	50	75
19EE3352	Electronic Devices &Circuits Lab	0	0	3	1.5	25	50	75
Total		19	0	10	21	380	620	1000

II B. TECH – I SEMESTER

Course Structure for B. Tech under PVP19 regulations (Effective from Academic Year 2019-20)

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Course Code	Title	L	Т	Р	Credits	Internals	Externals	Total
19BS1401	Engineering Mathematics- IV (Numerical Methods, Probability and Statistics)	3	0	0	3	30	70	100
BS1404	Life Sciences for Engineers	2	0	0	2	30	70	100
19EE3401	Electrical Machines -I	3	0	0	3	30	70	100
19EE3402	Digital Logic Design	3	0	0	3	30	70	100
19EE3403	Analog Circuits	3	0	0	3	30	70	100
19EE3404	Electromagnetic Fields	3	0	0	3	30	70	100
19MC1401	Environmental Sciences	3	0	0	0	100		100
BS1451	Life Sciences for Engineers Lab	0	0	2	1	25	50	75
19EE3451	Electrical Machines –I Lab	0	0	3	1.5	25	50	75
19EE3452	Digital Logic Design Lab	0	0	3	1.5	25	50	75
19EE3453	Analog Circuits Lab	0	0	3	1.5	25	50	75
Total		20	0	11	22.5	380	620	1000

II B.TECH - II SEMESTER

Course Structure for B. Tech under PVP19 regulations (Effective from Academic Year 2019-20)

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Course Code	Title	L	Т	Р	Credits	Internals	Externals	Total
19ES1501	Internet of Things	2	0	0	2	30	70	100
19EE3501	Control Systems Engineering	3	0	0	3	30	70	100
19EE4501	Program Elective-I	3	0	0	3	30	70	100
19EE3502	Electrical Machines-II	3	0	0	3	30	70	100
	Interdisciplinary Elective I	3	0	0	3	30	70	100
	Open Elective I	3	0	0	3	30	70	100
19ES1552	Internet of Things Lab	0	0	2	1	25	50	75
19EE3551	Electrical Machines-II lab	0	0	3	1.5	25	50	75
19EE3552	Control Systems Engineering Lab	0	0	3	1.5	25	50	75
	Total	17	0	8	21	255	570	825

III B. TECH – I SEMESTER

III B.TECH - II SEMESTER

Course Code	Title	L	Т	Р	Credits	Internals	Externals	Total
19HS1601	Engineering Economics and Management	3	0	0	3	30	70	100
19EE3601	Power Systems-I	3	0	0	3	30	70	100
19EE4601	Program Elective-II	3	0	0	3	30	70	100
19EE3602	Microprocessors & Microcontrollers	3	0	0	3	30	70	100
19EE4602	Program Elective-III	3	0	0	3	30	70	100
19EE3603	Power Electronics	3	0	0	3	30	70	100
19MC1601	Engineering Ethics	3	0	0	0	100		100
	Open Elective II	3	0	0	3	30	70	100
19EE3651	Microprocessors & Microcontrollers Lab		0	3	1.5	25	50	75
19EE3652	Power Electronics Lab	0	0	3	1.5	25	50	75
Total		24	0	6	24	360	590	950

Prasad V. Potluri Siddhartha Institute of Technology

Course Structure for B. Tech under PVP19 regulations (Effective from Academic Year 2019-20)

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Course Code	Title	L	Т	Р	Credits	Internals	Externals	Total
19HS1701	Organization Behavior	3	0	0	3	30	70	100
19EE3701	Power Systems-II	3	0	0	3	30	70	100
19EE4701	Program Elective-IV	3	0	0	3	30	70	100
19EE4702	Program Elective-V	3	0	0	3	30	70	100
	Interdisciplinary Elective II	3	0	0	3	30	70	100
19EE3751	Power System-II Lab	0	0	2	1	25	50	75
19EE3761	Project Phase-I	0	0	4	2	100		100
19EE3771	Industrial Training/Internship/Research Projects in National Laboratories/Academic Institutions				2	75		75
Total		15	0	6	20	350	400	750

IV B. TECH – I SEMESTER

IV B.TECH - II SEMESTER

Course Code	Title		Т	Р	Credits	Internals	Externals	Total
19EE4801	Program Elective-VI	3	0	0	3	30	70	100
	Inter Disciplinary Elective III		0	0	3	30	70	100
19EE3861	Project Phase-II	0	0	14	7	100	100	200
Total		6	0	14	13	160	240	400

(Effective from Academic Year 2019-20)

Offerrad										
By	Subject	Course Code	Title	L	Т	Р	Credits	Internals	Externals	Total
	Inter		Data Base							
CSE	Disciplinary	19CS2501C	Management	3	0	0	3	30	70	100
	Elective-I		Systems							
	Inter		Quantitative							
MBA	Disciplinary	19HS2501C	Techniques for	3	0	0	3	30	70	100
	Elective-I		Management							
	Inter									
IT	Disciplinary	19IT2501C	OOP with C++	3	0	0	3	30	70	100
	Elective-I									
	Inter		Computational							
ME	Disciplinary	19ME2501A	methods	3	0	0	3	30	70	100
	Elective-I		methous							
	Inter		Renewable							
EEE	Disciplinary	19EE2701C	Energy	3	0	0	3	30	70	100
	Elective-II		Resources							
	Inter		Web							
IT	Disciplinary	19IT2701C	Technologies	3	0	0	3	30	70	100
	Elective-II		reennoiogies							
	Inter		Optimization							
ME	Disciplinary	19ME2701B	Techniques	3	0	0	3	30	70	100
	Elective-II									
	Inter	101 5505010	Project		0			20	-	100
ME	Disciplinary	19ME2701C	Management &	3	0	0	3	30	/0	100
	Elective-II		Optimization							
COL	Inter	100020010	Introduction to	2	0	0	2	20	70	100
CSE	Disciplinary	19CS2801D	Pytnon	3	0	0	3	30	70	100
	Elective-III		Programming			-				
			Instrumentation							
	Inter		and Sensor							
ECE	Disciplinary	19EC2801B	rechnologies	3	0	0	3	30	70	100
	Elective-III		OI CIVII Engineering							
			Applications							
	Inter		Logistics and							
MBA	Disciplinary	19HS2801A	Supply Chain	3	0	0	3	30	70	100
	Elective-III	19110200111	Management	5	Ŭ	Ŭ	5	50	70	100
	Inter									
ME	Disciplinary	19ME2801B	Total Quality	3	0	0	3	30	70	100
	Elective-III		Management		_	_		-	-	

Inter Disciplinary Electives

(Effective from Academic Year 2019-20)

Subject	Course Code	Title		Т	Р	Credits	Internals	Externals	Total
Open Elective I	19ES5501A	Biotechnology and Society	3	0	0	3	30	70	100
Open Elective I	19ES5501B	Electrical Safety	3	0	0	3	30	70	100
Open Elective I	19ES5501C	Fundamentals of Cyber Law	3	0	0	3	30	70	100
Open Elective I	19ES5501D	Environment and Ecology	3	0	0	3	30	70	100
Open Elective I	19HS5501A	Contemporary Relevance of Indian Epics	3	0	0	3	30	70	100
Open Elective I	19HS5501B	Indian National Movement	3	0	0	3	30	70	100
Open Elective I	19HS5501C	Engineering for Community Service	3	0	0	3	30	70	100
Open Elective I	19HS5501D	Personality Development	3	0	0	3	30	70	100
Open Elective I	19HS5501E	Introduction to International Business	3	0	0	3	30	70	100
Open Elective I	19HS5501F	Gandhian Philosophy	3	0	0	3	30	70	100
Open Elective I	19HS5501G	Indian History	3	0	0	3	30	70	100
Open Elective II	19ES5601A	Environmental Management	3	0	0	3	30	70	100
Open Elective II	19ES5601B	Telecommunication for Society	3	0	0	3	30	70	100
Open Elective II	19HS5601A	German for Beginners	3	0	0	3	30	70	100
Open Elective II	19HS5601B	Chinese for Beginners	3	0	0	3	30	70	100
Open Elective II	19HS5601C	Analytical Essay Writing	3	0	0	3	30	70	100
Open Elective II	19HS5601D	Indian Economy	3	0	0	3	30	70	100
Open Elective II	19HS5601E	Public Administration	3	0	0	3	30	70	100
Open Elective II	19HS5601F	National Service Scheme	3	0	0	3	30	70	100
Open Elective II	19HS5601G	Professional Communication	3	0	0	3	30	70	100
Open Elective II	19HS5601H	Basics of Finance	3	0	0	3	30	70	100
Open Elective II	19HS5601I	Basics of Marketing	3	0	0	3	30	70	100

Open Electives

B.Tech Syllabus

Communicative English - I

Course Code	19HS1101	Year	Ι	Semester	Ι
Course Category	Humanities	Branch	EEE	Course Type	Theory
Credits	2	L-T-P	2-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes
Upon s	uccessful completion of the course, the student will be able to
CO 1	Comprehend how to apply parts of speech in a sentence and construct a paragraph.
CO 2	Apply grammar to formulate text using punctuation.
CO 3	Evaluate reading texts and use correct tense forms for effective communication.
CO 4	Analyze reading texts and to write summaries based on comprehension of the texts.
CO 5	Create awareness on how to write correct sentences in English and comprehend the
	text.

C	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1										3		3	1	
CO 2										3		3	1	
CO 3										3		3	1	
CO 4										3		3	1	
CO 5										3		3	1	

	Syllabus	
Unit No.	Contents	Mapped CO
Ι	 Reading: Skimming to get the main idea of a text; Scanning to look for specific pieces of information. Reading for Writing: Beginnings and endings of paragraphs - Introducing the topic, summarizing the main idea and/or providing a transition to the next paragraph. Grammar and Vocabulary: Content words and function words; Word forms: Verbs, Nouns, Adjectives and Adverbs; Nouns: countables and uncountables; singular and plural; Basic sentence structures; Simple question form - wh-questions; Word order in sentences. 	CO 1
Π	 Reading: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together. Writing: Paragraph writing (specific topics) using suitable cohesive devices; Mechanics of writing - punctuation, capital letters. Grammar and Vocabulary: Cohesive devices - linkers, sign posts and transition signals; Use of articles and zero article; prepositions 	CO 2
III	Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Writing: Summarizing - identifying main idea/s and	CO 3

	rephrasing what is read; avoiding redundancies and repetitions.							
	Grammar and Vocabulary: Verbs - Tenses; Subject-verb agreement;							
	Direct and indirect speech, Reporting verbs for academic purposes.							
IV	Reading: Studying the use of graphic elements in texts to convey							
	information, reveal trends/patterns/relationships, communicate processes or							
	display complicated data. Writing: Information transfer; describe,							
	compare, contrast, identify significance/trends based on information	CO 4						
	provided in figures/charts/graphs/tables.	CO 4						
	Grammar and Vocabulary: Quantifying expressions - adjectives and							
	adverbs; comparing and contrasting; Degrees of comparison; Use of							
	antonyms							
V	Reading: Reading for comprehension.							
	Writing: Writing structured essays on specific topics using suitable claims							
	and evidences	CO 5						
	Grammar and Vocabulary: Editing short texts - Identifying and	05						
	correcting common errors in grammar and usage (Articles, prepositions,							
	Tenses, Subject-verb agreement)							

Text Books

Prabhavathy Y, M.Lalitha Sridevi, Ruth Z. Hauzel, "English all round communication skills for undergraduate students", Orient Black Swan, 2019

Reference Books

1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.

2. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.

3. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012

e- Resources & other digital material

Grammar/Listening/Writing

1-language.com; http://www.5minuteenglish.com/ https://www.englishpractice.com/ Grammar/Vocabulary English Language Learning Online; http://www.bbc.co.uk/learningenglish/ http://www.better-english.com/; http://www.nonstopenglish.com/

https://www.vocabulary.com/; BBC Vocabulary Games

Free Rice Vocabulary Game

Reading

https://www.usingenglish.com/comprehension/; https://www.englishclub.com/reading/shortstories.htm; https://www.english-online.at/

All Skills

https://www.englishclub.com/; http://www.world-english.org/

http://learnenglish.britishcouncil.org/

Online Dictionaries

Cambridge dictionary online; MacMillan dictionary; Oxford learner's dictionaries

Engineering Mathematics –	I (Calculus and Algebra)
----------------------------------	--------------------------

Course Code	19BS1101	Year	Ι	Semester	Ι
Course Category	Basic Sciences	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to							
CO 1	Utilize the techniques of matrix algebra that is needed by engineers for practical applications							
CO 2	Apply mean value theorems to engineering problems							
CO 3	Utilize functions of several variables in optimization							
CO 4	Employ the tools of calculus for calculating the areas							
CO 5	Calculate volumes using multiple integrals							

C	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2											2	1
CO 2	3	2											2	1
CO 3	3	2											2	1
CO 4	3	2											2	1
CO 5	3	2											2	1

	Syllabus	
Unit No.	Contents	Mapped CO
Ι	Matrices: Rank of a matrix by echelon form, solving system of homogeneous and non-homogeneous linear equations. Eigen values, Eigen vectors and their properties, Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton theorem, diagonalisation of a matrix, quadratic forms and nature of the quadratic forms, reduction of quadratic form to canonical forms by orthogonal transformation.	CO 1
II	Mean Value Theorems:Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Taylor's and Maclaurin's theorems with remainders (without proof).	CO 2
III	Multivariable Calculus :Partial derivatives, total derivatives, chain rule, change of variables, Jacobian, maxima and minima of functions of two variables, method of Lagrange multipliers.	CO 3
IV	Multiple Integrals-I :Double integrals, change of order of integration, double integration in polar coordinates, areas enclosed by plane curves.	CO 4
V	Multiple Integrals-II: Evaluation of triple integrals, change of variables between Cartesian, cylindrical and spherical polar co-ordinates, volume as triple integral.	CO 5

Learning Resources Text Books 1. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2018 Reference Books 1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002. 2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013. 3. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011. e- Resources & other digital material 1. www.nptelvideos.com/mathematics/ 2. https://nptel.ac.in/courses/111104025/ 3. https://nptel.ac.in/courses/122101003/

Engineering Physics

Course Code	19BS1104	Year	Ι	Semester	Ι
Course Category	Basic Sciences	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes									
Upon s	uccessful completion of the course, the student will be able to									
CO 1	Apply the fundamental laws of electricity and magnetism to currents and propagation									
	of EM waves.									
CO 2	Identify the propagation of light and demonstrate the loss mechanisms in optical									
	fibers.									
CO 3	Explain the principles of physics in dielectrics, magnetic materials and identify the mechanisms of polarization for useful engineering applications.									
CO 4	Classify solids and calculate carrier concentration and conductivity in									
	semiconductors.									
CO 5	Demonstrate the functioning of solar cell, photodiode, and semiconductors devices									
	for engineering applications.									

C	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3											3	
CO 2	3	3											3	
CO 3	3	3											3	
CO 4	3	3											3	
CO 5	3	3											3	

	Syllabus	
Unit No.	Contents	Mappe d CO
Ι	Basics of Electromagnetics Electrostatic field: Coulombs law and Gauss law, derivation of Coulombs law from Gauss law, applications of Gauss law (line charge, thin sheet of charge and solid charged sphere), Gauss law of electrostatics in dielectric medium, divergence and curl of electric fields, electric potential, relation between potential and force, Poisson's and Laplace equations. Magneto static field: Biot–Savart law, divergence and curl of magnetic fields, Faraday's and Ampere's laws in integral and differential form, displacement current, continuity equation, Maxwell's equations	CO 1
Π	Fiber Optics Introduction, advantages of optical fibers, principle and structure, acceptance angle, numerical aperture, modes of propagation, classification of fibers, fiber optic communication, importance of V- number, fiber optic	CO 2

	sensors (Temperature, displacement and force), applications.	
Ш	Dielectric and Magnetic materials	
	Dielectric and Wagnetic materials Dielectric materials: Introduction, electric polarization, dielectric polarizability, susceptibility and dielectric constant, types of polarizations (qualitative treatment only), frequency dependence of polarization, Lorentz (internal) field (quantitative), Clausius-Mossotti equation. Magnetic materials: Introduction, magnetic dipole moment, magnetization, magnetic susceptibility and permeability, origin of permanent magnetic moment, classification of magnetic materials, Weiss theory of ferromagnetism (qualitative), domain theory, hysteresis, soft and hard magnetic materials.	CO 3
IV	Semiconductor physics Introduction, origin of energy band, intrinsic and extrinsic semiconductors, mechanism of conduction in intrinsic semiconductors, generation and recombination, carrier concentration in intrinsic semiconductors, variation of intrinsic carrier concentration with temperature, n-type and p-type semiconductors, carrier concentration in n type and p type semiconductors.	CO 4
V	Semiconductor devices Drift and diffusion currents in semiconductors, Hall effect and its applications, magnetoresistance, p-n junction layer formation and V-I characteristics, direct and indirect band gap semiconductors, construction and working of photodiode, LED, solar cell	CO 5

Text Books

- 1. Engineering Physics, R.K.Gaur& S.L.Gupta, Dhanpatrai Publications.
- 2. Solid State Physics, S.O.Pillai, New Age International.

Reference Books

1. A Text Book Of Engineering Physics, M.N.Avadhanulu & P.G.Kshrisagar, S.Chand Publications

- 2. Semiconductor Devices & Physics, S.M.Sze, Wiley, 2008.
- 3. Applied Physics, P.K. Palanai Swamy, Scitech Publications.
- 4. Engineering Physics, Dr.M.Arumugam, Anuradha Publications.
- 5. Introduction To Electrodynamics, David.J.Griffths, Pearson Education.

e- Resources & other digital material

http://physicsforidiots.com/physics/electromagnetism/

https://www.arcelect.com/fibercable.htm

http://freevideolectures.com/Course/3048/Physics-of-Materials/36

https://www.iitk.ac.in/mse/electronic-materials-and-devices

https://link.springer.com/chapter/10.1007/978-3-319-48933-9_35

Basic Electrical & Electronics Engineering	
---	--

Course Code	19ES1101	Year	Ι	Semester	Ι
Course Category	Engineering Sciences	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes										
Upon s	pon successful completion of the course, the student will be able to										
CO 1	To familiarize the basic DC and AC networks used in electrical and electronic										
	circuits.										
CO 2	To explain the concepts of electrical machines and their characteristics.										
CO 3	To identify the importance of transformers in transmission and distribution of										
	electric power.										
CO 4	To impart the knowledge about the characteristics, working principles and										
	applications of semiconductor diodes, metal Oxide semiconductor field effect										
	transistors (MOSFETs).										
CO 5	To expose basic concepts and applications of Operational Amplifier and										
	configurations.										

C	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2					1		1		2	1	2	1
CO 2	3	2				1	1		1		2	1	2	1
CO 3	3	2				1	1		1		2	1	2	1
CO 4	3	2					1		1		2	1	2	
CO 5	3	2					1		1		2	1	2	

	Syllabus							
Unit No.	Contents	Mapped CO						
Ι	Basic laws and Theorems: Ohms law, Kirchhoff's Laws, series and parallel circuits, source transformations, delta-wye conversion. Mesh analysis, nodal analysis. Linearity and superposition theorem, Thevenin's and Norton's theorems with simple examples, maximum power transfer theorem with simple examples.	CO 1						
Π	DC Machines: Constructional features, induced EMF and torque expressions, different types of excitation, performance characteristics of different types of dc machines, Starters: 2-point, 3-point starters, losses and efficiency, efficiency by direct loading.	CO 2						
III	Transformers: Constructional details, EMF equation, voltage regulation, losses and efficiency, open/short- circuit tests and determination of efficiency. Three Phase Induction Motors: Construction, working principle of three phase induction motor, Torque and Torque-Slip characteristics.	CO 3						
IV	Semiconductor Devices: P-N Junction diode - Basic operating principle,	CO 4						

	current-voltage characteristics, rectifier circuits (half-wave, full-wave, rectifier with filter capacitor), Zener diode as Voltage Regulator; Metal oxide semiconductor field effect transistor (MOSFET): Operation of	
	NMOS and PMOS FETs, MOSFET as an amplifier and switch.	
V	Operational Amplifiers: The Ideal Op-Amp, The Inverting Configuration, The closed loop gain, Effect of Finite open-loop gain, The Non-inverting Configuration, The closed loop gain, Characteristics of Non Inverting Configuration, Effect of finite open loop gain, the voltage follower, Differential amplifiers, A Single Op-amp differential amplifier.	CO 5

— ···
Text Books
1. D.P.Kothari, I.J.Nagrath, Basic Electrical and Electronics Engineering, 1stedition,
McGraw Hill Education (India) Private Limited, 2017.
2. B.L.Theraja, Fundamentals of Electrical Engineering and Electronics, 1stedition, S.Chand
Publishing, New Delhi, 2006.
3. Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6th edition, Oxford
University Press, 2014.
Reference Books
1. S.K. Bhattacharya, Basic Electrical and Electronics Engineering, Pearson Education, 2011.
2. Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2/e, Pearson
Education, 2008.
3. R.K.Rajput, Basic Electrical and Electronics Engineering, University Science Press, New
Delhi,2012.

e- Resources & other digital material

http://202.53.81.118/course/view.php?id=122 https://nptel.ac.in/courses/108105112/

Engineering Graphics

Course Code	19ES1103	Year	Ι	Semester	Ι
Course Category	Engineering Sciences	Branch	EEE	Course Type	Theory
Credits	2.5	L-T-P	1-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes

Upon successful completion of the course, the student will be able toCO1Conic sections and curves used in engineering practice.CO2Orthographic projections of points, lines, planes and solids.CO3Isometric and orthographic views.CO4Development of lateral surfaces of solids.CO5Features of CAD packages.								
CO1Conic sections and curves used in engineering practice.CO2Orthographic projections of points, lines, planes and solids.CO3Isometric and orthographic views.CO4Development of lateral surfaces of solids.CO5Features of CAD packages.	Upon s	Upon successful completion of the course, the student will be able to						
 CO 2 Orthographic projections of points, lines, planes and solids. CO 3 Isometric and orthographic views. CO 4 Development of lateral surfaces of solids. CO 5 Features of CAD packages. 	CO 1	Conic sections and curves used in engineering practice.						
CO 3Isometric and orthographic views.CO 4Development of lateral surfaces of solids.CO 5Features of CAD packages.	CO 2	Orthographic projections of points, lines, planes and solids.						
CO 4Development of lateral surfaces of solids.CO 5Features of CAD packages.	CO 3	Isometric and orthographic views.						
CO 5 Features of CAD packages.	CO 4	Development of lateral surfaces of solids.						
	CO 5	Features of CAD packages.						

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3									3	1		1	
CO 2	3									3	1		1	
CO 3	3									3	1		1	
CO 4	3									3	1		1	
CO 5	3				3					3	1		1	

	Syllabus							
Unit No.	Contents	Mapped CO						
Ι	 Introduction to Engineering Graphics: Principles of Engineering Graphics and their significance- Conventions in drawing, lettering, dimensioning, BIS conventions. a) Conic sections: Construction of ellipse, parabola and hyperbola (general method only) b) Cycloidal curves: Cycloid, Epicycloid and Hypocycloid c) Involutes: Involute of regular polygons and Circle. 	CO 1						
II	Projection of points, lines and planes: Projection of points in different quadrants, lines inclined to one and both the reference planes, finding true length and inclination made by the line. Projections of regular plane surfaces							
III	Projections of solids: Projections of regular solids such as cube, prism, p cylinder and cone (Treatment limited to solids inclined to one of the referen Sections of solids: Section planes and sectional view of right regular solids- cube, prism, cylinder, pyramid and cone. True shape of the section. (Treatment limited to the solids perpendicular to one of the principal planes)							
IV	Orthographic Views: Systems of projections, conversion of	CO 4						

	isometric view to orthographic view.	
	Isometric Projections: Principles of isometric projection- isometric	
	scale; isometric views: lines, planes and solids. (Treatment is limited to	
	simple objects only)	
V	Development of surfaces: Development of lateral surfaces of right	
	regular solids-prism, cylinder, pyramid, cone and their sectional parts.	
	(Treatment limited to solids perpendicular to one of the principal planes)	
	Introduction to CAD: Basic drawing, editing and dimensioning	CO 5
	commands: line, circle, rectangle, erase, view, undo, redo, snap, edit,	
	move, copy, rotate, scale, mirror, layer, template, polyline, trim, extend,	
	stretch, fillet, array, dimension.	

Text Books

- 1. N.D. Bhatt, Engineering Drawing, 53/e, Charotar Publishers, 2016.
- 2. K.L. Narayana & P. Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, 2012. **Reference Books**
- 1. Dhanajay A Jolhe, Engineering Drawing, Tata McGraw-Hill, 2009.
- 2. Shah and Rana, Engineering Drawing, 2/e, Pearson Education, 2009.
- 3. K. Venugopal, Engineering Drawing and Graphics, 6/e, New Age Publishers, 2011.
- 4. K.C. John, Engineering Graphics, 2/e, PHI, 2013.

5. Basant Agarwal and C.M. Agarwal, Engineering Drawing, Tata McGraw Hill, 2008.

e- Resources & other digital material

1. http://www.youtube.com/watch?v=XCWJ XrkWco, Accessed On 01-06-2017.

2. http://www.me.umn.edu/courses/me2011/handouts/drawing/blanco-tutorial.html#

isodrawing, Accessed On 01-06-2017.

3. <u>http://www.slideshare.net</u>, Accessed On 01-06-2017.

4. <u>http://edpstuff.blogspot.in</u>, Accessed On 01-06-2017.

Communicative English – I Lab

Course Code	19HS1151	Year	Ι	Semester	Ι
Course Category	Humanities	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

	Course Outcomes					
Upon s	uccessful completion of the course, the student will be able to					
CO 1	Remember and understand the different aspects of the English language proficiency					
	with emphasis on LSRW skills					
CO 2	Apply communication skills through various language learning activities					
CO 3	Analyze the comprehensive ability and logical thinking for better listening and					
	speaking.					
CO 4	Evaluate and exhibit acceptable etiquette essential in social and professional					
	situations.					
CO 5	Create awareness on how to improve presentation skills in English.					

C	Contribution of Course Outcomes towards achievement of Program Outcomes &													
Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1									2	3		3	1	
CO 2									2	3		3	1	
CO 3									2	3		3	1	
CO 4									2	3		3	1	
CO 5									2	3		3	1	

Syllabus					
Expt. No.	Contents	Mapped CO			
Ι	Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions.				
Π	Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others.	CO 1			
III	Answering a series of questions about main idea and supporting ideas after listening to audio texts.	CO^{2}			
IV	Discussion in pairs/ small groups on specific topics followed by short structured talks.	02			
V	Listening for global comprehension and summarizing what is listened to.	CO 3			
VI	Discussing specific topics in pairs or small groups and reporting what is discussed	05			
VII	Making predictions while listening to conversations/transactional dialogues without video; listening with video.	CO 4			
VIII	Role plays for practice of conversational English in academic contexts				

	(formal and informal) - asking for and giving information/directions.	
IX	Identifying key terms, understanding concepts and answering a series of	
	relevant questions that test comprehension.	CO 5
Х	Formal oral presentations on topics from academic contexts -without the	05
	use of PPT slides.	

Learning Resources
Reference Books
1. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT;
2nd Edition, 2018.
2. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
3. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012
e- Resources & other digital material
Grammar/Listening/Writing
1-language.com
http://www.5minuteenglish.com/
https://www.englishpractice.com/
Listening
https://learningenglish.voanews.com/z/3613 ;
http://www.englishmedialab.com/listening.html
Speaking
https://www.talkenglish.com/BBC; Learning English – Pronunciation tips
Merriam-Webster – Perfect pronunciation Exercises
All Skills
https://www.englishclub.com/;
http://www.world-english.org/
http://learnenglish.britishcouncil.org/
Online Dictionaries
Cambridge dictionary online; MacMillan dictionary; Oxford learner's dictionaries

Engineering Physics Lab

Course Code	19BS1153	Year	Ι	Semester	Ι
Course Category	Basic Sciences	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

	Course Outcomes					
Upon s	uccessful completion of the course, the student will be able to					
CO 1	Assess the intensity of the magnetic field of circular coil carrying current with					
	varying distance and utilize four probe set up to measure resistance.					
CO 2	Evaluate the acceptance angle of an optical fiber and numerical aperture and loss.					
CO 3	Demonstrate the importance of dielectric material and measure magnetic parameters.					
CO 4	Identify the type of semiconductor using hall effect and determine the band gap of a					
	semiconductor.					
CO 5	Understand the characteristics of photodiode, p-n junction diode and solar					
	cell.Type equation here.					

C	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS0									PSO2				
CO 1	3		3										2	
CO 2	3		3										3	
CO 3	3		3										2	
CO 4	3		3										3	
CO 5	3		3										3	

Syllabus					
Expt.	Contents	Mapped			
No.		CO			
Ι	To Determine The Magnetic Field Along The Axis Of A Circular Coil				
	Carrying Current	CO 1			
II	To Determine The Magnetic Susceptibility By Gouy's Method				
III	To Determine The Numerical Aperture Of A Given Optical Fibre And	CO 2			
	Hence To Find Its Acceptance Angle	02			
IV	To Determine The Dielectric Constant Of A Substance By Resonance	CO 3			
	Method	005			
V	To Determine The Resistivity Of Semiconductor By Four Probe Method				
VI	To Determine The Hall Coefficient Using Hall Effect Experiment.	CO 4			
VII	To Determine The Energy Gap Of A Semiconductor				
VIII	To Study The Characteristics Of Photo Diode				
IX	To Study The Characteristics Of PN Diode	CO 5			
Х	To Study The Characteristics Of Solar Cell				

Learning Resources							
Text Books							
RamaraoSri, Choudary Nityanand and Prasad Daruka, "Lab Manual of	Engineering						
Physics"., Vth ed., Excell Books, 2010							
Reference Books							
Semiconductor Devices & Physics, S.M.Sze,Wiley,2008.							
e- Resources & other digital material							
https://www.niser.ac.in/sps/teaching-laboratories							

Basic Electrical & Electronics	Engineering	Lab
---	-------------	-----

Course Code	19ES1151	Year	Ι	Semester	Ι
Course Category	Engineering Sciences	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

	Course Outcomes									
Upon s	Upon successful completion of the course, the student will be able to									
CO 1	To familiarize the basic DC and AC networks used in electrical and electronic									
	circuits.									
CO 2	To explain the concepts of electrical machines and their characteristics.									
CO 3	To identify the importance of transformers in transmission and distribution of									
	electric power.									
CO 4	To impart the knowledge about the characteristics, working principles and									
	applications of semiconductor diodes, metal Oxide semiconductor field effect									
	transistors (MOSFETs).									
CO 5	To expose basic concepts and applications of Operational Amplifier and									
	configurations									

C	Contribution of Course Outcomes towards achievement of Program Outcomes &													
Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	2	1					1		1	1	1	1
CO 2	3	2	2	1			1		1		1	1	1	1
CO 3	3	2	2	1			1		1		1	1	1	1
CO 4	3	2	2	1			1		1		1	1	1	1
CO 5	3	2	2	1			1		1		1	1	1	1

Syllabus							
Expt.	ot. Contents						
No.		ĊŌ					
Ι	Verification of Kirchhoff's Laws KVL and KCL.						
II	Verification of DC Superposition Theorem.	CO 1					
III	Verification of Thevenin's Theorem and Norton's Theorem						
IV	Swinburne's tests on a DC shunt motor.	CO 2					
V	OC and SC Tests on single phase transformer.	CO 3					
VI	Brake Test on DC shunt motor.	CO 2					
VII	Current Voltage Characteristics of a p-n Junction Diode/LED						
VIII	Diode Rectifier Circuits.	CO 4					
IX	Voltage Regulation with Zener Diodes.						
X	Inverting and Non-inverting Amplifier Design with Op-amps	CO 5					

Text Books

1. D.P.Kothari, I.J.Nagrath, Basic Electrical and Electronics Engineering, 1stedition, McGraw Hill Education (India) Private Limited, 2017.

2 B.L.Theraja, Fundamentals of Electrical Engineering and Electronics, 1stedition, S.Chand Publishing, New Delhi, 2006.

3. Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6th edition, Oxford University Press, 2014.

Reference Books

S.K. Bhattacharya, Basic Electrical and Electronics Engineering, Pearson Education,2011.
 Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2/e, Pearson Education, 2008.

3. R.K.Rajput, Basic Electrical and Electronics Engineering, University Science Press, New Delhi,2012.

Engineering Mathematics –	II (ODE, P	DE and Multivariabl	e Calculus)
----------------------------------	------------	---------------------	-------------

Course Code	19BS1201	Year	Ι	Semester	Π
Course Category	Basic Sciences	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Calculus&Algebra
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes								
Upon s	Upon successful completion of the course, the student will be able to							
CO 1	1 Solve the differential equations related to various engineering fields.							
CO 2	Solve the linear differential equation with constant coefficients.							
CO 3	Identify solution methods for partial differential equations that model physical							
	processes.							
CO 4	Interpret the physical meaning of gradient, curl and divergence.							
CO 5	Determine the work done against a force field, circulation and flux using vector							
	calculus.							

C	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2											2	1
CO 2	3	2											2	1
CO 3	3	2											2	1
CO 4	3	2											2	1
CO 5	3	2											2	1

Syllabus									
Unit No.	Contents								
Ι	Linear Differential Equations of Higher Order: Definitions, complete solution, operator D, rules for finding complimentary function, inverse operator, rules for finding particular integral, method of variation of parameters.	CO 1							
Π	Equations Reducible to Linear Differential Equations and Applications: Cauchy's and Legendre's linear equations, simultaneous linear equations with constant coefficients, Applications: Mass spring system and L-C-R Circuit problems.	CO 2							
III	Partial Differential Equations: First order partial differential equations, solutions of first order linear PDEs, Charpit's method, solutions to homogenous and non-homogenous linear partial differential equations.								
IV	Multivariable Calculus (Vector Differentiation):Scalar and vector point	CO 4							

	functions, vector operator del, del applies to scalar point functions- Gradient, del applied to vector point functions-Divergence and Curl, vector identities	
V	Multivariable Calculus (Vector Integration): Line integral-circulation- work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof).	CO 5

Learning Resources Text Books 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2018 2. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna publishers, 2017. Reference Books 1 R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.

2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.

3. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011. e- Resources & other digital material

www.nptelvideos.com/mathematics/

https://nptel.ac.in/courses/111104025/

https://nptel.ac.in/courses/122101003/

Engineering Chemistry

Course Code	19BS1203	Year	Ι	Semester	II
Course Category	Basic Sciences	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	30	Total Marks:	100

	Course Outcomes										
Upon s	uccessful completion of the course, the student will be able to										
CO 1	List various sources of renewable energy.										
CO 2	Compare different types of cells.										
CO 3	Explain the merits of fuel cells.										
CO 4	Identify suitable methods for metal finishing.										
CO 5	Distinguish between nanoclusters and nanowires, polymers, molecular machines &										
	switches										

C	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3													1
CO 2	3													1
CO 3	3		3											1
CO 4	3		3											1
CO 5	3													1

	Syllabus	
Unit	Contents	Mapped
N0.		CO
Ι	ELECTROCHEMICAL ENERGY SYSTEMS	
	Introduction-Origin of electrode potential, Electrode Potentials,	
	Measurement of Electrode Potentials, Nernst Equation for a single	
	electrode, EMF of a cell, Types of Electrodes or Half Cells-Hydrogen and	CO_1
	Calomel electrode, Electrochemical Cell, Galvanic Cell vs Electrolytic	001
	Cell, Electrochemical conventions, Types of Ion Selective Electrodes- glass	
	membrane electrode, polymer membrane electrodes, solid state electrodes,	
	gas sensing electrodes (classification only), Concentration Cells.	
II	BATTERY TECHNOLOGY	
	Basic concepts, battery characteristics, classification of batteries, Important	
	applications of batteries, Classical batteries-dry/Leclanche cell, Modern	
	batteries-zinc air, lithium cells-Li MnO2 cell- challenges of battery	CO 2
	technology. Fuel cells- Introduction - classification of fuel cells – hydrogen	
	and oxygen fuel cell, propage and oxygen fuel cell- Merits of fuel cell	
Ш	RENEWABLE SOURCES OF ENERGY	
111	Introduction sources of renewable energy	CO 3
	Solar approx. Introduction Drugical and Chamical properties of Silicon	005
	Solar energy – introduction - Physical and Chemical properties of Sincon-	

	Production of Solar Grade Silicon from Quartz - Doping of Silicon- p and n type semi conductors- PV cell / solar cell- Manufacturing of Photovoltaic Cells using Chemical Vapor Deposition Technique-applications of solar energy	
IV	METAL FINISHING	
	Technological importance of metal finishing, methods of metal finishing,	
	manufacturing of electronic components, electrochemical techniques of	CO 4
	forming, machining and etching, electrolytic cell, principle of	CO 4
	electroplating, nature of electrodeposits, electroplating process,	
	Electroplating of chromium, gold etc. Electroless plating of copper, nickel	
V	POLYMERS, NANOMATERIALS AND MOLECULAR MACHINES &	
	SWITCHES: Polymers: Introduction thermoplastic and thermo setting	
	resins, Preparation, properties and uses of polystyrene and	
	Polyphosphazines., differences between	
	Nanomaterials: Introduction to nanomaterial: nanoparticles, nanocluster,	
	carbon nanotube (CNT) and nanowires. Chemical synthesis of	CO 5
	nanomaterials: sol-gel method. Characterization: Principle and applications	
	of scanning electron microscope (SEM) and transmission electron	
	microscope (TEM). Molecular machines & Molecular switches: Rotaxanes	
	and Catenanes as artificial molecular machines; Molecular switches -	
	cyclodextrin-based switches	

Text Books

1. P.C. Jain and M. Jain, Engineering Chemistry, 15/e, DhanapatRai& Sons, Delhi (2014).

2. B.K. Sharma, Engineering Chemistry, Krishna Prakashan, Meerut.

3. O G Palanna, Engineering Chemistry, Tata McGraw Hill (2009).

Reference Books

1. Sashichawla, A Textbook of Engineering Chemistry, DhanapathRai and sons, (2003)

2. B.S Murthy and P. Shankar, A Text Book of NanoScience and NanoTechnology, University Press (2013).

3. S.S. Dara, A Textbook of Engineering Chemistry, S.Chand& Co, (2010)

4. N.Krishna Murthy and Anuradha, A text book of Engineering Chemistry,

M murthyPublications (2014).

5. K. SeshaMaheshwaramma and Mridula Chugh, Engineering Chemistry, Pearson India Edn services, (2016).

e- Resources & other digital material

https://nptel.ac.in/courses/105105178/

http://202.53.81.118/course/view.php?id=82

Problem Solving and Programming

Course Code	19ES1202	Year	Ι	Semester	II
Course Category	Engineering Sciences	Branch	EEE	Course Type	Theory
Credits	4	L-T-P	3-1-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes										
Upon s	uccessful completion of the course, the student will be able to										
CO 1	Develop algorithm and flowchart for simple problems.										
CO 2	Understand the structure, fundamentals and decision making statements in C.										
CO 3	Choose suitable iterative statements and arrays to solve the problems.										
CO 4	Solve problems using functions and pointers.										
CO 5	Apply the structures, unions and file operations in a specific need.										

C	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													
CO 1	2	2										1	2	2
CO 2	1	1											2	2
CO 3	2	2	2									1	2	2
CO 4	2	2	2									1	2	2
CO 5	2	2	2									1	2	2

Syllabus									
Unit No.	Contents	Mapped CO							
Ι	Introduction to Computer Problem-Solving – Introduction, The Problem- Solving Aspect, Top-Down Design, Fundamental Algorithms – Exchanging the values of two variables, Counting, Summation of a Set of Numbers, Factorial Computation, Sine Function Computation, Generation of the Fibonacci Series. Basics of Flow charts.	CO 1							
Π	Introduction to C: Introduction, Structure of C Program, A Simple C Program, C-Tokens, Basic Data types, Variables, Constants, Input / Output statements, Operators, Type conversion and Type casting. Conditional Branching Statements: if, if-else, if-else-if Statements and Switch case.	CO 2							
III	 Iterative Statements: while, for and do - while loops, Nested loops, break and continue statements. Arrays: Declaration, Accessing array elements, Storing values, Operations on arrays, Multi-dimensional arrays. Strings: Introduction, String manipulation functions. 	CO 3							

IV	 Functions: Introduction, Using Functions, Function declaration, Function definition and Function call, Parameter passing, Passing arrays to functions, Recursion, Storage classes. Pointers: Declaration and Initialization of pointer variables, Pointer arithmetic, Pointers and arrays, Pointer to pointer, Array of pointers, Pointers and functions, Dynamic memory allocation. 	CO 4
V	 Structures: Introduction, Nested structures, Array of structures, Structures and functions, Unions. Files in C: Using Files in C, Read data from files, Writing data to files, Random access to files of records. 	CO 5

Text Books

1. R.G. Dromey, How to Solve it by Computer, 1/e, Pearson Education, 2006. (for Unit I). 2. Reema Thareja, Programming in C, Oxford University Press, AICTE Edition, 2018.

Reference Books

1. B. A. Forouzan and R. F. Gilberg, Computer Science: A Structured Programming Approach Using C, 3/e, Cengage Learning, 2007.

- 2. Pradip Dey, Manas Ghosh, Programming in C, Oxford University Press, AICTE Edition,
- 3. B. Gottfried, Programming with C, 3/e, Schaum's outlines, McGraw Hill (India), 2017.
- 4.Jeri R. Hanly, Ellot B. Koffman, Problem Solving and Program Design in C, 5/e, Pearson.

e- Resources & other digital material

1. http://cprogramminglanguage.net/

2. <u>https://www.geeksforgeeks.org/c-programming-language/</u>

3. https://nptel.ac.in/courses/106105085/4

Engineering Chemistry Lab

Course Code	19BS1251	Year	Ι	Semester	II
Course Category	Basic Sciences	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

	Course Outcomes									
Upon s	Upon successful completion of the course, the student will be able to									
CO 1	Explain the functioning of the instruments such as pH, Conductometric and									
	Potentiometric methods.									
CO 2	Identify different ores (Cr & Cu) and their usage in different fields (industry, software devices, electronic goods).									
CO 3	Experiment with the physical parameter of organic compounds.									
CO 4	Compare the viscosities of oils.									
CO 5	List the preparation of polymers and nano materials.									

C	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3		2											1
CO 2	3		2											1
CO 3	3		2											1
CO 4	3		2											1
CO 5	3		2											1

Syllabus						
Expt.	Contents					
No.		CO				
Ι	Determination of strength of an acid by pH metric method	CO_1				
II	Determination of conductance by conductometric method	01				
III	Determination of viscosity of a liquid	CO 4				
IV	Determination of surface tension of a liquid	CO 3				
V	Determination of chromium (VI) in potassium dichromate	CO^{2}				
VI	Determination of Zinc by EDTA method	02				
VII	Estimation of active chlorine content in Bleaching powder	CO 3				
VII	Preparation of Phenol-Formaldehyde resin	CO 5				
IX	Preparation of Urea-Formaldehyde resin	05				
Х	Thin layer chromatography	CO 3				

Text Books

N.KBhasin and Sudha Rani Laboratory Manual on Engineering Chemistry 3/e, DhanpatRai Publishing Company (2007).

Reference Books

Mendham J, Denney RC, Barnes JD, Thosmas M and Sivasankar B Vogel's Quantitative Chemical Analysis 6/e, Pearson publishers (2000).

e- Resources & other digital material

https://nptel.ac.in/courses/105105178/

http://202.53.81.118/course/view.php?id=82

Course Code	19ES1252	Year	Ι	Semester	II
Course Category	Engineering Sciences	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

Problem Solving and Programming Lab

Course Outcomes						
Upon successful completion of the course, the student will be able to						
CO 1	Build algorithm and flowchart for simple problems.					
CO 2	Use suitable control structures to solve problems.					
CO 3	Use suitable iterative statements and arrays to solve the problems.					
CO 4	Implement Programs using functions and pointers.					
CO 5	Develop code for complex applications using structures, unions and file handling					
	features.					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	2										1	1	1
CO 2	2	2	2		2							1	1	1
CO 3	2	2	2		2							1	1	1
CO 4	2	2	2		2							1	1	1
CO 5	2	2	2		1							1	1	1

Syllabus					
Expt. No.	Contents	Mapped CO			
Ι	Draw flowcharts for fundamental algorithms.	CO 1			
II	C Programs to demonstrate C-tokens.				
III	C Programs on usage of operators.	CO 2			
IV	C Programs to demonstrate Decision making and branching (Selection)				
V	C programs to demonstrate different loops.				
VI	C programs to demonstrate 1-D arrays.				
VII	C programs to demonstrate multi-dimensional arrays.	CO 3			
VIII	C programs to perform operations on strings with String handling				
	functions and without String handling functions.				
IX	C programs to demonstrate functions.	CO 4			
Х	C programs on pointers.	04			
XI	C programs on structures and unions.	CO 5			
XII	C programs to demonstrate files.				

Text Books

1. R.G. Dromey, How to Solve it by Computer, 1/e, Pearson Education, 2006.

2. Reema Thareja, Programming in C, Oxford University Press, AICTE Edition, 2018. **Reference Books**

1. B. A. Forouzan and R. F. Gilberg, Computer Science: A Structured Programming

Approach Using C, 3/e, Cengage Learning, 2007.

- 2. Pradip Dey, Manas Ghosh, Programming in C, Oxford University Press, AICTE Edition,
- 3. B. Gottfried, Programming with C, 3/e, Schaum's outlines, McGraw Hill (India), 2017.
- 4.Jeri R. Hanly, Ellot B. Koffman, Problem Solving and Program Design in C, 5/e, Pearson.

e- Resources & other digital material

- 1. http://cprogramminglanguage.net/
- 2. https://www.geeksforgeeks.org/c-programming-language/
- 3. https://nptel.ac.in/courses/106105085/4
Basic Workshop

Course Code	19ES1253	Year	Ι	Semester	II
Course Category	Engineering Sciences	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

	Course Outcomes									
Upon s	Upon successful completion of the course, the student will be able to									
CO 1	Apply wood working skills in real world applications									
CO 2	Build different parts with metal sheets in real world applications.									
CO 3	Apply fitting operations in various applications.									
CO 4	Apply different types of basic electric circuit connections and demonstrate soldering.									

C	Contribution of Course Outcomes towards achievement of Program Outcomes &													
Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3					1			3		1		1	
CO 2	3					1			3		1		1	
CO 3	3					1			3		1		1	
CO 4	3					1			3		1		1	

Syllabus							
Job Type	Contents	Mapped CO					
Wood Working	 Familiarity with different types of woods and tools used in wood working and make following joints i) Half – Lap joint. ii) Mortise and Tenon joint. iii) Corner Dovetail joint or Bridle joint. 	CO 1					
Sheet Metal Working	Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from GI sheets i) Tapered tray ii) Conical funnel ii) Elbow pipe	CO 2					
Fitting	 Familiarity with different types of tools used in fitting and do the following fitting exercises i) V-fit ii) Semi-circular fit iii) Bicycle tire puncture and change of two wheeler tire 	CO 3					
Electrical	Familiarities with different types of basic electrical circuits and	CO 4					

Wiring	 make the following connections i) Preparation of a circuit for Parallel and series connection. ii) Preparation of a circuit Go down lighting using Two way switch and tube light. iii) Soldering of wires 	
	III) Soldering of wifes	

Text Books

Learning Resources

Work shop Manual - P.Kannaiah/ K.L.Narayana/ Scitech Publishers.
 Workshop Manual / Venkat Reddy/ BS Publications/Sixth Edition

Electrical Workshop

Course Code	19EE3251	Year	Ι	Semester	II
Course Category	Program Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

	Course Outcomes									
Upon s	Upon successful completion of the course, the student will be able to									
CO 1	Familiarize with electrical tools, symbols ,cables and switch gear device									
CO 2	Understand the wiring of various electrical circuits									
CO 3	Measure various electrical quantities									
CO 4	Learn the procedure to start various DC and AC machines									

С	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3		2			2	2	2			2	2	2	1
CO 2	3		2			2	2	2			2	2	2	1
CO 3	3		2			2	2	2			2	2	2	1
CO 4	3		2			2	2	2			2	2	2	1

	Syllabus	
Expt. No.	Contents	Mapped CO
Ι	Study of various electrical tools and symbols	
II	Identify different types of cables/wires and switches, fuses & fuse carriers, MCB and ELCB, MCCB with ratings and usage	CO 1
III	Wiring of light/fan circuit using two way/three way control (Staircase wiring)	
IV	Go-down wiring / Tunnel wiring	
V	Wiring of power distribution arrangement using single phase MCB distribution board with ELCB, Main switch and Energy meter.	CO 2
VI	Wiring of backup power supply including inverter, battery and load for domestic installations	
VII	Measurement of voltage, current, resistance in DC circuit.	
VIII	Measurement of voltage, current and power in single phase circuit using voltmeter, ammeter and wattmeter. Calculate the power factor of the circuit	CO 3
IX	Starting of DC shunt motor using three-point starter.	
Х	Starting of DC series motor using two-point starter.	CO 4
XI	Starting of single-phase induction motor.	CU 4
XII	Starting of three phase induction motor	

Text Books

1. D.P.Kothari, I.J.Nagrath, Basic Electrical and Electronics Engineering, 1stedition, McGraw Hill Education (India) Private Limited, 2017.

2 B.L.Theraja, Fundamentals of Electrical Engineering and Electronics, 1stedition, S.Chand Publishing, New Delhi, 2006.

3. Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6th edition, Oxford University Press, 2014.

(1)	DE, COMI LEA	VARIABLES &	IKANSPORM	I IECHNIQUES)	
Course Code	19BS1301	Year	II	Semester	Ι
Course Category	Basic Sciences course	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

ENGINEERING MATHEMATICS-III (PDE, COMPLEX VARIABLES &TRANSFORM TECHNIQUES)

	Course Outcomes									
After su	After successful completion of the course, the student will be able to									
CO1	Find Laplace transforms of given functions.									
CO2	Find inverse Laplace transforms of the given functions and able to apply Laplace									
	transforms to solve differential equations with initial conditions.									
CO3	Determine complex potential function and evaluate integrals by applying Cauchy's									
	integral formula and write series expansions of complex functions.									
CO4	Expand given function in terms of sine and cosine terms in Fourier series and									
	also to get knowledge in Fourier transforms.									
CO5	Apply method of separation of variables to find the solution of wave, heat, Laplace									
	equations with given boundary conditions.									

(Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3: High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2											2	
CO2	3	2											2	
CO3	3	2											2	
CO4	3	2											2	
CO5	3	2											2	

Syllabus						
Unit	Contents	Mapped				
No.		COs				
	Laplace Transforms & Inverse Laplace Transforms					
	Definition of Laplace transform, properties of Laplace transforms, transforms of					
Ι	derivatives, transforms of integrals, multiplication by t^n , division by t , unit step	CO1				
	function, unit impulse function. Inverse Laplace transforms by partial fractions,					
	convolution theorem (All theorems/properties without proofs)					
	Fourier Series					
II	Fourier series, Dirichlet's conditions, functions of any period, odd and even	CO2				
	functions - half range series. (All theorems/properties without proofs)					
	Fourier Transforms					
III	Fourier integrals, Fourier cosine and sine integrals, Fourier transform, sine and	CO3				
	cosine transform. (All theorems/properties without proofs)					
	Complex Variables					
IV	Differentiation, Cauchy-Riemann equations, analytic functions, harmonic	CO4				
	functions, finding harmonic conjugate. Cauchy theorem, Cauchy integral					

	formula, Taylor's series, Laurent's series. (All theorems/properties without proofs)	
v	Applications of Partial Differential Equations Classification of second order partial differential equations, method of separation of variables, solutions of one dimensional wave equation, one dimensional heat equation and two dimensional Laplace's equation in cartesian coordinates. (All theorems/properties without proofs)	CO5

Learning Resource(s)
Text Book(s)
1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.
2. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.
Reference Book(s)
1. N.P. Bali and Manish Goyal, A Text book of Engineering Mathematics, Laxmi
Publications, 2008.
e- Resources & other digital material
1. https://www.nptel.ac.in/courses/111/105/111105123/
2. https://www.nptel.ac.in/courses/111/105/111105134/

3. https://www.nptel.ac.in/courses/111/105/111105093/

AI TOOLS

Course Code		19ES1301	Year	II	Semester	Ι			
Course	9	ES	Branch	EEE	Course Type	Theory			
Catego	ory								
Credit	S	2	L-T-P	2-0-0	Prerequisites	-			
Contin	uous	30	Semester	70	Total Marks:	100			
Interna	al		End						
Evaluation:			Evaluation:						
			Course	Outcomes					
Upon s	uccessfu	al completion of	the course, the s	student will be a	ble to				
CO1	Unders	stand the Fundar	nentals of Artifi	cial Intelligence	and its Applicat	ions.			
CO2	Summ	arize various ma	chine learning r	nethods.					
CO3	Identify different machine learning applications.								
CO4	Compare Machine Learning & Deep Learning and Outline basic Deep Learning								
	Algorithm.								
CO5	Make use of Deep Learning Concepts for various Applications.								

Co	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3: High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2												1	2
CO2	2	2											2	2
CO3	2	2		2									2	3
CO4	2	2											2	2
CO5	2	2	2	2		1						2	2	3

Syllabus							
Unit	Contonto						
No.	Contents						
Ι	Introduction to Artificial Intelligence: What is AI, Foundations of AI,	CO1					
	Goals of AI, and Applications of AI.						
II	Machine Learning: Definition, Learning Methods: Supervised Learning,	CO2					
	Unsupervised Learning, Semi-Supervised Learning, Reinforcement						
	Learning.						
III	Machine Learning Applications:						
	Computer vision, Speech Recognition, Natural Language Processing,						
	Decision Making process.						
IV	Deep Learning: Basics of Deep Learning, Machine Learning Vs Deep	CO4					
	Learning, Fundamental Deep Learning Algorithm- Convolution Neural						
	Network (CNN).						
V	Deep Learning Applications:						
	Computer vision, Speech Recognition, Natural Language Processing,						
	Decision Making process.						

Text Books

- **1.** Artificial Intelligence: A Modern Approach, Stuart Russell and Norvig, Third Edition, 2015, Pearson Education. (Unit-1)
- 2. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, 2012, MIT Press. (Unit-2&3)
- **3.** Deep Learning (Adaptive Computation and Machine Learning series), Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach, 2017, MIT Press. (Unit-4&5)

e-Resources & other digital material

1. https://swayam.gov.in/nd1_noc19_cs52/preview

- 2. https://swayam.gov.in/nd1_noc19_cs85/preview
- 3. https://emerj.com/ai-sector-overviews/machine-learning-healthcare-applications/

DESIGN THINKING & PRODUCT INNOVATION

Course code	19ES1302	Year	II	Semester	Ι
Course	Engineering	Branch	EEE	Course Type	Theory
category	Science		LLL	course 19pe	Theory
Credits	2	L-T-P	2-0-0	Prerequisites	Nil
Continuous		Semester			
Internal	30	End	70	Total marks	100
Evaluation		Evaluation			

	Course outcomes							
Upon	Upon successful completion of the course the student will able to							
CO1	CO1 Explain the principles of design thinking and its approaches							
CO2	Identify the empathy, define phases in human centred design problems							
CO3	Understand the idea generation, prototype and testing in design thinking context							
CO4	Apply design thinking techniques for product innovation							
CO5	Use design thinking in business process models							

Co	Contribution of course outcomes towards achievement of program outcomes & strength of correlation 1:Slight (low), 2: Moderate (medium) 3: Substantial (High)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			3			1						1		2
CO2			3	2		1			2	2		1		2
CO3			3	2		1			3	2		1		2
CO4			3	2		1			2	2		1		2
CO5			3	2		1			2	2	1	1		2

Syllabus						
Unit no	Contents	Mapped CO				
Ι	Introduction to Design Thinking: An insight into Design, origin of Design thinking, Design thinking Vs Engineering thinking, importance of Design thinking, Design Vs Design thinking, understanding Design thinking and its process models, application of Design thinking.	CO1				
П	Empathize In Design Thinking: Human-Centred Design (HCD) process - Empathize, Define, Ideate, Prototype and Test and Iterate. Role of Empathy in design thinking, methods and tools of empathy, understanding empathy tools. Explore define phase state users' needs and problems using empathy methods.	CO2				
III	Ideation, Prototyping And Testing: Ideation methods, brain storming, advantages of brain storming, methods and tools of ideations, prototyping and methods of prototyping, user testing methods, Advantages and disadvantages of user Testing/ Validation.	CO3				
IV	Product Innovation: Design thinking for strategic innovation, Definition of innovation, art of innovation, teams for innovation, materials and innovation in materials, definition of product and its classification. Innovation towards product design Case studies.	CO4				
V	Design Thinking In Business Processes:	CO5				

Design Thinking applied in Business & Strategic Innovation, Design Thinking	
principles that redefine business – Business challenges: Growth, Predictability,	
Change, Maintaining Relevance, Extreme competition, Standardization. Design	
thinking to meet corporate needs.	

Text Books:

1. Idris Mootee, "Design Thinking for Strategic Innovation", John Wiley & Sons (2013).

2. "Change by design", Tim Brown, Harper Collins, 2009

3. "Design Thinking- The Guide Book" – Facilitated by the Royal Civil service Commission, Bhutan

4. Engineering design by George E Dieter

Reference Books

1. 101 Design Methods: A Structured Approach for Driving Innovation in Your Organization by Vijay Kumar

2. Human-Centred Design Toolkit: An Open-Source Toolkit To Inspire New Solutions in the Developing World by IDEO

Additional Learning Resources

https://www.interaction-design.ora/literature/topics/design-th/nking

 $\underline{https://www.interaction-design.prq/literature/article/how-tq-<\!eve'op-an-empath\capproach-in-design-thinking}$

ELECTRICAL CIRCUIT ANALYSIS

Course Code	19EE3301	Year	II	Semester	Ι
Course Category	Program Core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisite	BEEE (19ES1101)
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes									
Upon su	uccessful completion of the course, the student will be able to									
CO1	Understand the concepts of single phase AC circuits, AC Power Analysis, resonance and									
	circuit theorems.									
CO2	Explain magnetic coupled circuits and different configurations of three phase circuits.									
CO3	Apply circuit analysis concepts & theorems to solve electrical networks.									
CO4	Analyze two port network parameters and three phase circuits.									
CO5	Analyze the steady state behavior, time response of electrical networks.									

(Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2										1	3	2
CO2	2	2										1	3	2
CO3	3	2										1	3	2
CO4	2	3										1	3	2
CO5	2	3										1	3	2

	Syllabus	
Unit No.	Contents	Mapped CO
Ι	Sinusoids, Phase, Phase difference, Phasors, phasor relationships for circuit elements. Complex and polar form representations, J-notation, Effective values of current and voltage. Instantaneous power, average power, Apparent power, real power, reactive power, power triangle, complex power, power factor. Steady state analysis of RL, RC and RLC circuits with simple examples.	CO1 CO5
Π	Resonance: Series resonance, Parallel resonance, bandwidth, quality factor. Super Mesh and Super Node, Reciprocity theorem, Millman's theorem, Compensation theorem and Tellegen's theorem.	CO1 CO3
III	Transient Analysis: Time response of RL, RC, RLC series circuits for Zero input, Step input, sinusoidal excitation - Initial conditions-solution approach using differential equation and Laplace transforms.	CO5
IV	Magnetically coupled circuits, Self Inductance, Mutual Inductance, Coupling coefficient, Dot convention.	CO2 CO4

	Two port networks - impedance parameters, admittance parameters, Hybrid	
	parameters and Transmission parameters, relationships between parameters.	
V	Three –phase circuits: Phase sequence, Relation between line and phase	
	voltages and currents in balanced systems – Analysis of balanced three phase	000
	circuits - two wattmeter method for measurement of active & reactive	CO2 CO4
	power, measurement of three phase reactive power using one wattmeter	C04
	method.	
	Learning Resources	
Text	Books	
1.	Van Valkenburg M.E, 'Network Analysis', 3/e, Prentice Hall India .	
2.	William H. Hayt Jr., Jack E. Kemmerly, 'Engineering Circuit Analysis', 8/e, N	IcGraw
	Hill.	
3.	Charles K.Alexander, Mathew N.O.Sadiku, "Fundamentals of Electric Circuits	s" (Fifth
	Edition), Tata McGraw-Hill.	
Refe	rence Books	
1.	Sudhakar and Shyammohan S Palli, Circuits and Networks: Analysis and Synth	lesis,
	Fifth Edition, McGraw-Hill Education.	
2.	Syed A.Nasar, 3000 solved problems in Electric Circuits, 1st Edition, Schaum's	outline
	series McGraw-Hill Professional.	
3.	A.Chakrabarti, Circuit Theory – Analysis and Synthesis', 7/e, Dhanpat Rai an	d
	Company.	
e- Res	ources & other digital material	
1.	https://nptel.ac.in/courses/108/104/108104139/	
2.	https://nptel.ac.in/courses/108/105/108105112/	

ELECTRONIC DEVICES AND AMPLIFIER CIRCUITS

Course Code	19EE3302	Year	II	Semester	Ι
Course	Program	Branch	EEE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	BEEE
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Characterize and analyze BJT amplifiers at low and high frequencies.
CO2	Determine MOSFET amplifier performance at low and high frequencies.
CO3	Adapt different models of BJT and MOSFET circuits for improving the IC
	performance.
CO4	Design single stage and multistage differential amplifiers using MOSFET.

Mapping	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1-W	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
* - A	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2			1	1	1		2	2	1
CO2	3	3	2	2	2			1	1	1		2	2	1
CO3	3	3	2	2	2			1	1	1		2	2	1
CO4	3	3	2	2	2			1	1	1		2	2	1

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	Bipolar Junction Transistors: Device structure and physical operation, current-voltage characteristics, the BJT as an amplifier and as a switch, BJT circuits at dc, biasing in BJT amplifier circuits, small signal operation and models.	CO1
II	MOS Field-Effect Transistors: Device structure and physical operation, current-voltage characteristics, MOSFET circuits at dc, the MOSFET as an amplifier and as a switch, biasing in MOS amplifier circuits, small signal operation and models.	CO2
III	IC Design Philosophy, Comparison of the MOSFET and the BJT, IC biasing- current sources, current mirrors and current-steering circuits, current-mirror circuits with improved performance.	CO3
IV	Single Stage MOSFET Amplifiers: Estimating 3dB frequency of amplifiers, Basic MOSFET amplifier configurations, MOSFET internal capacitances and high frequency model. Low Frequency and High Frequency Response of Common Source, Common Gate and Common Drain Amplifiers.	CO2
V	Differential Amplifiers: The MOS differential pair, small-signal operation of the MOS differential pair, other non-ideal characteristics of MOS differential	CO4

amplifier, the MOS differential amplifier with active load, multistage MOS	
amplifiers.	

Text Books

1. Adel S. Sedra, Kenneth C. Smith, Arun N. Chandorkar, Microelectronic Circuits, 6/e, Oxford University Press, 2013.

Reference Books

1. Behzad Razavi, Fundamentals of Microelectronics, 2/e, Wiley Student Edition, 2013.

2. Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuits Theory, 10/e, Pearson Education, 2009.

3. Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2/e, Pearson Education, 2008.

e- Resources & other digital material

http://www.faadooengineers.com/threads/4615-Electronic-Devices-and-Circuit-

Theory-Boylestad-and-Nashelsky

https://docplayer.net/53934331-J-b-gupta-electronic-devices-and-circuits.html

SIGNALS AND SYSTEMS

Course Code	19EE3303	Year	II	Semester	Ι
Course	Program	Branch	EEE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes									
Upon	successful completion of the course, the student will be able to									
CO1	Recognize different characteristics of signals and systems.									
CO2	Determine the response of LTI system to any arbitrary input signal using convolution.									
CO3	Resolve continuous-time signals in frequency domain using Fourier series and Fourier									
	transform.									
CO4	Analyse discrete-time signals and systems using DTFT.									
CO5	Apply the concepts of Laplace transform/Z-transform to analyze continuous-									
	time/discrete-time signals in complex plane.									

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2							2	2	1
CO2	3	3	3	2	2							2	2	1
CO3	3	3	2	2	2							2	2	1
CO4	3	3	3	2	2							2	2	1
CO5	3	3	2	2	2							2	2	1

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	Signals and Systems: Continuous-time and Discrete-time signals, Transformations of the independent variable, Exponential and Sinusoidal signals, The unit impulse and unit step functions, Continuous-time and	CO1
	Discrete-time systems, Basic System properties.	
II	Linear Time Invariant Systems(LTI systems): Discrete-time LTI systems, The convolution sum, Continuous time LTI systems, The convolution Integral, Properties of Linear Time-Invariant Systems.	CO2
III	Fourier analysis of Continuous Time Signals and Systems: Fourier series representation of continuous time periodic signals, convergence of the Fourier series, Properties of continuous-time Fourier series. The Continuous-Time Fourier Transform: The Fourier transform for periodic signals. Properties of the Continuous-time Fourier transform, Systems characterized by linear constant-coefficient differential equations.	CO3
	Fourier analysis of Discrete Time Signals and Systems: The Discrete-Time Fourier Transform, Properties of the Discrete-time Fourier transform, The	CO4

IV	Fourier transform for periodic signals. Systems characterized by linear constant-coefficient difference equations.	
V	Analysis of Continuous time and Discrete time signals using Laplace Transform and Z Transform: The Laplace Transform: The Region of convergence for Laplace transforms, the Inverse Laplace transform, Properties of the Laplace transform. The Z-Transform: The Region of Convergence for the Z-transform, The Inverse Z-transform, Properties of the Z-transform.	CO5

Text Books

1.Alan V. Oppenheim, Alan S. Wilsky with S.HamidNawab, 'Signals and Systems', 2/e, Pearson Education, 1997.

Reference Books

- 1. Bhagawandas P. Lathi, 'Linear Signals and Systems', Oxford University Press, 2009.
- 2. Simon Haykin, Barry Van Veen, 'Signals and Systems', 2/e, Wiley Student Edition.
- 3. Signals and Systems using MATLAB, Kindle Edition, Luis Chaparro

e- Resources & other digital material

- 1. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20and %20System/TOC-M1.htm
- 2. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20and %20System/Course%20Objective.htm.
- 3. <u>http://www.stanford.edu/~boyd.ee102</u>
- 4. http://www.ece.gatech.edu/users/bonnie/book
- 5. http://ocw.mit.edu

CONSTITUTION OF INDIA

Course Code	19MC1302	Year	II	Semester	Ι
Course	Mandatory	Branch	EEE	Course Type	Theory
Category					
Credits	-	L-T-P	3-0-0	Prerequisites	Nil
Continuous	100	Semester End	-	Total Marks:	100
Internal		Evaluation:			
Evaluation:					

Unit	Contents
No.	
Ι	Introduction to Indian Constitution: Constitutional history, constituent assembly, salient
	features of the constitution, significance of preamble, amending process of the constitution.
II	Rights and Duties: Citizenship, fundamental rights and directive principles, fundamental
	duties.
III	Union Government: President and vice president, election, removal and powers, prime
	minister and council of ministers, parliament, supreme court, union, state relations,
	emergency provisions.
IV	State and Local Governments: Governor, state legislature, assembly and council, chief
	minister and council of ministers, high court, rural and urban local governments with special
	reference to 73rd and 74th constitutional amendment acts.
V	Other Constitutional and Statutory Bodies: Comptroller and auditor gen-eral, election
	commission, finance commission, attorney general and advocate general, union public
	service commission (UPSC), state public service commissions (SPSCs), tribunals, national
	human rights commission (NHRC).

Learning Resources
Text Books
1. J. C. Johari, Indian Government and Politics, Vishal Publications, Delhi, 2009.
2. M. V. Pylee, Introduction to the Constitution of India, 5/e, Vikas Publishing House,
Mumbai, 2007.
Reference Books
1. D.D. Basu, Introduction to the Indian Constitution, 21/e, Lexis Nexis, Gurgaon, India, 2011.
2. Subhas C. Kashyap, Our Constitution, 2/e, National Book Trust India, New Delhi, 2013.

AI TOOLS LAB

Course Code	19ES1351	Year	II	Semester	Ι
Course Category	ES	Branch	EEE	Course Type	Practical
Credits	1	L-T-P	0-0-2	Prerequisite	-
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

Course Outcomes								
Upon s	Upon successful completion of the course, the student will be able to							
CO1	Apply various pre-processing techniques on different datasets.							
CO2	Construct Machine learning programs for Supervised, Unsupervised and Semi							
	supervised learning models.							
CO3	Develop Deep learning programs for Supervised & Unsupervised learning models.							
CO4	Identify and Apply Artificial Intelligence concepts to solve real world problems.							

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength													
of correlations (3: High, 2: Medium, 1: Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1	2					1		2	1	2
CO2	3	3	2	1	2					1		2	1	2
CO3	3	3	2	1	2					1		2	1	2
CO4	2	2	3	1	2		1			1		2	1	3

	Syllabus								
Exp No.	Contents	Mapped CO							
1	Apply Data pre-processing techniques.	CO1							
2	Construct a Machine Learning model using supervised learning method.	CO2							
3	Construct a Machine Learning model using Unsupervised learning method.	CO2							
4	Construct a Machine Learning model using Semi supervised learning method.	CO2							
5	Develop a Deep Learning model using supervised learning method.	CO3							
6	Develop a Deep Learning model using Unsupervised learning method.	CO3							
7	Apply a Convolutional Neural Network for Image Classification.	CO3							
8	Build an AI application.	CO4							

Text Books

- 1. Artificial Intelligence: A Modern Approach, Stuart Russell and Norvig, Third Edition, 2015, Pearson Education.
- 2. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, 2012, MIT Press
- 3. Deep Learning (Adaptive Computation and Machine Learning series), Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach, 2017, MIT Press.

e-Resources & other digital material

- 1. https://github.com/atinesh-s/Coursera-Machine-Learning-Stanford
- 2. <u>https://github.com/Kulbear/deep-learning-coursera</u>

DESIGN THINKING & PRODUCT INNOVATION LAB

Course code	19ES1352	Year	II	Semester	Ι
Course category	Engineering science	Branch	Common to all	Course Type	Lab
Credits	2	L-T-P	0-0-2	Prerequisites	Nil
Continuous Internal Evaluation	25	Semester End Evaluation	50	Total marks	75

	Course outcomes								
Upon	Upon successful completion of the course the student will able to								
CO1	Develop a mind maps for design thinking process								
CO2	Prepare empathy maps and journey maps for problems.								
CO3	Construct mock-up models through ideation and innovation techniques								
CO4	Use software for design thinking problems								

Contr	Contribution of course outcomes towards achievement of program outcomes & strength of correlation													
1: Slight (low), 2: Moderate (medium) 3: Substantial (High)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2										PSO2			
CO1			2	2					3					2
CO2			2	2					3					2
CO3			2	2					3					2
CO4			2	2					3					2

Any 12 of the following:

Syllabus								
Exp No	List of Experiments	Mapped CO						
1	Design a mind map of design thinking	CO1						
2	Thirty circle Exerciseideation	CO3						
3	Prepared a toothpick bridge (mock-up model)	CO1,CO3						
4	Prepared a marble maze (mock up model)	CO1,CO3						
5	Build a wind power car (mock up model)	CO1,CO3						
6	Make a hydraulic elevator (mock up models)	CO1,CO3						
7	Construct empathy maps for a given case study-1	CO2						
8	Develop customer journey map for a given case	CO2						
9	Construct empathy maps for a given case study-2	CO2						
10	Develop customer journey map for a given case -2	CO2						
11	Make a paper prototype for user testing (mock-up model)	CO2						
12	Design and development of cell phone wallet (mock-up model)	C01,C02,C03						

13	Design thinking using sprintbase software	CO4
14	Design thinking using sprintbase software	CO4

Learning Resources						
Text Books:						
1. Idris Mootee, "Design Thinking for Strategic Innovation", John Wiley & Sons (2013).						
2. "Change by design", Tim Brown, Harper Collins, 2009						
3. "Design Thinking- The Guide Book" – Facilitated by the Royal Civil service Commission,						
Bhutan						
4. Engineering design by George E Dieter						
Reference Books						
1. 101 Design Methods: A Structured Approach for Driving Innovation in Your Organization by						
Vijay Kumar.						
2. Human-Centered Design Toolkit: An Open-Source Toolkit To Inspire New Solutions in the						
Developing World by IDEO						

Additional Learning Resources
https://www.interaction-desiqn.ora/literature/topics/desiqn-th/nkinq

https://www.interaction-design.prq/literature/article/how-tq-<eve'op-an-empath\capproach-in-design-thinking

Course Code	19EE3351	Year	II	Semester	Ι
Course Category	Program Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisite	BEEE Lab (19ES1151)
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

ELECTRICAL CIRCUIT ANALYSIS LAB

	Course Outcomes						
Upon s	successful completion of the course, the student will be able to						
CO1	Inspect network theorems.						
CO2	Plot the frequency response of series RLC circuits and their resonance conditions.						
CO3	Determine two port network parameters and self, mutual inductance of coupled						
	circuits.						
CO4	Analyze three phase power drawn by balanced circuits.						
CO5	Simulate and analyze electrical circuits using Pspice tools.						

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		2					1			1	3	2
CO2	3	3		2					1			1	3	2
CO3	3	3		2					1			1	3	2
CO4	3	3		2					1			1	3	2
CO5	3	3		2	2				1			2	3	2

Syllabus					
Expt.	Contents	Mapped			
No.		CO			
	PART-A (Any Eight Experiments)				
1	Verification of Maximum Power Transfer Theorem	CO1			
2	Verification of Reciprocity Theorem				
3	Verification of Millman's Theorem				
4	Verification of Compensation Theorem				
5	Series and Parallel Resonance with frequency variations	CO2			
6	Determination of Self, Mutual Inductances and Coefficient of coupling	CO3			
7	Determination of impedance and admittance Parameters				
8	Determination of Transmission and hybrid parameters				
9	Measurement of Active & Reactive Power using two wattmeter method	CO4			
10	Measurement of Reactive Power using one wattmeter method				
PART-B: PSPICE SIMULATION OF ELECTRIC CIRCUITS (Any Two Experim					
11	Mesh and Nodal Analysis using PSpice	CO5			
12	Verification of Thevenin's and Norton's Theorem using PSpice	0.05			

13	3 Verification of Superposition theorem using PSpice				
14	4 DC Transient response using PSpice				
15	5 AC Transient response using PSpice				
	Learning Resources				
Text Books					
1.	Charles K.Alexander, Mathew N.O.Sadiku, "Fundamentals of Electric Circuits"				
	(Fifth Edition), Tata McGraw-Hill.				
2.	Sudhakar and Shyammohan S Palli, Circuits and Networks: Analysis and Synthese	sis, Fifth			
	Edition, McGraw-Hill Education.				

ELECTRONIC DEVICES AND AMPLIFIER CIRCUITS LAB

Course Code	19EE3352	Year	II	Semester	Ι
Course Category	Program Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

	Course Outcomes					
Upon s	successful completion of the course, the student will be able to					
CO1	Measure the device small signal parameters of BJT and MOSFET.					
CO2	Design, simulate and implement BJT and MOSFET amplifiers for the given					
	specifications.					
CO3	Construct NMOS differential amplifier circuits for the given specifications.					
CO4	Fabricate PCB for multivibrator circuits using BJT.					

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1-W	tion	2-M	edium	correl	ation	3-5	Strong	correl	ation					
* - A	* - Average value indicates course correlation strength with mapped PO													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	3			1	1	1	2	2	2	2
CO2	3	3	2	3	3			1	1	1	2	2	2	2
CO3	3	3	2	3	3			1	1	1	2	2	2	2
CO4	3	3	2	3	3			1	1	1	2	2	2	2

	Syllabus						
Expt. No.	Contents	Mapped CO					
1	Voltage-Current Characteristics of BJT / Measurement of scale current & common emitter current gain	CO1					
2	Measurement of small signal parameters (g_m, r_o, r_π, r_e) of BJT at a given operating (Q) point .	CO1					
3	Design, Simulate and Implement BJT amplifier and Inverter logic gate	CO1					
4	Voltage-Current Characteristics of MOSFET / Measurement of threshold voltage	CO1					
5	Measurement of small signal parameters (g_m, r_o, g_{mb}) of MOSFET at a given operating point.	CO1					
6	Design and simulation of basic NMOS current mirror, cascode NMOS current mirror and current steering circuit	CO2					
7	Design and Simulation of Common Source Amplifier for Gain, Power dissipation requirements	CO2					
8	Design and Simulation of Common Drain Amplifier (Voltage Buffer) for Gain, Output Impedance, Level Shift requirements	CO2					

9	Analysis and Verification of Basic NMOS Differential Pair for Gain, Input				
	Common Mode Range, Maximum Input differential voltage requirements	COS			
10	Design and Simulation of Differential Amplifier with active current mirror load				
	for gain, power dissipation CMRR requirements.	03			
11	Design, Simulation and PCB fabrication of a BJT Multivibrator Circuit	CO4			

Text Books

1. Adel S. Sedra, Kenneth C. Smith, Arun N. Chandorkar, Microelectronic Circuits, 6/e, Oxford University Press, 2013.

Reference Books

1. Behzad Razavi, Fundamentals of Microelectronics, 2/e, Wiley Student Edition, 2013.

2. Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuits Theory, 10/e, Pearson Education, 2009.

3. Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2/e, Pearson Education, 2008.

e- Resources & other digital material

https://www.researchgate.net/publication/314154179 Electronics Lab Manual

http://abexp.aiaiai.dk/electronic devices and circuits lab manual bgpltd.pdf

(110	(itemeticine merriods; incombient i much similaries)							
Course Code	19BS1401	Year	II	Semester	II			
Course Category	Basic Sciences Course	Branch	EEE	Course Type	Theory			
Credits	3	L-T-P	3-0-0	Prerequisites	NIL			
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100			

ENGINEERING MATHEMATICS-IV (NUMERICAL METHODS, PROBABILITY AND STATISTICS)

	Course Outcomes					
After s	accessful completion of the course, the student will be able to					
CO1	Determine approximate root of an equation and apply different methods to calculate					
	the value of interpolating polynomial at given point					
CO2	Evaluate integrals making use of quadrature formulae and solve ordinary differential					
	equations by Euler's, R.K. methods.					
CO3	Use discrete and continuous distribution models to calculate probabilities for appropriate					
	random variables.					
CO4	Understand and apply the basic concepts of inferences concerning means and					
	proportions to the decision making process.					
CO5	Interpret hypotheses test for small samples.					

(Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Stren	gth of	corre	lation	s (3: E	ligh, 2	2: Med	lium, 1	: Low)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2											2	
CO2	3	2											2	
CO3	3	2											2	
CO4	3	2											2	
CO5	3	2											2	

Syllabus					
Unit	Contents	Mapped			
No.		COs			
	Solution to Algebraic and Transcendental Equations				
	Solution of algebraic and transcendental equations: Bisection method				
т	and Newton-Raphson's method.	CO1			
1	Finite differences, relation between operators, interpolation using	COI			
	Newton's forward and backward difference formulae. Interpolation				
	with unequal intervals: Lagrange's formula.				
	Numerical Differentiation and Integration				
	Numerical Differentiation- Newton's forward and backward difference				
Π	formulae, numerical integration- trapezoidal rule, Simpson's $\frac{1}{3}^{rd}$ and	CO2			
	$\frac{3\text{th}}{8}$ rules. Ordinary differential equations: Euler's, modified Euler's,				
	Runge-Kutta method of fourth order for solving first order equations.				

ш	Probability Random variables (discrete and continuous), probability density functions, probability distribution: Binomial - Poisson - normal distribution and their properties (mathematical expectation and variance).	CO3
IV	Testing of Hypothesis Formulation of null hypothesis, critical regions, level of significance. Large sample tests: Test for single proportion, difference of proportions, test for single mean and difference of means.	CO4
V	Small Sample Tests Student's t-distribution (single mean, two means and paired t-test), Testing of equality of variances (F-test)	CO5

Learning Recourse(s)					
Text Book(s)					
 B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019. T.K.V.Iyenger, Krishna Gandhi and others, Probability & Statistics, S. Chand. 					
Reference Book(s)					
1. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.					
2. Miller and Freund's, Probability and Statistics for Engineers, Pearson.					
e- Resources & other digital material					
1. https://www.nptel.ac.in/courses/111/107/111107105/					
2. https://www.nptel.ac.in/courses/111/105/111105041/					
3. https://www.nptel.ac.in/courses/111/106/111106112/					
4. https://www.nptel.ac.in/courses/111/105/111105090/					

LIFE SCIENCES FOR ENGINEERS

Course Code	19BS1404	Year	II	Semester	II
Course Category	Basic Sciences	Branch	EEE	Course Type	Theory
Credits	2	L-T-P	2-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes						
After s	After successful completion of the course, the student will be able to						
CO1	Apply the principles of biology to create tangible and economically viable engineering goods.						
CO2	Know and illustrate bio-engineering field.						
CO3	Analyse the importance of bioenergetics and apply the knowledge to improve the living standards of societies.						
CO4	Gain basic knowledge in genetic engineering.						
CO5	Design and develop new technologies in genetic industrial field.						

C	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Streng	gth of (correla	ations	(3: Hi	gh, 2:	Medi	um, 1:	Low)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3						2							
CO2	3						2							
CO3	3						2							
CO4	3						2							
CO5	3						2							

	Syllabus	
Unit	Contents	Mapped
NO		POS
Ι	Introduction to Biology	CO1
	Comparison of Biological organisms with manmade systems- eye and camera,	CO3
	flying bird and aircraft. Classification of living organisms- Cellular basis of life,	CO5
	differences between prokaryotes and eukaryotes, classification on the basis of carbon	
	and energy sources	
II	Bio-molecules	CO1
	Structure and functions of proteins and nucleic acids, hemoglobin, antibodies.	CO2
	Enzymes-Industrial applications, Fermentation and its industrial applications.	
III	Bioenergetics and Respiration	CO2
	Glycolysis and TCA cycle, Electron transport chain and oxidative phosphorylation,	CO3
	Mechanism of photosynthesis. Human physiology.	
IV	Genetic Engineering	CO2
	Mendel's laws, gene mapping, Mitosis and Meiosis, Epistasis, single gene	CO4
	disorders in humans. Genetic code.	CO5
V	Recombinant DNA Technology	CO1
	Recombinant vaccines, transgenic microbes, plants and animals. Animal	CO4
	cloning, biosensors, biochips.	CO5

Lea	Learning Resources					
Tex	Text Books					
1.	N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: Aglobal					
	approach", Pearson Education Ltd, 2018.					
2.	Arthur T Johnson, Biology for Engineers, CRC press, 2011.					
Ref	erence Books					
1.	Alberts et al., The molecular biology of the cell, 6/e, Garland Science, 2014.					
2.	E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John					
	Wileyand Sons, 2009.					

3. John Enderle and Joseph Bronzino Introduction to Biomedical Engineering, 3/e, 2012.

ELECTRICAL MACHINES-I

Course Code	19EE3401	Year	II	Semester	II
Course Category	Program Core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisite	Basic Electrical and Electronics Engineering
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to						
CO1	Understand the basic concepts of magnetic circuits, construction, operation of D.C machines, single phase transformer, auto transformer and three phase transformer.						
CO2	Classify the performance characteristics of D.C machines, single phase transformer, auto transformer and three phase transformer.						
CO3	Analyze the speed control methods and testing techniques of D.C machines.						
CO4	Analyze the testing techniques of single phase transformer and three phase transformer.						
CO5	Analyze the different configurations of D.C machines, single phase transformer, auto transformer and three phase transformer.						

0	Contri	bution	of Co	ourse (Outco	mes to	wards	s achie	eveme	nt of P	rogran	n Outo	comes	&
			Stren	gth of	corre	lation	s (3:H	igh, 2:	: Medi	ium, 1	:Low)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2												2	
CO2	2	2				2		1			1	2	2	2
CO3	2	2				2		1			1	2	2	2
CO4	2	2				2		1			1	2	2	2
CO5	2	2				2		1			1	2	2	2

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	Magnetic circuits: Definition of magnetic quantities, analysis of magnetic circuits- series, parallel, leakage flux, comparison of magnetic and electric circuits. B-H curve of magnetic materials; flux- linkage vs current characteristic of magnetic circuits; Energy in Magnetic Systems-Field energy and mechanical force-singly and doubly excited magnetic field systems- forces and torques in systems with electromagnets.	CO1
II	DC Generators: Principle of operation, armature winding - lap and wave	CO1
	windings, separately and self-excited generators, armature reaction-cross	CO2
	magnetization and demagnetization AT/pole, compensating winding,	CO5
	commutation process, methods of improving commutation, voltage build-up	

in a shunt generator, critical field resistance and critical speed, internal and external characteristics of shunt, series and compound generators, parallel					
operation.					
III DC Motors: Principle of operation, characteristics of shunt, series and	CO1				
compound motor, speed control methods, 4-point starter- design of starter	CO2				
elements, losses in DC machine, testing of DC machine – No load test, load	CO3				
test, Hopkinson's test, retardation test and field test.					
IV Single-Phase Transformers: Principle of operation, ideal transformer,	CO1				
transformer under no load and on load with Phasor diagrams, equivalent	CO2				
circuit, condition for maximum efficiency and voltage regulation, all day	CO4				
efficiency. Determination of equivalent circuit parameters, efficiency at different	CO5				
loadings and regulation using O.C and S.C test, polarity test, back-to-back test,					
separation of hysteresis and eddy current losses, Parallel operation of single-					
phase transformers.					
V Autotransformers - construction, principle of operation, applications and	CO1				
comparison with two winding transformer.	CO2				
Three-Phase Transformers: Types of connection and their comparative	CO4				
features, Scott connection, Tap-changing transformers - No- load and on-	CO5				
load tap-changing of transformers.					
Learning Resources					
Text Books					
1. Dr.P. S Bimbhra, — Electrical Machinery-7/e -Khanna Publishers,2018.					
2. I.J. Nagarath and D.P. Kothari, —Electric Machinesl, 4/e, McGraw Hill, 2010.					
3. A.E. Fitzgerald, Charles Kingsley Jr. Stephen D. Umans, - Electric Machinery,					
7/e, McGraw,Hill.,2013.					
Reference Books					
1. J.B. Gupta, —Theory and performance of Electrical Machines- Katson Publishers.					
2. A.E. Clayton and N N Hancock, - Performance and Design of DC Machines , Oxford	d,1987				
3. Abhijit Chakrabarti, Sudipta Debnath, — Electrical Machines, 1/e, Mc Graw Hill, 2015.					
4. S.J. Chapman, —Electric Machine Fundamentals, 5/e, McGraw Hill, 2011.					
e- Resources & other digital material					
1. <u>https://nptel.ac.in/courses/108/105/108105155/</u>					

DIGITAL LOGIC DESIGN

Course Code	19EE3402	Year	II	Semester	II
Course	Program	Branch	EEE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes						
Upon successful completion of the course, the student will be able to							
CO1	Compare the various features of Binary codes.						
CO2	Simplify Boolean functions using K-map & implement them using Logic gates.						
CO3	Design and Realize various Combinational circuits for the given specifications.						
CO4	Analyze and Design Clocked Sequential circuits.						
CO5	Construct Logic gates using CMOS.						

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

* - Average	e value	maica	lies co	urse co	Inelati	on sue	ngui w	/Iui Illi	ipped I	PO				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2							1	2	1
CO2	3	3	2	2	2							1	2	1
CO3	3	3	2	2	2							1	2	1
CO4	3	3	2	2	3							1	2	1
CO5	3	3	2	2	3							1	2	1

	Syllabus						
Unit	Contents	Mapped					
No.		CO					
Ι	Binary Codes: Signed Binary Numbers, Complements, Binary Codes,	CO1					
	Error detection and correction code, Binary Logic. Boolean Algebra:						
	Basic definitions, Axiomatic definition of boolean algebra, Basic theorems						
	and properties of boolean algebra, Boolean functions, Canonical and						
	standard forms, Digital logic gates.						
II	Simplification of Boolean functions: The map method, Four-variable	CO2					
	map, Five-variable map, Tabulation Method, Product of sums						
	simplification, Don't-care conditions, NAND and NOR implementation,						
	Exclusive-or function.						
III	Combinational Logic: Combinational circuits, Analysis procedure,	CO3					
	Design procedure, Binary Adder-Subtractor, Decoders, Encoders,						
	Multiplexers, De-Multiplexer						
	Memories: Random-access memory, Memory decoding, Read-only						
	memory.						

IV	Synchronous Sequential Logic: Sequential circuits, Latches, Flip-Flops,	CO4
	Analysis of clocked sequential circuits, State reduction and assignment,	
	Design procedure	
V	Registers and Counters: Registers, Shift registers, Ripple counters,	CO5
	Synchronous Counters, Ring counter.	
	Digital Integrated circuits : Special characteristics, Complementary MOS	
	(CMOS), CMOS transmission gate circuits.	

Text Books

1. Michael D. Ciletti, M. Morris Mano, Digital Design, 4/e. Pearson Education, 2007. **Reference Books**

1. ZviKohavi, Switching and Finite Automata Theory, 2/e, Tata McGraw-Hill Education, 2008.

- 2. John F. Wakerly, Digital Design Principles and Practices, 4/e, Pearson Education, 2008.
- 3. Frederick J. Hill and Gerald R. Peterson, Introduction to Switching Theory and Logic Design, 3/e, John Willey and Sons, 1981.
- 4. Charles Roth, Jr., Larry Kinney, Fundamentals of Logic Design, 7/e, Cengage Learning, India, 2013.

e- Resources & other digital material

1. http://www.ece.ubc.ca/~saifz/eece256.html

2. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Guwahati/digital_circuit /frame/index.html

ANALOG CIRCUITS

Course Code	19EE3403	Year	II	Semester	II
Course	Program	Branch	EEE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Design and analyze feedback amplifiers.						
CO2	Design and analyze Power amplifier and oscillator Circuits.						
CO3	Realize linear and non-linear circuits using op-amp						
CO4	Design and Understand various timing and filter circuits using 555 IC						
CO5	Compare the performance of various types of ADC and DAC Circuits						

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	3							2	3	2
CO2	3	3	2	2	3							2	3	2
CO3	3	3	2	2	3							2	3	2
CO4	3	3	2	2	3							2	3	2
CO5	3	3	2	2	3							2	3	2

Syllabus							
Unit	Contents	Mapped					
No.		CO					
Ι	Feedback Amplifiers: The general feedback structure, properties of	CO1					
	negative feedback, basic feedback topologies, the series-shunt feedback						
	amplifier, the series-series feedback amplifier, shunt-shunt and shunt-						
	series feedback amplifiers, determining loop gain.						
II	Oscillators: Basic principles of sinusoidal oscillators, op amp RC	CO2					
	oscillator circuits, LC and crystal oscillators. Power amplifiers:						
	Classification of output stages, class A output stage, class B output stage,						
	class AB output stage, Power Transistors.						
III	Operational Amplifiers: The ideal op amp, the inverting and non-	CO3					
	inverting configuration, difference and instrumentation amplifiers,						
	summing, scaling and averaging amplifiers, integrators, differentiators,						
	logarithmic amplifiers, V/I and I/V converters, Comparators and						
	waveform generators.						
IV	IC Timers: Introduction, operating modes of the 555 timer, terminals of	CO4					
	the 555 timer, free running mode and applications. Active Filter Design:						
	LPF, HPF, BPF, BEF, all-pass filters. Voltage reference circuits: Power						
	supplies: ripple removal and regulation.						

V	Data Converters: Digital to analog conversion process, voltage output	CO5
	DACs, multiplying DAC, DAC characteristics. Analog to Digital	
	Converters: integrating ADC, successive approximation ADC, Flash	
	converters: Principle of operation, Dual slope ADC, Remote control	
	applications, ADC characteristics.	

Text Books 1. Adel S. Sedra, Kenneth C. Smith, Arun N. Chandorkar, Microelectronic Circuits, 6/e, Oxford

University Press, 2013.2. D Choudhury Roy, Shail B. Jain, Linear Integrated Circuits, New Age International, 2003

3. Ramakanth Gayakward, Op-Amps and Linear Integrated Circuits, 4/e, Pearson Education, 2007

Reference Books

1. Behzad Razavi, Fundamentals of Microelectronics, 2/e, Wiley Student Edition, 2013.

- 2. R.F Coughlin, F.F Driscoll, Op-Amps and Linear Integrated Circuits, 6/e, Pearson Education, 2008.
- 3. Sergio Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata Mc-Graw Hill, 2002.

ELECTROMAGNETIC FIELDS

Course	19EE3404	Year	II	Semester	II
Code					
Course	Program	Branch	EEE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisite	Nil
Continuous		Semester		Total	
Internal	30	End	70	Marks:	100
Evaluation:		Evaluation:			

	Course Outcomes									
Upon s	Upon successful completion of the course, the student will be able to									
CO1	Define, understand and explain concepts on electrostatics, magnetostatics and time varying									
	fields.									
CO2	Apply basic laws and theorems to determine the electrostatic and magneto static fields.									
CO3	Analyze different parameters of static electric and magnetic fields.									
CO4	Calculate capacitance and inductance of common conductor configurations and energy									
	stored.									
CO5	Analyze time varying fields and compute the energy stored in electromagnetic fields.									

Contribution of Course Outcomes towards achievement of Program Outcomes											&			
	Strength of correlations (H:High, M: Medium, L:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2							1			1	1	
CO2	3	2							1			1	2	
CO3	3	3							1			1	2	
CO4	3	2							1			1	2	
CO5	3	3					~		2			1	2	
	•						Syllat	DUS						
Unit						C	ontent	s					M	apped
No.											CO			
Ι	Static Electric Field – I													
	Coulomb's law Electric field intensity Electrical field due to point										nt			
	charges Line Charges (Derivations Only) Infinite Einite and Circular										ar			
	Ding Surface charges (Derivations Only) – Infinite, Finite and Circular										ar			
	King, Surface charges (Derivations Uniy) – infinite sheet and Circular										ai	201		
	Disk.										C	201,		
	Electric Flux Density, Gauss law and applications of Gauss's Law to Point									nt C	202,			
	Charges, Infinite Line Charge, Infinite Sheet of Charge, Co-axial cable,									e, C	203			
	Spherical shell and Uniformly charged sphere. Divergence and										nd			
	Divergence theorem.													
	E	nergy	expen	ded in	movin	g a ch	arge in	an ele	ectric f	ïeld. A	bsolute	e Electr	ic	
	n	otentia	l Pote	ential d	ifferer	ice C	alculat	ion of	notent	ial diff	erence	for poi	nt	
		harges	Poter	ntial G	radien	t.		1011 01	potem	iui uiii	0101100	101 poi		
п	C C	totic L	, i otei Flootni			ι.								
ш	נ				1 — 11 			1	.f.I -	-1				
		oisson	s and		ce's e	quatio	ns, 30	iution	or Laj	place e	quation	15 1n O	ne	
	V	arıable	Elect	ric dip	ole, Di	ipole n	nomen	it, pote	ential a	nd elec	etric fil	ed due	to	
	a	n elec	tric di	pole,	Torqu	e on	an Ele	ectric	dipole	e in an	electi	ric fiel	d. c	101
	E	lectros	static 1	Energy	and and	Energ	y dens	sity. C	Current	t and c	current	densit	y, C	.01,
	Ohms Law in Point form, Continuity of current equation. Electric field inside dielectric material - concept of Polarization, Boundary conditions between conductor dielectric and two dielectric materials. Capacitance,	CO2, CO3, CO4												
--	---	-----------------------------	--	--	--	--	--							
	Capacitance of parallel plate, Spherical, Co-axial capacitors and parallel plates with Composite Dielectric.													
III	Static Magnetic Fields													
	 Biot - Savart Law, Magnetic Field Intensity (MFI), MFI due to straight current carrying filament, circular, square and solenoid current carrying loops. Magnetic flux and flux density. Ampere circuital Law, Applications of Ampere's circuital law to infinite sheet of current and a long current carrying filament. Point form of Ampere's circuital law. 	CO1, CO2, CO3												
IV	Magnetic Forces and Inductance													
	Force on a moving charge, Lorentz force equation, Force on a differential current element, Force between differential current elements, Magnetic boundary conditions, Magnetic dipole and dipole moment, a differential current loop as a magnetic dipole, Torque on a current loop placed in a magnetic field Inductances and mutual inductances, determination of self- inductance of a solenoid and toroid and mutual inductance between a straight long wire and a square loop wire in the same plane, energy stored and energy density in a magnetic field.	CO1, CO2, CO3, CO4												
V	Time Varying Fields													
	Faraday's law for Electromagnetic induction, Displacement current, Point form and Integral form of Maxwell's equations, Uniform plane waves, Wave equation solution of wave equation wave propagation through good	CO1, CO5												
	dielectric, good conductor, skin depth, Povnting Theorem.													
	Learning Resources													
Text	Books													
1. Ma 2. Wil Mc	 Mathew N. O. Sadiku "Elements of Electromagnetics," Oxford University Press, 2018 William H. Hayt, Jr. John A. Buck, <u>M Jaleel Akhtar</u> "Engineering Electromagnetics", McGraw-Hill, 9thEdition, 2020 													
Refer	rence Books													
1. A. Pramanik, "Electromagnetism - Theory and applications", PHI Learning Pvt. Ltd, 2 nd edition, New Delhi, 2008.														
2. A.]	2. A. Pramanik, "Electromagnetism-Problems with solution", Prentice Hall India, 2012.													
3. Joh	3. John D Kraus, " <i>Electromagnetics</i> ", McGraw Hill, 2003.													
e- Res	ources & other digital material													
1. <u>http</u>	ps://nptel.ac.in/courses/108/106/108106073/#													
2. <u>http</u>	ps://ocw.mit.edu/resources/res-6-001-electromagnetic-fields-and-energy-spring	-2008/												

ENVIRONMENTAL SCIENCES

Course	19MC1404	Year	II	Semester	II
Code					
Course	Mandatory	Branch	EEE	Course Type	Theory
Category	course				
Credits	0	L-T-P	3-0-0	Prerequisite	Nil
Continuous		Semester		Total	
Internal	100	End	0	Marks:	100
Evaluation:		Evaluation:			

	Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to						
CO1	Develop an awareness and knowledge on natural resource protection.						
CO2	Compile for the better future of environment in India which is based on many positive						
	factors like Biodiversity and ecosystems.						
CO3	Apply knowledge how to manage the harmful pollutants						
CO4	Identify solutions for global environmental problems for sustainable						
	environment.						
CO5	Create awareness among the youth on environmental acts; take part in						
	Environment impact assessment and management plans.						

(Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3						2							
CO2	3						2							
CO3	3						2							
CO4	3						2							
CO5	3						2							

SYLLABUS									
UNIT	Contents								
NO		COs							
Ι	INTRODUCTION TO ENVIRONMENT AND NATURAL	CO1							
	RESOURCES								
	Introduction to environment: Definition scope importance need for public								
	awareness. Natural resources: Renewable and non renewable resources,								
	natural resources and associated problems. Forest resources: Uses, Reasons								
	for over-exploitation, deforestation effects case studies. Water resources:								
	Use and over - utilization of surface and ground water, floods, drought,								
	conflicts over water, dams- benefits and problems. Mineral resources: Uses,								
	environmental effects of extracting and using mineral resources, case studies.								
	Food resources: World food problems, Impacts of overgrazing, effects of								
	modern agriculture, fertilizer-pesticide problems, water logging, salinity, case								
	studies. Energy resources: Growing energy needs, use of renewable and non								
	renewable energy sources, case studies.								
II	ECOSYSTEMS AND BIODIVERSITY	CO2							

	Structure components of ecosystem: Biotic and Abiotic components.	
	Functional components of an ecosystem: Food chains, Food webs,	
	Ecological pyramids, Energy flow in the ecosystem,	
	Ecological succession. Biogeochemical cycle: Nitrogen, carbon, Phosphorus	
	cycle.	
	Biodiversity: Definition, Levels of biodiversity: genetic, species and ecosystem	
	diversity. Bio-geographical classification of India, Values of biodiversity:	
	consumptive use, productive use, social, ethical, aesthetic and optional values.	
	India as a mega - diversity nation. Hot-spots of biodiversity. Threats to	
	biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts.	
	Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.	
III	ENVIRONMENTAL POLLUTION AND CONTROL	CO3
	Environmental Pollution: Definition, causes, effects and control measures:	
	Air Pollution, Water pollution, Soil pollution, Marine pollution, Thermal	
	pollution, Nuclear hazards, Solid waste Management, e-waste, Pollution case	
	studies.	
IV	SOCIAL ISSUES AND GLOBAL ENVIRONMENT PROBLEMS AND	CO4
	EFFORTS	
	From Unsustainable to Sustainable development. Urban problems related to	
	energy. Water conservation, rain water harvesting, watershed management,	
	Remote sensing and GIS methods. Environmental ethics: Issues and possible	
	solutions. Green building concept, Environmental Impact Assessment	
	Environmental Management Plan, Climate change: global warming, acid	
	rain, ozone layer depletion.	
V	HUMAN POPULATION AND ENVIRONMENT LEGISLATION	CO5
	Population growth,. Environment and human health. HIV/AIDS,. Value	
	Education. Women and Child Welfare. Role of Information Technology in	
	Environment and human health. Environment Legislation. Air (Prevention	
	and Control of Pollution) Act. Water (Prevention and Control of Pollution)	
	Act. Wildlife Protection Act. Forest Conservation Act. Environmental	
	Protection Act.	

Learning Resources

- 1. Anubha Kaushik and C.P. Kaushik, Text book of environmental studies New Age International Publisher (2014).
- 2. Erach Barucha, Text book of environmental studies for undergraduates courses, published by University Grants Commission, University Press (2005)
- 3. Anindita Basak, Environmental Studies. Pearson (2009)

Reference Books

Text Books

- 1. D.K. Asthana and Meera Asthana, A Text book of Environmental Studies, S. Chand (2010).
- 2. P.M Cherry Solid and Hazardous waste Management, CBS Publisher (2016).
- 3. Charles H. Ecclestion, Environmental Impact Assessment, CRC Press (2011).

LIFE SCIENCES FOR ENGINEERS LAB

Course Code	19BS1451	Year	II	Semester	II
Course Category	Basic Sciences	Branch	EEE	Course Type	Lab
Credits	1	L-T-P	0-0-2	Prerequisite	NIL
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

	Course Outcomes							
After su	After successful completion of the course, the student will be able to							
CO1	Understand basic facts and concepts in life sciences.							
CO2	Evaluate and explain different processes in industrial applications.							
CO3	Summarize the applications of various spheres in life sciences in relevance to future studies.							
CO4	Develop the ability to apply the principles of Mendalian laws and acquire problem solving skills.							

(Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3: High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3						2							
CO2	3						2							
CO3	3						2							
CO4	3						2							
CO5	3						2							

	Syllabus					
Expt.	Contents	Mapped				
No		CO				
1	Microscopy	CO1, CO3				
2	Dissect & mount different parts of plants using Microscope	CO1, CO3				
3	Estimation of Proteins by using Biuret method	CO1, CO2				
4	Estimation of enzyme activity.	CO1, CO2				
5	Estimation of chlorophyll content in some selected plants.	CO1, CO3				
6	Nitrogen Cycle: Estimation of Nitrates /Nitrites in soil by using	CO2,CO3				
	Spectrophotometer					
7	Mendal's laws	CO1, CO4				
8	Solve Problems based on Mapping .	CO2, CO4				

ELECTRICAL MACHINES-I LAB

Course Code	19EE3451	Year	II	Semester	II
Course Category	Program Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisite	Basic Electrical and Electronics Engineering Lab (19ES1151)
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

	Course Outcomes						
Upon successful completion of the course, the student will be able to							
CO1	Analyze the magnetization characteristics and performance of D.C generators.						
CO2	Classify the characteristics of DC motor and determine efficiency of D.C machine.						
CO3	Classify the characteristics and testing methods of single-phase transformers.						
CO4	Analyze the performance of three phase transformers.						

0	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	DO1	DO2	Stren		COFFe DO5			$11g_{11}, 2$) DO12	DCO1	DCO1
	PUI	PU2	PUS	PU4	PU5	PU0	PU/	PUð	ruy	POIU	POII	PU12	P501	P502
CO1	2	2		2		2		1			1	2	2	2
CO2	2	2		2		2		1			1	2	2	2
CO3	2	2		2		2		1			1	2	2	2
CO4	2	2		2		2		1			1	2	2	2

	Syllabus	
Exp	Contents	Mapped
No.		CO
	PART-A Compulsory	
1.	Magnetization and load characteristics of DC shunt generator	CO1
2.	Speed control of DC shunt motor by field and armature control	CO2
3.	Hopkinson's test on D.C shunt machines.	CO1,CO2
4.	Field's test on D.C series machines.	CO1,CO1
5.	Determination of equivalent circuit parameters and voltage regulation using	CO3
	OC and SC tests on single phase transformer	
6.	Parallel operation of two single phase transformers.	CO3
7.	Scott connection of transformers.	CO4
8.	Separation of losses in single phase transformer	CO3
	PART-B: Any Two Experiments	
9.	Load test on DC series generator.	CO1
10.	Load test on DC compound generator.	CO1
11.	Brake test on DC Compound motor	CO2
12.	Separation of losses in DC shunt machine	$C\overline{O1}, C\overline{O2}$

13.	Load test on single phase transformer.	CO3		
14.	Sumpner's test on single phase transformers.	CO3		
	Learning Resources			
Te	xt Books			
1.	Dr.P. S Bimbhra-Electrical Machinery-7/e -Khanna Publishers,2018.			
2.	I.J. Nagarath and D.P. Kothari, —Electric Machines, 4/e, McGraw Hill, 2010.			
3.	3. A.E. Fitzgerald, Charles Kingsley Jr. Stephen D. Umans, -Electric Machinery			
	7/e, McGraw,Hill.,2013			

DIGITAL LOGIC DESIGN LAB

Course Code	19EE3452	Year	II	Semester	II
Course	Program	Branch	EEE	Course Type	Lab
Category	Core				
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous	25	Semester	50	Total Marks:	75
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Verify Truth tables of different Logic Gates, Simplify & Implement Boolean						
	Functions in Standard forms.						
CO2	Realize & Implement different Combinational circuits.						
CO3	Verify stable tables of different Flipflops.						
CO4	Design & Verify counters using different Flipflops.						

Mapping of cou	irse outcomes with	Program outcome	es (CO/ PO/PS	O Matrix)
				· · · · · · · · · · · · · · · · · · ·

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2							1	2	1
CO2	3	3	2	2	2							1	2	1
CO3	3	3	2	2	2							1	2	1
CO4	3	3	2	2	3							1	2	1

	Syllabus	
Expt. No.	Contents	Mapped CO
1	Verification of Truth Tables of Logic gates and implementation of Basic gates using Universal Gates.	CO1
2	Implementation of the given Boolean functions using logic gates in both SOP and POS form.	CO1
3	Simplification of the given Boolean function using K-map and implement using logic gates.	CO1
4	Realization and verification of Full adder and Full Subtractor using logic gates.	CO2
5	Implementation of the given function using decoder and logic gates	CO2
6	Implementation of the given function using decoder and logic gates.	CO2
7	Verification of State Tables of SR, D, JK and T-Flip-Flops	CO3
8	Design and Verify the operation of 4-bit Synchronous Counter using T flip- flops.	CO4

9	Design and Verify the operation of 4-bit and Mod-N Ripple Counters using JK flip-flops	
10	Mini Project	CO4

Learning Resources
Text Books
1. Michael D. Ciletti, M. Morris Mano, Digital Design, 4/e. Pearson Education, 2007.
Reference Books
1. ZviKohavi, Switching and Finite Automata Theory, 2/e, Tata McGraw-Hill Education, 2008.
2. John F. Wakerly, Digital Design Principles and Practices, 4/e, Pearson Education, 2008.
3. Frederick J. Hill and Gerald R. Peterson, Introduction to Switching Theory and Logic Design,
3/e, John Willey and Sons, 1981.
4. Charles Roth, Jr., Larry Kinney, Fundamentals of Logic Design, 7/e, Cengage Learning, India,
2013.

e- Resources & other digital material

1. http://www.ece.ubc.ca/~saifz/eece256.html

2. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Guwahati/digital_circuit /frame/index.html

ANALOG CIRCUITS LAB

Course Code	19EE3453	Year	II	Semester	II
Course	Program	Branch	EEE	Course Type	Lab
Category	Core				
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

	Course Outcomes				
Upon	Upon successful completion of the course, the student will be able to				
CO1	Design and analyze feedback amplifiers				
CO2	Design and analyze Power amplifiers and oscillators				
CO3	Realize linear and non-linear applications using op-amp				
CO4	Design and understand various applications related to filter circuits and IC 555				
CO5	Compare the performance of various types of ADC and DAC using Op-Amp				

Mapping Note: 1- * - Averag	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	3							2	3	2
CO2	3	3	2	2	3							2	3	2
CO3	3	3	2	2	3							2	3	2
CO4	3	3	2	2	3							2	3	2
CO5	3	3	2	2	3							2	3	2

	Syllabus	
Expt. No	Contents	Mapped CO
1	Feedback Amplifier - calculation of gain, input resistance, output resistance with and without feedback, frequency response characteristic.	C01
2	Design and Implementation of Two stage RC Coupled amplifier for given voltage, current gain & bandwidth.	CO1
3	RC phase-shift, Wein-bridge ,Colpitts Oscillators	CO2
4	Class A power amplifier.	CO2
5	Class B Push - pull power amplifier.	CO2
6	Tuned voltage amplifier.	CO2
7	Analysis and simulation of RC differentiator/integrator	CO3
8	Operational Amplifier Circuits (Adders, Integrators, Differentiators, Filters)	CO3

9	Opamp based AM/FM Modulator/Demodulator Circuits.	CO3
10	Bistable/Monstable/Astable-multivibrators with 555 timer and using 741	CO4
11	Active Filter Design (LPF AND BANDPASS types)	CO4
12	Data Converters	CO5

Learning Resources
Text Books

1. Adel S. Sedra, Kenneth C. Smith, Arun N. Chandorkar, Microelectronic Circuits, 6/e, Oxford University Press, 2013.

2. D Choudhury Roy, Shail B. Jain, Linear Integrated Circuits, New Age International, 2003

3. Ramakanth Gayakward, Op-Amps and Linear Integrated Circuits, 4/e, Pearson Education, 2007

Reference Books

- 1. Behzad Razavi, Fundamentals of Microelectronics, 2/e, Wiley Student Edition, 2013.
- 2. R.F Coughlin, F.F Driscoll, Op-Amps and Linear Integrated Circuits, 6/e, Pearson Education, 2008.
- 3. Sergio Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata Mc-Graw Hill, 2002.

INTERNET OF THINGS

Course Code	19ES1504	Year	III	Semester	Ι
Course	ES	Branch	All Branches	Course Type	Theory
Category					
Credits	2	L-T-P	2-0-0	Prerequisites	Nil
Continuous	30	Semester End	70	Total Marks:	100
Internal		Evaluation:			
Evaluation:					

	Course Outcomes										
Upon successful completion of the course, the student will be able to											
CO 1	Summarize the genesis and impact of IoT applications, architectures in real world										
CO2	Illustrate diverse methods of deploying smart objects and connect them to network.										
CO3	Construct simple applications using Arduino										
CO4	Interpret different protocols and select which protocol can be used for a specific application.										
CO5	Identify and develop a solution for a given application using APIs.										

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)Note: 1- Weak correlation 2-Medium correlation* - Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2		2	2	2	3	3					2	3	3
CO2	2		2	2	2	3	3					2	3	3
CO3	2	3	2	2	3	3	3					2	3	3
CO4	3	3	3	3			2					2	3	3
CO5	3	3	3	3	3	3	2	2			3	3	3	3

Syllabus								
Unit	Contents	Mapped						
No.		CO						
Ι	Genesis of IoT, IoT and Digitization, IoT Impact, Convergence of IT and IoT,	CO1						
	IoT Challenges, IoT Network Architecture and Design, Drivers Behind New							
	Network Architectures, Comparing IoT Architectures, A Simplified IoT							
	Architecture, The Core IoT Functional Stack, IoT Data Management and							
	Compute Stack.							
II	Smart Objects: The Things in IoT, Sensors, Actuators, and Smart Objects, Sensor	CO2						
	Networks, Connecting Smart Objects, Communications Criteria, IoT Access							
	Technologies.							
III	Embedded Computing Basics, Microcontrollers, System-on-Chips, Choosing	CO3						
	Your Platform, Arduino, Developing on the Arduino, Some Notes on the							
	Hardware, Openness							
IV	Communication in the IoT: Internet Principles, Internet Communications: An	CO4						
	Overview, IP, TCP, The IP Protocol Suite (TCP/IP), UDP, IP Addresses, DNS,							
	Static IP Address Assignment, Dynamic IP Address Assignment, IPv6, MAC							
	Addresses, TCP and UDP Ports, An Example: HTTP Ports, Other Common							
	Ports, Application Layer Protocols HTTP, HTTPS: Encrypted HTTP, Other							
	Application Layer Protocols.							
V	Prototyping Online Components: Getting Started with an API, Mashing Up	CO5						
	APIs, Scraping, Legalities, Writing a New API, Clockodillo, Security,							

Implementing the API, Using Curl to Test, Going Further, Real-Time Reactions, Polling, Comet, Other Protocols, MQ Telemetry Transport, Extensible Messaging and Presence Protocol, Constrained Application Protocol.

Learning Resources
Text Books
1. Adrian McEwen, Hakim Cassimally - Designing the Internet of Thing Wiley Publications, 2012.
2. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry,"IoT
Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of
Things, 1stEdition, Pearson Education (Cisco Press Indian Reprint). (ISBN: 978-
9386873743)
Reference Books
1. ArshdeepBahga, Vijay Madisetti - Internet of Things: A Hands-On Approach, Universities
Press, 2014
2. Srinivasa K G, Internet of Things, CENGAGE Leaning India, 2017

CONTROL SYSTEMS ENGINEERING

Course Code	19EE3501	Year	III	Semester	Ι
Course	Program	Branch	EEE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Signals and Systems
					(19EE3303) &
					Engineering Mathematics-
					III (19BS1301)
Continuous	30	Semester End	70	Total Marks:	100
Internal		Evaluation:			
Evaluation:					

	Course Outcomes									
Upon	Upon successful completion of the course, the student will be able to									
CO1	Classify control systems, feedback characteristics and describe some applications.									
CO2	Determine the transfer function and recognize different mathematical modeling of									
	physical systems.									
CO3	Demonstrate the time response analysis, PID controllers and investigate the stability of									
	the system in time domain.									
CO4	Use frequency response analysis to investigate the stability of the system in frequency									
	domain.									
CO5	Analyze linear control system using the state space technique.									

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	3	3		1						3	3	1
CO2	3	3	3	3		1						3	3	1
CO3	3	3	3	3		1			1			3	3	1
CO4	3	3	3	3		1						3	3	1
CO5	3	3	3	3		1						3	3	2

	Syllabus	
Unit	Contents	Mapped
No.		CO
	Introduction: Classification of control systems, open loop and closed loop	
	control systems and their differences, Feedback characteristics, Concept of	CO1
Ι	Transfer function- impulse response. Transfer function of DC servo motor – AC	CO2
	servo motor. Construction and working of synchro transmitter and receiver.	
	Mathematical Modeling of Control Systems: Finding Transfer functions for	
	electrical networks. Mathematical models - Differential equations of	CO2
II	mechanical systems (Translational and Rotational), electrical systems and	
	electrical analogous of mechanical systems. Block diagram representation by	
	signal flow graph – reduction using Mason's gain formula.	
	Time Response Analysis & Stability: Standard test signals, Time response of	
III	first and second order systems with step input signal, time domain	CO3
	specifications, steady state error and static error constants. The concept of	
	stability – Routh's stability criterion –limitations of Routh's stability, Root	
	locus concept – construction of root loci (simple problems). P, PI, PD and PID	

	Controllers.	
IV	Frequency Response Analysis & Stability: Introduction to frequency domain specifications- correlation between time and frequency responses. Polar Plots-Stability analysis of Nyquist Plots- Bode plots – Phase margin and Gain	CO4
	margin. All pass and minimum phase systems.	
V	State Space Analysis of LTI Systems: Concepts of state, state variables and state model, Conversion of state variable model to transfer function model and Transfer function form to state variable form (controllable canonical form), solving the time invariant state equations, State Transition Matrix and it's Departure of controllability and charge while the state of controllability.	CO5
	Properties, concepts of controllability and observability.	

Learning Resources

Text Books 1. Automatic Control Systems– by Farid Golnaraghi and Benjamin C. Kuo – John wiley and son's., 9th edition, 2010.

2. Control Systems Engineering – by I. J. Nagrath and M. Gopal, New Age International (P) Limited 2009, Publishers, 5th edition.

3. Modern Control Engineering – by Katsuhiko Ogata – Prentice Hall of India Pvt. Ltd., 3rd edition, 1998.

Reference Books

- Control Systems principles and design by M.Gopal, Tata Mc Graw Hill education Pvt Ltd., 4th Edition, 2012.
- 2. Control Systems Engineering. by Norman S.Nise 8th Edition John Wiley 2019
- 3. Control Systems Engineering by S.Palani, 2nd edition, Tata Mc Graw Hill Publications, 2009.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/107/106/107106081/
- 2. https://nptel.ac.in/courses/108/106/108106098/
- 3. https://nptel.ac.in/courses/108/102/108102043/

ELECTRICAL DISTRIBUTION SYSTEMS

Course Code	19EE4501A	Year	III	Semester	Ι
Course Category	Program Elective - I	Branch	EEE Course Type		Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes					
Upon su	uccessful completion of the course, the student will be able to					
CO1	Understand distribution system planning, voltage control and need of power factor					
	improvement					
CO2	Describe sub-transmission lines, distribution substations, distribution feeders and					
	protection devices.					
CO3	Illustrate the co-ordination of protective devices and the characteristics of various loads					
CO4	Analyze the voltage drop & power loss calculations and the effect of capacitors in					
	distribution systems.					
CO5	Determine relation between load factor and loss factor, rating of distribution substation					

0	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02										PSO2			
C01	3	2	2	3	2				1	1		2	3	2
CO2	3	2	2	2					1	1		2	3	2
CO3	3	2	2	2					1	1		2	3	2
CO4	3	2	2	2	2				1	1		2	3	2
CO5	3	2	2	2					1	1		2	3	2

Syllabus							
Unit No.	Contents	Mapped CO					
Ι	Distribution Systems Planning And Load Characteristics: Introduction, distribution system planning, factors affecting system planning, Coincidence factor, contribution factor, loss factor, Relationship between the load factor and loss factor, Classification of loads (residential, commercial, agricultural and industrial) and their characteristics.	CO1 CO3 CO5					
II	Design of Sub Transmission Lines and Distribution Substations: Introduction, Sub-transmission systems, distribution substation, sub-station bus schemes, sub-station location, rating of a distribution substation, Substation service area with 'n' primary feeders, comparison of four and six feeder patterns.	CO2 CO5					
III	Design Considerations of Distribution Feeders: Introduction, Radial type and loop type primary feeders, primary network, primary feeder voltage levels, primary feeder loading, radial feeders with	CO2 CO4					

	uniformly distributed load and non-uniformly distributed loads, Basic							
	design practice of the secondary distribution system.							
	Voltage drop and power loss calculations; three phase balanced primary							
	lines, non three phase primary lines.							
IV	Distribution system protection.							
	Basic definitions, over current protection devices-fuses, automatic circuit reclosers,	000						
	automatic line sectionalizers, automatic circuit breakers. Objectives of distribution	CO_2						
	system protection, co-ordination of protective devices- fuse to fuse co-ordination,	COS						
	recloser to recloser coordination, fuse to circuit breaker, recloser to fuse co-							
	ordination, recloser to circuit breaker co-ordination.							
V	Power Factor Improvement and Voltage Control							
	Power capacitors, shunt and series capacitors, effect of series and shunt	CO1						
	capacitors (fixed and switched), power factor correction, economic							
	justification of capacitors, procedure to determine the best capacitor	0.04						
	location. voltage regulators, effect of AVB/AVR, line drop compensation.							
	Learning Resources							
Te	xt Books							
1.	Electric Power Distribution system Engineering by Turan Gonen, CRC pre-	ss, 3rd						
	edition, 2014.							
2.	Electric Power Distribution by A.S.Pabla, Tata Mc Graw-hill Publishing Con	mpany,6 th						
	edition,2011.							
Re	Reference Books							
1.	1. Electrical Power Distribution and Automation by S.Sivanagaraju, V.Sankar, Dhanpat							
	Rai&Co, 2014							
2.	2. Electrical Power Distribution Systems by V.Kamaraju, Overseas Publishers, Hyderabad,							
	3 rd edition, 2008							

ELECTRICAL MEASUREMENTS

Course Code	19EE4501B	Year	III	Semester	Ι
Course Category	Program Elective - I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Basics of Electrical Engineering
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to					
CO1	CO1 Measure electrical quantities using various measuring instruments					
CO2	Understand the concepts of instrument transformers					
CO3	Measure electrical parameters using DC and AC bridges					
CO4	Analyze transducers and digital meter for measuring physical and electrical					
	quantities					

C	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2			3							3	2
CO2	2		2			2							2	2
CO3	2		2			1							2	2
CO4	2		2			2							2	2

Syllabus						
Unit No.	Contents	Mapped CO				
I	Classification, deflecting, control and damping torques, Ammeters and Voltmeters, PMMC, moving iron type instruments, Extension of range using shunt and series resistance, Single phase dynamometer wattmeter, LPF and UPF, expression for deflecting torque and control torque, Single phase induction type energy meter, driving and braking torques, errors and compensations.	CO1				
II	Current Transformers, theory, ratio error and phase angle error, reduction of errors, construction of C.T, effect of Secondary open circuit, permanent magnetization and demagnetization of cores. Potential Transformers - Theory, ratio error and phase angle error, Reduction of errors, Construction of P.T	CO2				
III	Type of P.F meters-Single phase Electrodynamometer Power Factor meter- three phase Electrodynamometer .Power Factor meter and Moving Iron Power Factor meters. Type of Frequency meters – Mechanical Resonance type Frequency meter, Electrical Resonance type Frequency meter-Weston type Frequency meter-Ratio meter type Frequency meter, Saturable core Frequency meter.	CO1				
IV	Method of measuring low, medium and high resistances, Wheat stone's bridge, Kelvin's double bridge for measuring low resistance, loss of charge method for measurement of high resistance, Megger. Measurement of	CO3				

	inductance, Quality Factor - Maxwell's bridge, Hay's bridge, Anderson's							
bridge, Measurement of capacitance, Desauty's Bridge, Schering Bridge.								
V	Classification of transducers, Resistive transducer, Strain Gauge,							
	Thermistors, Thermo couples and Linear Variable Differential Transformers.	CO4						
	Digital Voltmeters-Successive approximation, ramp and integrating type							
	DVM, Digital frequency meter, and Digital energy meter.							
	Learning Resources							
Text	Books							
1.	A course in Electrical and Electronic Measurements and Instrumentation, A.K.	Sawhney,						
	Dhanpat Rai & Co. Publications.							
2.	Electrical Measurements and measuring Instruments, E.W. Golding and F.C. W	Viddis, 5th						
	Edition, Wheeler Publishing company.							
Refe	Reference Books							
1.	Electrical Measurements: Fundamentals, Concepts, Applications, Martin. U. Re	eissland,						
	New Age International Publishers Limited.							
2.	Electrical and Electronic Measurements, G.K.Banerjee, PHI Learning Private Ltd.							
e- Re	e- Resources & other digital material							

 https://nptel.ac.in/courses/108/105/108105153/

Course Code	19EE4501C	Year	III	Semester	Ι
Course Category	Program Elective-I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

FUZZY CONTROL SYSTEM DESIGN AND ANALYSIS

	Course Outcomes						
Upon su	Upon successful completion of the course, the student will be able to						
CO1	CO1 Understand the basic concepts of Neural Networks and Fuzzy logic						
CO2	Develop Neural Network based control system for engineering applications						
CO3	Develop Fuzzy logic-based control system for engineering applications						
CO4	Develop hybrid neuro-fuzzy architecture for engineering optimization problems						
CO5	Apply Machine and deep learning algorithms to solve real-world Engineering						
	problems						

0	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Stren	gth of	corre	lation	s (3:H	igh, 2	: Medi	ium, 1	:Low)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3		3								3	
CO2			2		3						3	3		
CO3					3								1	
CO4	2			3										2
CO5			3	3	3							3	1	2

	SYLLABUS	
Unit No.	Contents	Mapped CO
I	Introduction to fuzzy logic and neural networks: Classification, Merits and demerits of intelligent techniques compared to conventional techniques. Need of an intelligent technique for real world Engineering applications.	CO1
II	Supervised and Unsupervised Neural networks: Perception, Standard back propagation Neural network: Architecture, Algorithm and other issues. Discrete Hopfield's networks, Kohnen's self- organizing maps, adaptive resonance theory (ART1).	CO2
III	Fuzzy set and operations : Fuzzy relations, Fuzzifications, Fuzzy rule-based systems, defuzzification fuzzy learning algorithms.	CO3
IV	Fuzzy logic for control system with case studies: Introduction to neuro-fuzzy system and genetic algorithm.	CO4

V	Machine learning & Deep learning :	
	Learning from agents - inductive learning - Types of Machine learning -	
	Supervised learning - learning decision trees - support vector machines.	
	Deep Networks ,Deep Feed forward Networks - Learning XOR - Gradient	CO5
	Based learning - Hidden Units - Back-propagation and other Differential	
	Algorithms - Regularization for Deep Learning - Optimization for training	
	Deep Models.	

	Learning Resources
Text	Books:
1.	Timothy J. Ross, Fuzzy Logic with Engineering Applications, John Wiley & Sons Ltd
	Publications, 4th edition, 2016.
Refe	rence Books:
1.	S. Haykin, Neural Networks: A comprehensive Foundation, Prentice Hall Inc., New
	Jersey, 2nd Edition, 1999.
2.	Klir G.J and Folger T.A, Fuzzy sets, Uncertainty and Information, Prentice Hall, New
	Delhi, 1994.
3.	Zdenko Kovacic, Stjepan Bogdan, Fuzzy Controller Design Theory and Applications,
	CRC Press, 1st edition, 2006.
4.	Satish Kumar, Neural Networks–A classroom approach, Tata McGraw-Hill Publishing
	Company Limited, 2013.
5.	Laurene Fausett, Fundamentals of Neural networks, Pearson education, Eight
	Impression, 2012.
6.	Tom Mitchell, "Machine Learning", McGraw Hill, 1997. 2. E. Alpaydin,
	"Introduction to Machine Learning", Second Edition, Prentice-Hall of India, 201.
7.	Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", The MIT Press,
	2016

Learning Resources:

1. <u>http://www.nptelvideos.in/2012/11/intelligent-systems-and-control.html</u>

ELECTRICAL MACHINES - II

Course Code	19EE3502	Year	III	Semester	Ι
Course	Program	Branch	EEE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Electrical Machines-I (19EE3401)
					Basic Electrical and Electronics
					Engineering (19ES1101)
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes
Upon s	successful completion of the course, the student will be able to
CO1	Understand the construction, working principle and characteristics of differentlypes of
	three phase induction motors and solve the problems for various parameters. (L2, L3)
CO2	Understand starting methods, speed control and testing of three phase induction
	motor.(L2,L3)
CO3	Understand the constructional details of synchronous machines, their load characteristics,
	solve the problems on regulation and parallel operation of alternator (L2, L3)
CO4	Understand the working principle, methods of starting and applications of synchronous
	motor (L2, L3)
CO5	Understand double field theory, construction of single-phase induction motor, special
	electrical machines and their characteristics and industrial applications. (L2, L3)

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			1		2		1				2	3	2
CO2	2			1		1		1				2	3	2
CO3	3			1		2		1				2	3	
CO4	3			1		2		1				2	3	2
CO5	3			1		1		1				2	3	

	Syllabus	
Unit	Contents	Mappe
No.		dCO
I	Three phase Induction motors: Concept of rotating magnetic field. Principle of operation, Constructional details of squirrel-cage &slip-ring rotor machines. Slip, torque-slip characteristics covering motoring, generating and braking regions of operation, maximum torque. Phasor diagram of induction motor on no-load and on load. Equivalent circuit.	C01
II	Testing of three-phase Induction Motor: Losses in three phase induction motor efficiency, no-load and blocked rotor tests. Circle diagram and performance evaluation of motor. cogging and crawling. Direct on line (DOL), star-delta and autotransformer starting, rotor resistance starting. Speed Control of Three-phase Induction Motors: Speed control-voltage, frequency, and rotor resistance, pole changing and cascading of motors, introduction	CO2

	to solid state controllers.	
III	Synchronous Generator Constructional Features of round rotor and salient pole machines, distributed and concentrated windings – distribution, pitch and winding factors – E.M.F Equation - harmonics in generated e.m.f. – suppression of harmonics, phasor diagrams. Regulation of alternators on load, experimental determination of synchronous impedance - regulation by synchronous impedance method, M.M.F. method and Z.P.F. method. Experimental determination of X _d and X _q (Slip test),two reaction theory, regulation of salient pole alternators. Parallel operation of alternators: Synchronizing of alternators with infinite bus bars current practices– synchronizing power torque – parallel operation and load sharing.	CO3
IV	Synchronous Motors – Principle of Operation Theory of operation – phasor diagram – variation of current and power factor with excitation – synchronous condenser – mathematical analysis for power developed - excitation and power circles – hunting and its suppression – methods of starting. Special Electrical Machines Principle of Operation – Stepper Motor – BLDC Motor – Reluctance Motor –	CO4
V	Linear Induction Motor – Hysteresis Motor. (Theoretical Analysis Only) Single Phase Induction Motor Classification of single phase induction motors – double revolving field theory – working principle of single winding single phase induction motor – cross field theory – equivalent circuit – power developed – construction, working principle – speed torque characteristics - spilt phase capacitor start motor, capacitor start capacitor run motor - shaded pole motor, ratings and their applications – equivalent circuit – testing of motors – efficiency – no load and blocked rotor tests.	CO5
		•

Learning Resources
Text Books
1. Electrical Machines by PS Bhimbra, Khanna publishers.
2. Electrical Machines by I.J.Nagrath & D.P.Kothari, Tata Mc Graw-Hill Publishers, 7th
Edition 2005.
3. Electrical Machinery by A.E. Fitzgerald, C. Kingsley and S. Umans, Tata Mc Graw Hill
Companies, 5 th edition 1990.
4. Electrical Machines by J.B.Gupta, Kataria publications.
Reference Books
1. The Performance and Design of A.C.Machines by M.G.Say, ELBS and Pitman & Sons.
2. Theory of Alternating Current Machinery by Langsdorf, Tata Mc Graw Hill, 2 nd edition.
3. Electromachines-III (Synchronous and single phase machines) by S.Kamakashiah, Right
Publishers.
e- Resources & other digital material
1. <u>https://nptel.ac.in/courses/108/105/108105131s</u>

Course Code	19CS2501C	Year	III	Semester	Ι
Course	Inter Disciplinary	Branch	EEE	Course Type	Theory
Category	Elective-I				
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

CO1	Understand the basic concepts of database management systems
CO2	Understand normalization techniques with simple examples.
CO3	Apply SQL commands to create tables for a given database application
CO4	Apply ER Model concepts to draw ER Diagrams for a given database application and make an effective report.

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3													
CO3	3													
CO4	3								3	3				

Syllabus							
Course Content							
	Introduction to Databases: Characteristics of the Database Approach,						
	Advantages of using the DBMS Approach, A Brief History of Database						
	Applications.	CO1					
UNIT-1	Overview of Database Languages and Architectures: Data Models,						
	Schemas and Instances, Three-Schema Architecture and Data						
	Independence, Database Languages and Interfaces, Database System						
	environment, Centralized and Client-Server Architecture for DBMS.						
	Relational Model: The Relational Model Concepts, Relational Model						
	Constraints and Relational Database Schemas.						
UNIT-2	SQL: Data Definition, Constraints, Basic Queries and Updates,	005					
	Views(Virtual Tables) in SQL						
	Conceptual Data Modeling : High-Level Conceptual Data Models for						
	Database Design, A Sample Database Application, Entity Types, Entity						
LINUT 2	Sets, Attributes and Keys, Relationship Types, Relationship Sets, Roles,	CO4					
UN11-5	and Structural Constraints, Weak Entity Types.	04					
	ER-Diagrams: Refining the ER Design, ER Diagrams, Naming						
	Conventions and Design Issues						
	Database Design Theory: Functional Dependencies, Normal forms based						
UNIT-4	on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal	CO2					
	Form.						

	Transaction Processing: Introduction, Transaction and System Concepts,						
	Desirable Properties of Transactions.						
UNIT-5	Introduction to Protocols for Concurrency Control in Databases: Two-	CO1					
	Phase Locking Techniques for Concurrency Control - Types of Locks and						
	System Lock Tables.						
	Learning Resources						
Text boo	ks						
1. DA'	TABASE SYSTEMS Models, Languages, Design and Application Progra	mming,					
Ran	nez Elmasri, Shamkant B.Navathe, 6th Edition, Pearson.						
Reference	res						
1. Data	a base Management Systems, Raghurama Krishnan, Johannes Gehrke, 3rd Edi	tion,					
TM	H.						
2. Data	2. Data base System Concepts, Abraham Silberschatz, Henry F Korth, S.Sudarshan, 5th						
Edition, Mc Graw Hill.							
e-Resources and other Digital Material							

QUANTITATIVE TECHNIQUES FOR MANAGEMENT

Course Code	19HS2501C	Year	III	Semester	Ι
Course Category	Inter Disciplinary Elective-I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal	30	Semester End	70	Total Marks:	100
Evaluation:		Evaluation:			

	Course Outcomes
Upon s	uccessful completion of the course, the student will be able to -
CO1	Understand the basic concepts for solutions to business problems
CO2	Apply the analytical techniques in business transactions that would help in making effective business decisions
000	
CO3	Analyze problems in business transactions that would help in making effective
	business
CO4	Apply the least square technique to find the equation of the curve.
CO5	Determine the equation of the curve from the given data.
CO6	Apply the various methods to find the deviations and submit a report

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01												_	2	
CO2	3												2	
CO3		3											2	
CO4	3												2	
C05		3							2	2			2	

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
Ι	Introduction to Statistics: Meaning, Definition, Functions, Importance,	
	Limitations of Statistics, Collection of Primary and Secondary Data.	
II	Measures of Central Tendency: Definition, Objectives, Characteristics	
	and Techniques: Mean Median, Mode, Geometric Mean and Harmonic	
	Mean.	
III	Measures of dispersion: Definition, Objectives, Characteristics and	CO1 CO2 CO3
	Techniques: Range, Quartile Deviation, Mean Deviation, Standard	01,002,005
	Deviation and Coefficient of Variation.	
IV	Measures of Skewness & Kurtosis: Definition, types of skewness, types of	
	kurtosis, Karl-Pearson's Co-efficient, Bowley's Co-efficient, Kelly Co-	
	efficient, Calculation of Raw Moments and Central Moments	
V	Curve Fitting: Method of least squares, straight line, parabola, exponential	CO1 CO4 CO5
	curve, power curve	001,004,005

	Learning Resources					
Text	Books:					
1.	S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan					
	Chand & Sons Publications, 2012.					
2.	Dr.T.K.V. Iyengar, Dr.B.Krishna Gandhi, S. Ranganatham, Dr. M.V.S.S.N. Prasad,					
	"Probability & Statistics", Publications: S.Chand, 4th Revised Edition, 2012.					
Refe	rence Books:					
1.	S. Ross, a First Course in Probability, Pearson Education India, 2002.					
2.	Miller and Freunds, Probability and Statistics for Engineers,7/e, Pearson, 2008.					
e- Re	sources & other digital material:					
1.	www.nptelvideos.com/mathematics/(Math Lectures from Mit,Stanford,IIT'S					
2.	nptel.ac.in/courses/111/106/111106150/					
3.	nptel.ac.in/courses/111105035					

OOP with C++

Course Code	19IT2501C	Year	III	Semester	Ι
Course Category	Inter Disciplinary Elective-I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	C Language
Continuous Internal		Semester End			
Evaluation :	30	Evaluation:	70	Total Marks:	100

Upon Successful completion of course, the student will be able to					
CO1	Illustrate the fundamental programming concepts in C++				
CO2	Demonstrate the concepts of Object Oriented Programming				
CO3	Outline the concepts of polymorphism and Exception handling in C++				
CO4	Make use of OOP concepts to develop C++ programs.				

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High, M: Medium, L:Low)

		(,									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2					1	1				2	2
CO2	2	2	2					1	1				2	2
CO3	2	2	2					1	1				2	2
CO4	2	2	2					1	1				2	2

	Syllabus	
Unit No	Contents	Mapped CO
I	 Introduction to C++: Difference between C and C++, Evaluation of C++, Programming Paradigms, Key concepts of OOP, Advantages of OOP. Declarations: Tokens, Variable declaration and initialization, Data types in C++, Operators in C++, Scope access operator, Name Space, Memory management operators, Comments. Decision Statements : Introduction, The if statement, Multiple ifs, Nested if-else, else-if ladder, unconditional control transfer statements, the switch statement 	CO1,CO2
II	Control Loop Structures : Introduction, What is loop, The for loop, the while loop, The do-while loop Functions in C++ : Introduction, Parts of a function, Passing arguments, Inline functions, Function overloading Input and Output in C++ : Streams in C++ and Stream Classes, Pre- defined streams.	CO1,CO2
III	Classes and Objects: Introduction, Structure in C, Classes in C++, declaring Objects, Access specifiers and their scope, Defining member functions, Characteristics of member functions, Outside member function as inline, Rules for inline functions, Static member variable, static member functions, friend functions. Constructors and Destructors: Introduction, Constructors and destructors, Constructors with default arguments, Parameterized constructor, Overloading constructors, Array of objects using	CO2,CO4

	constructors, Constructors with default arguments	
	Operator Overloading: Introduction, The keyword operator,	
	Overloading unary operators, Overloading binary operator.	
IV	 Inheritance : Introduction, Reusability, Access Specifies and Simple inheritance, Types of inheritance, Single, Multiple, Hierarchical, Hybrid, Multipath inheritances, Virtual base classes, program on simple inheritance Pointers: Introduction, Features of pointers, Pointer Declaration, void pointer, wild pointer, The this pointer, Pointers to derived class and base class 	CO2,CO4
v	 Binding and Polymorphism and Virtual Functions: Introduction, Binding in C++, Pointer to base class and derived class objects, Virtual functions, pure virtual functions, Abstract classes. Exception Handling: Introduction, Principles of exception handling, the keywords try, throw and catch, Multiple catch statements, Re-throwing an exception. 	CO3

Learning Recourses
Text Books
Programming in C++, Second Edition, by Ashok N Kamthane, Pearson Education.
References
1. C++ How To Program, Dietel and Dietel, Prentice Hal.
2. C++ The Complete Reference, 5th Edition, by Herbert Schildt, TMH.
E-Recourses and other Digital Material
http://www.cplusplus.com
https://www.w3schools.com/cpp/

COMPUTATIONAL METHODS

Course Code	19IT2501C	Year	III	Semester	Ι
Course Category	Inter Disciplinary Elective-I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	C Language
Continuous Internal		Semester End			
Evaluation :	30	Evaluation:	70	Total Marks:	100

Upon Su	Upon Successful completion of course, the student will be able to									
CO1	Solve System of equations using direct and iterative methods									
CO2	Solve Boundary and characteristic Value Problems									
CO3	Approximate linear and nonlinear curve using regression analysis									
CO4	Find a numerical solution to partial differential equations									
CO5	Apply finite difference scheme to solve parabolic and hyperbolic partial differential equations									

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
C01	3	2										2	2	
CO2	3	2										2	2	
CO3	3	2										2	2	
CO4	3	2										2	2	
CO5	3	2										2	2	

UNIT	Contents	Mapped							
No.		COs							
	Introduction to numerical methods applied to engineering problems:								
Ι	inversion– Iterative methods–Relaxation methods–Systems of non-linear equations.	CO1							
	Boundary value problems and characteristic value problems: Shooting								
II	method– Solution through a set of equations –Derivative boundary								
	conditions-Characteristic value problems.								
	Curve fitting and approximation of functions:								
III	Least square approximation fitting of non-linear curves by least squares								
	-regression analysis- multiple linear regression, non-linear regression.								
	Numerical solutions of partial differential equations: Laplace's								
IV	equations – Representations as a difference equation – Iterative methods	CO4							
1 V	for Laplace's equations – Poisson equation – Examples – Derivative								
	boundary conditions – Irregular and non – rectangular grid.								
V	Parabolic partial differential equations:	C05							
v	Explicit method– Crank-Nicolson method– Derivative boundary								

condition-Stability and convergence criteria. Hyperbolic partial	
differential equations: Solving wave equation by finite differences-	
stability of numerical method-method of characteristics-wave equation	
in two space dimensions.	

Learning Recourse(s)

Text Book(s)

- 1. StevenC.Chapra,RaymondP.Canale"NumericalMethodsforEngineers"TataMc-Grawhill,,Fifth edition.
- 2. Curtis F.Gerald, partick.O.Wheatley,"Applied numerical analysis" Pearson Education -Sixth Edition.2002

Reference Book(s)

- 1. Ward cheney&David Kincaid "Numerical mathematics and computing" Brooks/colepublishingcompany1999,fourthedition.
- 2. Riley K.F.M.P.Hobson &BenceS.J," mathematical methods for physics and engineering" Cambridgeuniversitypress, 1999.

e- Resources & other digital material

- 1. https://www.nptel.ac.in/courses/111/107/111107105/
- 2. https://www.nptel.ac.in/courses/111/105/111105041/
- 3. <u>https://www.nptel.ac.in/courses/111/106/111106112/</u>
- 4. https://www.nptel.ac.in/courses/111/105/111105090/

BIOTECHNOLOGY AND SOCIETY

Course Code	19ES5501A	Year	III	Semester	Ι
Course Category	Open Elective-I	Branch	Common to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes										
Upon su	accessful completion of the course, the student will be able to										
CO1	Understanding the basic concepts of advanced and emerging issues in biotechnology										
CO2	Analyze, and evaluate social and ethical issues in the conduct of biological research and										
	application of biological knowledge										
CO3	Apply knowledge and analytical approaches in several major domains of the biological										
	sciences that reflects a breadth and depth of understanding										
CO4	Analyze the scientific method by formulating hypotheses, proposing testable predictions										
	and then testing to reach supportable conclusions about biological processes and systems,										
	and articulate the relevance of modern biology to society										
CO5	Apply responsibilities to promote societal health and safety, upholding the trust given to										
	the profession by the society										

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3														
CO2	3					3		3							
CO3	3					3									
CO4						3									
CO5						3	3								

UNIT	Contents	Mapped
NO		COS
Ι	History of Biotechnology, Genes (basic concepts), Genetic engineering,	CO1
	Tools for manipulation of genes (introduction to recombinant DNA	CO2
	technology), Vectors and expression systems (introduction)	
II	Intellectual property rights (concepts related to drugs, genes and	CO1
	genomes) Recombinant DNA Debates, Biotechnology and Business,	CO2
	Patenting Life, Genetically Modified Foods: Risk, Regulation, and Our	
	Food.	

III	Freezing, Banking, Crossing, Eugenics, The Human Genome Project, Genetic Testing, Disability, and Discrimination, Bioethics and Medicine,	CO2
	From the Pill to IVF, Cloning, Stem Cells.	CO3
IV	Drugs and Designer Bodies, Biotechnology and Race, Bioprospecting and	CO3
	Biocolonialism	CO4
V	Vaccines, Gene therapy, Clinical trials, Synthetic Biology and	CO4
	Bioterrorism, Use of biofertilisers and biopesticides for organic	CO5
	farming	

Text books:

1. Biotechnology and Society: An introduction. Hallam Stevens. University of Chicago Press. 2016. ISBN 022604615X, 9780226046150

References:

- 1. W. Godbey, An Introduction to Biotechnology, The Science, Technology and Medical Applications, 1/e, Woodhead Publishing, 2014.
- 2. J.M. Walker and R. Rapley, Molecular Biology and Biotechnology, 5/e, Royal society of chemistry, 2009.
- 3. B.R.Glick, J.J.Pasternak, C.L.Patten. Molecular Biotechnology.ASM Press. 2009. ISBN-10: 1555814980, ISBN-13: 978-1555814984s

ELECTRICAL SAFETY

Course Code	19ES5501B	Year	III	Semester	Ι
Course Category	Open Elective I	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	COURSE OUTCOMES
Upon s	successful completion of the course, the student must be able to
CO1	Understand the Indian power sector organization and Electricity rules, electrical safety in residential, commercial, agriculture, hazardous areas and use of fire extinguishers.
CO2	Outline the electrical safety during installation, testing and commissioning procedure.
CO3	Make use of specification of electrical plants and classification of safety equipment for various hazardous locations.
CO4	Distinguish various fire extinguishers and their classification.

Contribution of Course Outcomes towards achievement of Program Outcomes & Program Specific Outcomes._Strength of Correlation between CO – PO, CO- PSO in scale of 1-3 1: Slight (low), 2: Moderate (medium) 3: Substantial (High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO12	PSO1	PSO2
CO1	3		2		1	2		2			1		2	1
CO2	3		2		1	2		2			1		2	1
CO3	3		2		1	2		2			1		2	1
CO4	3		2		1	2		2			1		2	1

	SYLLABUS	
Unit No.	Contents	Mapped CO
Ι	Introduction To Electrical Safety, Shocks And Their Prevention: Terms and definitions, objectives of safety and security measures, Hazards associated with electric current and voltage, who is exposed, principles of electrical safety, Approaches to prevent Accidents, scope of subject electrical safety. Primary and secondary electrical shocks, possibilities of getting electrical shock and its severity, medical analysis of electric shocks and its effects, shocks due to flash/Spark over's, prevention of shocks, safety precautions against contact shocks, flash shocks, burns, residential buildings and shop.	CO1
Π	Electrical Safety in Residential, Commercial and Agricultural Installations : Wiring and fitting –Domestic appliances –water tap giving shock –shock from wet wall –fan firing shock –multi-storied building –Temporary installations –Agricultural pump installation –Do's and Don'ts for safety in the	CO1

	use of domestic electrical appliances.	
III	Electrical Safety during Installation, Testing and Commissioning, Operation and Maintenance : Preliminary preparations –safe sequence –risk of plant and equipment –safety documentation –field quality and safety -personal protective equipment –safety clearance notice –safety precautions –safeguards for operators –safety.	CO2
IV	Electrical Safety in Hazardous Areas : Hazardous zones –class 0,1 and 2 – spark, flashovers and corona discharge and functional requirements – Specifications of electrical plants, equipment's for hazardous locations – Classification of equipment enclosure for various hazardous gases and vapours –classification of equipment/enclosure for hazardous locations.	CO1 CO3
V	Fire Extinguishers : Fundamentals of fire-initiation of fires, types; extinguishing techniques, prevention of fire, types of fire extinguishers, fire detection and alarm system;CO ₂ and Halogen gas schemes; foam schemes.	CO1 CO4
	Total Periods: 45, 9 periods for each unit.	

				L	earning	Resou	rces						
Text	B	ooks	;										
1		Rao,	S.	and	Saluja,	H.L.,	"Electrical	Safety,	Fire	Safety	Engineering	and	Safety
		Mana	agen	nent"	, Khanna	Publis	shers, 1988.						

Reference Books:

- 1. Cooper.W.F, "Electrical safety Engineering", Newnes-Butterworth Company, 1978.
- 2. John Codick, "Electrical safety hand book", McGraw Hill Inc., New Delhi, 2000.
- 3. Nagrath, I.J. and Kothari, D.P., "Power System Engineering", Tata McGraw Hill, 1998.
- 4. Wadhwa, C.L., "Electric Power Systems", New Age International, 2004.

FUNDAMENTALS OF CYBER LAW

Course Code	19ES5501C	Year	III	Semester	Ι
Course Category	Open Elective-I	Branch	-	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous Internal Evaluation :	30	Semester En Evaluation:	70	Total Marks:	100

	Course Outcomes									
Upon suc	Upon successful completion of the course, the student will be able to									
CO1	Understand the basic concepts of Section 80 of IT Act 2000, Cyber Crime, Computer Crime, Internet Theft/Fraud, Goods and Services.									
CO2	Demonstrate the basic concepts of Cognizable and Non-Cognizable Offences, Hacking, Teenage Web Vandals, Prevalence and Victimology, Consumer Protection Act.									
CO3	Analyze the concepts of Arrest for "About to Commit" an Offence Under the IT Act, A tribute to Draco, Cyber Fraud, Computer as Commodities, Consumer Complaint.									
CO4	Explain the concepts of Arrest, But No Punishment, Cyber Cheating, Theft of Intellectual Property, Restrictive and Unfair Trade practices									

Contribution of Course Outcomes towards achievement of Program Outcomes & Program Specific Outcomes._Strength of Correlation between CO – PO, CO- PSO in scale of 1-3 1: Slight (low), 2: Moderate (medium) 3: Substantial (High)

1. 5118	5111 (10	<i>, 2</i>	· Mout	nate (n	liculuii	1)	5. Du	ostanti	ai (1118	511)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2	2	3					2	2
CO2						2	2	3					2	2
CO3						2	2	3					2	2
CO4						2	2	3					2	2

	Syllabus	
Unit No	Contents	Mapped CO
I	The IT Act, 2000:A Critique: Crimes in Millennium, Section 80 of the IT Act, 2000-AWeapon or a Farce?, Forgetting the Line between Cognizable and Non-Cognizable Offences, Arrest for "About to Commit" an Offence Under the IT Act, A tribute to Draco, Arrest, But No Punishment	CO1, CO2, CO3, CO4

п	Cyber Crime and Criminal Justice: Penalties, Adjudication and Appeals Under the IT Act, 2000: Concept of Cyber Crime and the IT Act, 2000, Hacking, Teenage Web Vandals, Cyber Fraud and Cyber Cheating.	CO1, CO2, CO3, CO4
ш	Traditional Computer Crime: Early Hacker and Theft ofComponents: Traditional Problems, Recognizing and DefiningComputer Crime, Phreakers: Yesterday's Hackers, Hacking, Computeras Commodities, Theft of Intellectual Property.	CO1, CO2, CO3, CO4
IV	Identity Theft and Identity Fraud: Typologies of Internet Theft/Fraud, Prevalence and Victimology, Physical Methods of Identity Theft.	CO1, CO2, CO3, CO4
v	Protection of Cyber consumers in India: Are Cyber consumers Covered under the Consumer Protection Act?, Goods and Services, Consumer Complaint, Restrictive and Unfair Trade practices	CO1, CO2, CO3, CO4

Learning Resources		
Text books		
1.	Vivek Sood, "Cyber Law Simplified", Tata McGraw Hill.	
2.	. Marjie T. Britz, "Computer Forensics and Cyber Crime", Person.	
3.	errera, "Cyber Laws Texts and Cases", Cengage.	
References		
1.	Vakul Sharma, "Handbook Of Cyber Laws" Macmillan India Ltd, 2 nd Edition, PHI, 2003.	
2.	Justice Yatindra Singh, "Cyber Laws", Universal Law Publishing, 1 st Edition, New Delhi,	
	2003.	
3.	Sharma, S.R., "Dimensions Of Cyber Crime", Annual Publications Pvt. Ltd., 1st Edition,	
	2004.	
4.	Augastine, Paul T.," Cyber Crimes And Legal Issues", Crecent Publishing Corporation,	
	2007	
e-Resources and other Digital Material		
1.	https://www.coursera.org/lecture/cyber-conflicts/introduction-to-cybercrime-and-	
	fundamental-issues-xndSq	
2.	https://www.youtube.com/watch?v=F7mH5vz1qEI&list=PLf8YqCm9HoI6fb4LdoY2tFgJf	
	M0PrgInS&ab_channel=ComputingforAll	
3.	https://www.youtube.com/watch?v=F7mH5vz1qEI&t=41s&ab_channel=ComputingforAll	
ENVIRONMENT AND ECOLOGY

Course Code	19ES5501D	Year	III	Semester	Ι
Course Category	Open Elective-I	Branch	-	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	19MC1301 – Environmental Science
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes												
Upon successful completion of the course, the student will be able to													
CO1	To develop an awareness, knowledge, and appreciation for the natural environment.												
CO2	To determining different types of conventional sources, exist in nature.												
CO3	To articulate the environmental pollution and their effects.												
CO4	To distinguishing the different laws on environmental protection.												
CO5	To know the global environmental problems.												

Contribution of Course Outcomes towards achievement of Program Outcomes & Program Specific Outcomes._Strength of Correlation between CO – PO, CO- PSO in scale of 1-3 1: Slight (low), 2: Moderate (medium) 3: Substantial (High)

T. 2118	5110 (1)	0 v v),	2. 10100		lincai	unij	5	. 5455	antiai	(111611)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3					2	3	1	2			3	3	
CO2	3					2	3	1	2			3	3	
CO3	3					2	3	1	2			3	3	
CO4	3					2	3	1	2			3	3	
CO5	3					2	3	1	2			3	3	

	Course Content	
UNIT-1	Definition, Scope & Importance, Need For Public Awareness- Environment Definition, Ecosystem Human Activities – Food, Shelter, Economic and Social Security. Effects of human activities on environment-Agriculture, Housing, Industry, Mining and Transportation activities, Basics of Environmental Impact Assessment. Sustainable Development.	CO1
UNIT-2	Natural Resources- Water Resources- Availability and Quality aspects. Water borne diseases, Water induced diseases, Fluoride problem in drinking water. Mineral Resources, Forest Wealth, Carbon Cycles, Oxygen cycles, Nitrogen Cycles. Energy – Different types of energy, Conventional and Non-Conventional sources – Hydro Electric, Fossil Fuel based Nuclear, Solar, Biomass and Biogas.	CO2.
UNIT-3	Environmental Pollution and their effects. Water pollution, Land pollution. Noise Pollution, Public Health Aspects, Air Pollution, Deforestation, Major Causes of Deforestation and consequences of deforestation, Solid Waste Management. Current Environmental Issues of Importance: Population Growth, Climate Change	CO3

	and Global warming-Effects, Urbanization, Automobile pollution. Ozone Layer									
	depletion, Acid Rain, impact of Acid rain.									
UNIT-4	Environmental Protection- Role of Government, Air Act, Water Act, Wild life Act, Environmental Act. Initiatives by Non-governmental Organizations, (NGO), Environmental Education, Women Education.	CO4								
UNIT-5	Evidence of Global warming, consequences of climatic change, consequences of climate change in India. Biodiversity and Legislation, Earth Summit, the Montréal protocol, Kyoto protocol on climatic change.	CO5								
	Learning Resources									
Text Books	 Text book of Environmental Science & Technology – M. Anji Reddy – BS Publica S. V. S. Rana, Essentials of Ecology and Environmental Science, Prentice Hall Indi New Delhi, 2011. Environmental Studies – Benny Joseph – Tata Mc Graw Hill-2005 	tion. ia,								
Reference Books	 Principles of Environmental Science and Engineering – P. Venu 1460palan Rao, Pr Hall of India. Environmental Science and Engineering – Meenakshi, Prentice Hall India. 	rentice								
e- Resources & other digital material										

CONTEMPORARY RELEVANCE OF INDIAN EPICS

Course Code	19HS5501A	Year	III	Semester	Ι
Course Category	OPEN ELECTIVE-I	Branch	Common to All Branches	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes						
Upon successful completion of the course, the student will be able to -							
CO1	Gain preliminary understanding of various Indian epics						
CO2	Develop a deep insight into the famous epics and cultivate national consciousness						
CO3	Apply the knowledge gained to various real life situations						
CO4	Analyze the contemporary relevance of Indian epics(L4)						
CO5	Interpret and correlate the ideals to one's own life.						

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L- Low-1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2								3	2			2		
CO3								3	2			2		
CO4								3	2			2		
CO5								3	2			2		

	SYLLABUS	
Unit No.	Contents	Mapped CO
Ι	Definition of the term epic Features of epic, Introduction to Indian epics, Characteristics of classical Indian epics, Importance of Indian epics.	CO1,CO4
II	Salient features of Ramayana, Epic qualities of Ramayana, Ideals to be imbibed from the first Indian epic, Moral essence in Ramayana, Impact of Ramayana on Indian society.	CO1,CO2, CO5
III	Mahabharata, Epic qualities of Mahabharata, Set of values to be acquired from the largest epic, Impact of Mahabharata on our culture and society.	CO1, CO5
IV	Relevance Of Indian Epics to the contemporary of Indian society, Relevance Of Indian Epics to the contemporary world.	CO1,CO3,
V	Essence of Bhagavad Gita, justification of the triumph of virtue over vice, Importance of truth and Self-sacrifice.	CO1,CO2, CO5

Text books

- 1. Ramayana by R. K. Narayan (Penguin)
- 2. *Mahabharata* by R. K. Narayan (Penguin)
- 3. Geetha darshan by Rama krisha mission

Learning Resources

- 1. The palace of illusion- Chitra Banerjee Divakaruni
- 2. My Gita- Devdutt Pattankaik
- 3. Asura:tale of Vanquished- Anand Neelakantan
- 4. Prince of Ayodhya:Book one-Ashok k.Banker
- 5. The Hindus: An Alternative History- Wendy Doniger
- 6. Myth and Reality: Studies in the Formation of Indian Culture-D.D. Kosambi
- 7. Mahabharath- William Buck

INDIAN NATIONAL MOVEMENT

Course Code	19HS5501B	Year	III	Semester	Ι
Course Category	OPEN ELECTIVE-I	Branch	Common to All Branches	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course	e Outcomes
Upon s	uccessful completion of the course, the student will be able to
CO1	Understand political, social and economic background of freedom struggle
CO2	Specify major stages of freedom struggle and their ideological distinctions
CO3	Analyze the role of nationalist movement in the making of modern India(L4)
CO4	Develop an attitude of nationalism cutting across limited boundaries of religion in order to resist communal forces(L5)

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						1			1					
CO2						2			2					
CO3						2			2					
CO4						2			2					

Syllabus							
Unit No.	Contents						
Ι	Back ground : Early British Colonialism in India, early rebellions –Pazhassi raja(the cotiote war -Kerala, 18 th century), Veerapandiyan Kattabomman (Taminadu/Madras Presedency-18 th century), Paik rebellion (Kalinga/ Odisha, early 19 th century), Vellore mutiny (early 19 th century); The Sepoy Mutiny of 1857 and its consequences.	CO1					
II	Contributory Factors: Socio political consciousness, growth of Western education and its impact socio -religious movement, British Economic Policies and their impact.	CO1					
III	Rise of Organized Movements: Emergence of Indian National Congress, its policies and programmes, partition of Bengal, rise of radical nationalists, Bal-Lal-Pal, formation of Muslim league; Minto-Morely reforms, the national movement during the first world war.	CO2					

IV Gathering Momentum: Non-cooperation and civil disobedience, emergenceCO3 of Gandhi, some prominent revolutionaries - Khudiram Bose, Prafulla Chaki, Bhupendra Nath Dutt,V.D. Savarkar, Sardar Ajit singh, Lala Hardayal, Sardar Bhagat Singh, Raj Garu, Sukh Deo, Chandra Shekhar Azad,	
development of socialist ideas, communal divide.	
V Towards Independence: Constitutional developments, provincial elections, quit India movement and after, participation of women national movement during the second world war, Indian national army, naval mutiny of 1946, freedom and partition, impact on the world.	
Learning Resources	
Text Books	
1. K. Majumdar, Advent of Indepedence, Bhartiya Vidya Bhavan, Bombay 1969.	
2. R. Desai, Social Background of Indian Nationalism, 5th ed., Popular Prak	ashan,
Mumbai, 1976.	
3. Bandyopadhyay, Sekhar, Nationalist Movement in India. A reader, Oxford univ press, 2008.	versity
4. Chandra, Bipin, National and colonialism in modern India, Orient Longman L	imited
NewDelhi,1979.	
Reference Books	
e- Resources & other digital material	

Course Code	19HS5501C	Year	III	Semester	Ι
Course Category	Open Elective-I	Branch	Common to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

ENGINEERING SERVICES FOR COMMUNITY

Course Outcomes							
Upon succes	ssful completion of the course, the student will be able to:						
CO1	Understand the intricacies of engineering profession.						
CO2	Examine the role that engineering might play in the different aspects of sustainability development.						
CO3	Solve basic analytical and design problems using engineering tools, and be proficient and efficient in the use of these tools.						
CO4	Explore various awareness methods about safety, risk & risk benefit analysis						
CO5	Analyze what constitutes social justice in different areas of social life and the role that engineering might play in these.						

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L- Low-1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3	3	3				2	2	
CO2						3	3	3				2	2	
CO3						3	3	3				2	2	
CO4						3	3	3				2	2	
CO5						3	3	3				2	2	

SYLLABUS					
UNI T NO.	CONTENT	Mapped CO			
I	The Engineering Profession On being a Professional Technical Expertise and Ethical Obligations Organization of Professional Engineering	CO1, CO2, CO5			
II	Engineering Codes of Ethics Engineering and Sustainable Community Development Understanding Community Engineers' Beliefs about Community Development	CO1, CO2, CO4			

	Measuring Sustainability				
	Engineers as Problem Solvers				
	Engineers and Development				
	Engineering Disasters: Lessons to be Learned	CO1, CO3			
III	Technology for Community Development	CO4			
	Renewable Sources of Energy				
	Green and Smart Cities				
	Safety of the Public				
IV	Ethical Dilemmas Calculating the Value of Life Whistle blowing Trusting the Experts Case Studies:				
	b. Bhopal Gas Tragedy				
	Engineering and Social Justice				
v	Social Justice in Engineering Sciences	CO1, CO3.			
	Humanities and Social Sciences in Engineering Education	CO5			
	Transforming Engineering Education and Practice				
	Making Social Justice Visible and Valued				

LEARNING RESOURCES

- 1. Deborah G. Johnson. (2020) *Engineering Ethics: Contemporary and Enduring Debates*. Yale University Press.
- 2. Vesilind, P. Aarne., Gunn, Alastair S. (2010) *Hold Paramount: The Engineer's Responsibility to Society*. Cengage Learning.

Reference Books:

- 3. Luegenbiehl, Heinz., Clancy, Rockwell. (2017) *Global Engineering Ethics*. Butterworth-Heinemann, UK.
- 4. Traer, Robert. (2018) Doing Environmental Ethics. New York: Routledge.
- 5. Leydens, Jon., Lucena, Juan. (2017) *Engineering Justice: Transforming Engineering Education and Practice.* Wiley: IEEE Press.

PERSONALITY DEVELOPMENT

Course Code	19HS5501D	Year	III	Semester	Ι
Course Category	Open Elective-I	Branch	Common to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes							
Upon succes	ssful completion of the course, the student will be able to:							
CO1	Understand the fundamentals of various aspects of personality traits							
CO2	Apply various aspects of soft skills and personality development(L3)							
CO3	Analyse the various techniques of stress management(L4)							
CO4	Acquire the significant factors of affecting attitudes(L4)							
CO5	Develop Interpersonal communication.(L4)							

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L-Low-1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2									3	3		3		
CO3									3	3		3		
CO4									3	3		3		
CO5									3	3		3		

SYLLABUS					
UNIT NO.	CONTENT	Mapped CO			
I	Personality: Grooming one's personality, Personality traits, Influence of heredity and environment on personality, Effective habits Emotional intelligence.	CO1 CO2			
II	Conflict resolution Assertive nature Decision making skills.	CO1, CO2, CO4			
ш	Techniques of time management Teamwork Self confidence Stress management	CO1, CO3, CO5			
IV	Attitude-concept Positive attitude-advantages Negative attitude -disadvantages	C01, CO2,			

		CO4
	Qualities of successful leader	
V	Interpersonal relationship	CO1
	Good manners & etiquette.	CO5

LEARNING RESOURCES				
Text Book:				
1. Personality development & soft skills BarunK.Mith Oxford.				
Reference Books:				
1.Personal & emotional competence, V.Bhaskara Rao, B.S.P				
2.Step by Step –Niruparani.K, Jayasree Mohanra, Pearson.				
e- Resources & other digital material:				
https://www.usingenglish.com/comprehension/				
https://www.englishclub.com/reading/short-stories.htm				
https://www.english-online.at/All Skills				
https://www.englishclub.com/				
http://www.world-english.org/				
http://learnenglish.britishcouncil.org				

INDIAN HISTORY

Course Code	19HS5501G	Year	III	Semester	Ι
Course Category	Open Elective-I	Branch	Common to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes							
Upon succe	essful completion of the course, the student will be able to:							
CO1	Understand the socio-economic-cultural conditions of ancient India							
CO2	Know the contribution of various dynasties to Indian Culture							
CO3	Examine the invasion of different foreign rulers and their effect on Indian culture							
CO4	Analyze the impact of British colonial rule on industrialization and introduction of western education in India							
CO5	Describe the national movements against British rule.							

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L- Low-1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2						2		1
CO2						2						2		1
CO3						2						2		1
CO4						2						2		1
CO5						1						1		1

	Course Content	
UNIT-1	Ancient Indian History and Culture –Indus Valley Civilization: Salient Features, Vedic and Later Vedic Culture, Doctrines of Jainism and Buddhism, Mauryans – Administration, Ashoka 's Dhamma, Satavahanas, Guptas –Socio-Economic-Cultural Conditions.	CO1
UNIT-2	Medieval Indian History and Culture – Delhi Sultanate , Great Mughals South Supremacy and Conflicts Pallavas , Cholas, Kakatiyas, Vijayanagara Empires their Contribution to Indian Culture.	CO2
UNIT-3	Modern Indian History and Culture – European penetration In to India, Anglo-French Rivalry for Supremacy, The battle of Plassey establishment of British Power ,Consolidation and expansion tools, Subsidiary Alliance, Doctrine of Lapse .	CO3

UNIT-4	Impact of British Colonial Rule –Commercialization of Agriculture, de industrialization- decline of cottage Industries , famines and condition of Peasants, Introduction of Western Education in India, the great Revolt of 1857.	CO4
UNIT-5	The Rise of Indian National Movement – Socio- Religious Movements the Genesis of Freedom Movement –Birth of Indian National Congress, - Freedom Struggle (1885-1920) Moderate Phase Partition of Bengal- Emergence of Militant Nationalism-Swadeshi & Boycott Movement – Home Rule Movement Freedom Struggle (1920-1947) Gandhi's role in Indian National Movement .	CO5
	Learning Resources	
Text Books	 Krishna Reddy, Indian History, McGraw Hill Education; Second edition 2017 	on,
Reference Books	 Sailendranath sen, A text book of Indian history and culture, Primus, 2 VK Agnihotri, Indian History And Culture, Allied publisher private lin 28th edition, 2013 	2019. nited;
e- Resources & other digital material	https://onlinecourses.swayam2.ac.in/cec20_hs04/preview	

INTERNET OF THINGS LABORATORY

Course Code	19ES1552	Year	III	Semester	Ι
0	FO			A T	T 1
Course	ES	Branch	All branches	Course Type	Lab
Category					
Credits	1	L-T-P	0-0-2	Prerequisites	Nil
Continuous	25	Semester	50	Total Marks:	75
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Develop various sensor interfacing using Visual Programming Language						
CO2	Analyze various Physical Computing Techniques						
CO3	Evaluate Wireless Control of Remote Devices						
CO4	Design and develop Mobile Application which can interact with Sensors and Actuators						

Mapp	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note:	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
	* - Av	verage	value i	ndicate	es cours	se corr	elation	streng	th with	mapped	d PO			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3		3	2	2		3	3		3	3	3
CO2	2	3				2	2		3	3		2	3	3
CO3	3	3				2	2		3	3		2	3	3
CO4	3	3	3	3	3	2	2		3	3		3	3	3

Syllabus						
Expt. No.	Contents	Mapped CO				
Ι	Digital I/O Interface - Multicolour Led, IR Sensor, PIR, Slot Sensor.	CO1				
II	Analog Read and Write - Potentiometer, Temperature Sensor, Led Brightness Control.	CO1				
III	Dc Motor Control - Dc Motor Speed and Direction Control.	CO2				
IV	Read data from sensor and send it to a requesting client. (using socket communication) Note: The client and server should be connected to same local area network.	CO2				
V	Fabrication and direction control of wheeled robot using Arduino.	CO2				
VI	Serial Communication - Device Control.	CO2				
VII	Wireless Module Interface - Bluetooth and Wifi.	CO3				
VIII	Wireless Control of wheeled Robot using Bluetooth/Wifi.	CO3				

IX	Basic Android App Development using MIT App Inventor.	CO4
X	Smart Home Android App Development using App Inventor and Arduino.	CO4

Learning Resources
Text Books
1. Sylvia Libow Martinez, Gary S Stager, "Invent To Learn: Making, Tinkering, and
Engineering in the Classroom", Constructing Modern Knowledge Press, 2016.
Reference Books
1. Michael Margolis, "Arduino Cookbook", Oreilly, 2011.

ELECTRICAL MACHINES-II LAB

Course Code	19EE3551	Year	III	Semester	Ι
Course Category	Program Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisite	Electrical Machines-I Lab (19EE3451) Basic Electrical and Electronics Engineering Lab (19ES1151)
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

	Course Outcomes						
Upon s	successful completion of the course, the student will be able to						
CO1	Understand the performance of three phase and single phase induction motor.						
CO2	Analyze the performance of the alternator and predetermine the regulation.						
CO3	Classify the 'V' & ' Λ ' curves of synchronous motor						
CO4	Obtain the synchronous machine parameters and understand the performance of special machines such as three phase schrage motor						

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2			1			2			2	3	2
CO2	3		2			1			2			2	3	2
CO3	3		2			1			2			2	3	2
CO4	3		2			1			2			2	3	2

Syllabus						
Unit No.	Contents	Mapped CO				
1.	Brake test on three phase Induction Motor	CO1				
2.	No-load & Blocked rotor tests on three phase squirrel cage induction motor	CO1				
3.	Equivalent circuit of a three phase induction motor and measurement of slip power.	CO1				
4.	Equivalent circuit of a single phase induction motor	CO1				
5.	Brake test on single phase induction motor	CO1				
6.	Regulation of a three-phase alternator by synchronous impedance method	CO2				
7.	Regulation of a three-phase alternator by mmf method.	CO2				
8.	Regulation of a three-phase alternator by Z.P.F. method	CO2				
9.	Measurement of sequence impedance of a three-phase alternator	CO2				
10.	' V ' & ' Λ ' curves of a three-phase synchronous motor.	CO3				
11.	Determination of Xd and Xq of a salient pole synchronous machine	CO4				

12.	Brake test on three phase Schrage motor.	CO4
13.	Determination of performance of induction generator	CO1
	Learning Resources	
Te	xt Books	
1.	Dr.P. S Bimbhra-Electrical Machinery-7/e -Khanna Publishers,2018.	
2.	I.J. Nagarath and D.P. Kothari, —Electric Machines, 4/e, McGraw Hill,2010.	
3.	A.E. Fitzgerald, Charles Kingsley Jr. Stephen D. Umans, -Electric Machine	ery
	7/e, McGraw,Hill.,2013	

CONTROL SYSTEMS ENGINEERING LAB

Course Code	19EE3552	Year	III	Semester	Ι
Course	Program	Branch	EEE	Course Type	Lab
Category	Core				
Credits	1.5	L-T-P	0-0-3	Prerequisites	NIL
Continuous	25	Semester End	50	Total Marks:	75
Internal		Evaluation:			
Evaluation:					

-	-	-	

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Analyze the performance characteristics and working of Magnetic amplifier, DC & AC
	servo motors and synchros.
CO2	Determine the transfer functions of DC Motor and DC generator and acquire compensating
	networks
CO3	Demonstrate the time response analysis and performance of PID controllers
CO4	Compute/Operate programmes in MATLAB software and PLC programming which
	will help them in doing their projects. (L2 & L3)

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	1
CO2	3	3											3	1
CO3	3	3	3	2		1							3	1
CO4	3	3		3	3							2	3	2

r		
	Syllabus	
Expt.	Contents	Mapped
No.		CO
PART	Y-A (Any Eight Experiments)	
1	Time response of Second order system	CO3
2	Characteristics of Synchros	CO1
3	Effect of P, PD, PI, PID Controller on a second order systems	CO3
4	Transfer function of DC motor	CO2
5	Temperature controller using PID	CO3
6	Characteristics of magnetic amplifiers	CO1
7	Programmable logic controller – Study and verification of truth tables of logic	CO4
/	gates	
8	Characteristics of AC servo motor	CO1
9	Characteristics of DC servo motor	CO1
10	Transfer function of DC generator	CO2
11	Lag and lead compensation – Magnitude and phase plot	CO2
PART	-B (Any Two Experiments)	
1	Bode Plot, Root locus, Nyquist Plots for the transfer functions of systems using	CO4

	MATLAB.	CO2
2	Controllability and Observability test using MAT LAB.	CO4
3	State space model for classical transfer function and vice versa using MATLAB – Verification.	CO4
4	Stability of a mechanical translating system using MATLAB Simulink.	CO4
5	Block diagram representation of field controlled DC servo Motor using MATLAB Simulink.	CO4
6	Time response of first order systems for standard test signals using MATLAB	CO4 CO3

Learning Resources				
Text Books				
1. Control Systems by Nagoor Kani, RBA Publications, 2 nd edition 2017.				
2. MATLAB and its Tool Books user's manual and – Mathworks, USA.				

 Programmable Logic Controllers-Programming Method and Applications –JR.Hackworth & F.DHackworth Jr. –Pearson, 2004

ENGINEERING ECONOMICS AND MANAGEMENT

Course Code	19HS1601	Year	III	Semester	II
Course	HS	Branch	EEE	Course Type	Theory
Category					
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous	30	Semester End	70	Total Marks:	100
Internal		Evaluation:			
Evaluation:					

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	To understanding of the fundamental concepts of Managerial economics and demand.
CO2	The ability to apply knowledge to evaluate future demand and theory of production.
CO3	To understanding of the foundational concepts of cost, market structure and role of pricing methods in business
CO4	To understanding about the principles of management and human resource management function in an organization.
CO5	To understand the broad scope of marketing, societal, ethical and other diverse aspects of marketing and production.

Mapping	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1-W	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
* - Average	value	indicat	tes cou	rse cor	relatio	n stren	gth wit	h map	ped PC)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		2								3	3	
CO2	3	3		2								3	3	
CO3	3	3		2								3	3	
CO4	3	3		2								3	3	
CO5	3	3		2								3	3	

Syllabus							
Unit	Contents	Mapped					
No.		CO					
	Introduction to Managerial Economics & Demand Analysis: Definition of	CO1					
	Managerial Economics, Nature and Scope - Managerial Economics and its						
Ι	relation with other subjects. Demand Analysis: Meaning - Demand						
	determinants- Law of Demand and its exceptions.						
	Elasticity of Demand, Demand Forecasting & Theory of Production: Definition	CO2					
	-Types of Elasticity of demand - Measurement of price elasticity of demand.						
II	Demand Forecasting: Meaning - Factors governing demand forecasting -						
	Methods of demand forecasting. Production: Production Function- Law of						
	variable proportions- Isoquants, Law of returns to scale.						

III	Cost Analysis, Market Structures & Pricing: Cost concepts - Break-Even Point - Managerial Significance and limitations of BEP - (simple problems). Market: meaning characteristics of market and Types of market competition – Pricing strategies	CO3
IV	Introduction to Management & Human Resource Management: Meaning, nature, importance and Functions of Management, Henri Fayol principles. HRM: objective and function, manpower planning, sources of recruitment.	CO4
V	Introduction to Marketing Management & Production management: Meaning, Concepts of Marketing, Marketing Mix, Marketing Segmentation. Production management: objectives, Types of Plant Layout, location – Factors effecting it	CO5

Learning Resources

Text Books

1. Managerial Economics and Financial Analysis, J.V.Prabhakar Rao, Maruthi Publications, 2011

- 2. Managerial Economics and Financial Analysis, N. Appa Rao. & P. Vijaya Kumar, Cengage Publications, New Delhi, 2011.
- 3. Managerial Economics and Financial Analysis, A R Aryasri, TMH, 2011.
- 4. Management Science, Aryasri, TMH, 2004.
- 5. Management Science, Rajesh C. Jampala, P. Adi Lakshmi, Duvuri Publications, Machilipatnam, 2010.

Reference Books

e- Resources & other digital material

POWER SYSTEMS-I

Course Code	19EE3601	Year	III	Semester	Π
Course Category	Program core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	BEEE
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Cours	Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to						
COI	Understand the layout and working of various power plants, types of transmission lines						
COI	and tariff						
CO2	Estimate the transmission line parameters, mechanical design parameters of overhead						
02	lines.						
CO3	Analyse the performance of transmission lines and Economic Aspects of power system						
CO4	Demonstrate the effect of corona and importance of load sharing						

0	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	2	3											1	1
CO3	2	3			1								1	1
CO4	2												1	

	SYLLABUS	
Unit No.	Contents	Mapped CO
I	Conventional and Non-conventional power Generation Introduction - General layout of thermal power plant, working and site selection - General layout of nuclear power plant, working and site selection - General layout and working of hydroelectric power plant, site selection, pumped storage plants - Comparison of thermal and hydel power plants. Introduction to Non-Conventional Sources (elementary treatment only): Solar Energy, wind Energy.	CO1
II	Transmission line Parameters Overhead Transmission Lines: Resistance, Capacitance and Inductance calculations for single phase two wire line, three phase line with symmetrical spacing for single circuit line, proximity effect and skin effect – numerical problems	CO1 & CO2
III	Performance of transmission lines: Classification of Transmission Lines -Short, medium and long lines, Medium	
	lines- Nominal-T, Nominal-П methods, Long lines-rigorous methods of solution, ABCD constants, regulation, efficiency, Ferranti effect, Surge Impedance loading - numerical problems	CO3

IV	Mechanical design of over headlines Types of insulators, voltage distribution in suspension-type insulators, String efficiency, Methods of improving string efficiency, tension and sag calculation, effects of wind and ice loading - numerical problems Corona: Formation of corona, Critical voltages, Power loss and factors affecting corona, Merits and Demerits.	CO2 & CO4
V	Economic Aspects and Tariffs Load curve, load duration curve, definition: connected load, average load, maximum demand, load factor, demand factor, diversity factor, plant capacity factor, plant use factor- numerical problems. Tariffs: Base load and peak load stations, load sharing between base load and peak load stations - objectives of tariff, factors affecting tariff, types of tariffs block and stepped tariff – two-part tariff and three-part tariff – Frequency dependent tariff- unscheduled interchange-based tariff, Numerical problems	CO1, CO3 & CO4

Learning Resources

Text Books:

- 1. A course in Electrical Power systems, J.B. Gupta 11th edition Kataria Publications.
- 2. Electric power generation, transmission and distribution, S. N. Singh, 2nd edition- PHI Learning
- 3. Principles of Power Systems, V.K Mehta and Rohit Mehta S.Chand & Company ltd.

Reference Books:

- 1. A Text Book on Power System engineering, R.K.Rajput, Laxmi Publication (P) Ltd.
- 2. Generation, Distribution and Utilization of Electrical Energy, C.L.Wadhwa, New Age International publishers.

POWER SYSTEM PROTECTION

Course Code	19EE4601A	Year	III	Semester	II
Course Category	Program Elective	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

d.

Download our App!

	Course Outcomes						
Upon successful completion of the course, the student will be able to							
CO1	Understand operation of various switchgear equipment.						
CO2	Identify different protection schemes adopted in power system.						
CO3	Apply various relays to protect different electrical equipment.						
CO4	Implement various grounding practices and insulation coordination in the power						
	system.						

0	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High 2: Medium 1:Low)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
	101	101	100	101	100	100	101	100	107					
CO1	2	2			2	2							2	2
CO2	2	2			2	2							2	2
CO3	2	2	2		2	2							2	2
CO4	2	2	2		2	2							2	2

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
I	Circuit Breakers Circuit Breakers: Elementary principles of arc interruption, Restriking phenomenon, Restriking voltage and Recovery voltages, average and max. RRRV, numerical problems – Current chopping and resistance switching – CB ratings and specifications, auto reclosures –Numerical Problems. Types of circuit breakers: Minimum oil circuit breakers, Air blast circuit breakers, Vacuum and SE6 circuit breakers	CO1
II	Fundamentals of Protective Relaying Need for Protective systems - Nature and causes of Faults -Types of faults - Effect of faults - fault statistics - Evolution of protective relays - Zones of protection – Primary and Back-up Protection - Essential qualities of Protection Principle of operation and construction of attracted armature, balanced beam, induction disc and induction cup relays. Introduction to static relays -phase and magnitude comparators- level detectors. Numerical relays - phase and magnitude comparators- level detectors. Comparison of electromagnetic, static and numerical relays.	CO2
III	Relay Applications Universal torque equation, over current relay, direction relays, differential relays and percentage differential relays-electromagnetic-static.	CO3

	Over Current Relays Classification: Instantaneous, DMT, IDMT types and under voltage relays. Distance relays: impedance, reactance, mho and Off-Set	
	mho relays. Characteristics of distance relays and comparison-	
	Electromagnetic only.	
IV	Generator, Transformer, Bus bar and Transformer Protection	
	Protection of generators against stator faults, rotor faults, and abnormal	
	conditions. Restricted earth fault and inter-turn fault protection. Numerical	
	Problems on percentage winding unprotected. Protection of transformers:	
	Percentage differential protection, numerical problem on design of CT's ratio,	CO3
	Buchholtz relay protection. Protection of Lines: Over current, carrier current	
	and three-zone distance relay protection using impedance relays, translay	
	relay. Protection of bus bars – differential protection	
V	Protection Against Over Voltages and Travelling Waves	
	Grounded and ungrounded neutral systems Effects of ungrounded neutral	
	on system performance. Methods of neutral grounding: solid, resistance,	
	reactance - arcing grounds and grounding practices. Protection of	CO4
	transmission lines, Power stations and substations against direct lightning	
	strokes-protection against travelling waves-Insulation coordination.	

Learning Resources									
Text Books:									
1. Switchgear and Protection by Sunil S Rao, Khanna Publlishers									
2. Power System Protection and Switchgear by BadariRam, D.N Viswakarma,									
TMH Publications, 2 nd edition.									
3. Switchgear and Protection by J.B.Gupta, S.Chand publications, 2nd edition.									
Reference Books:									
1 Fundamentals of Power system protection by Paithankar and SRBhide., PHI, 2003, 2 nd edition.									
2. Electrical power systems – by C.L.Wadhwa, New Age International (P) Limited,4th edition									
3. A Text book on Power system engineering by B.L.Soni, Gupta, Bhatnagar, Chakrabarthy,									
Dhanpat Rai & Co									
e-Learning Resources:									
https://nptel.ac.in/courses/108/107/108107167/									

INDUSTRIAL ELECTRICAL SYSTEMS

Course Code	19EE4601B	Year	III	Semester	II
Course Category	Program Elective	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course	e Outcomes
Upon s	uccessful completion of the course, the student will be able to
COL	Understand the advantages and utilization of electrical systems in industries to meet
COI	societal needs.
CO2	Identify a suitable motor for electric drives and industrial applications.
CO3	Identify most appropriate heating or welding techniques for suitable applications.
CO4	Design Illumination systems for various applications.
CO5	Employ mathematical analysis considering different practical issues to design of traction
	system; analyze the performance parameter of the traction system.

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
	Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO	РО	PO	PO	PO	РО	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1														
CO2	2												2	2
CO3	2												2	
CO4	2					2							2	2
CO5		2											2	2

	SYLLABUS	
Unit No.	Contents	Mapped CO
Ι	Electric Drives Type of electric drive, choice of motor, starting and running characteristics, speed control, selecting motor power rating for continuous, intermittent and short time rating duty, heating and cooling of motors, temperature rise, particular applications of electric drives, types of industrial loads.	CO1 CO2
II	Electric Heating & Electric Welding Advantages and methods of electric heating, methods of heat transfer, Stefan's law, design of heating elements, resistance heating, construction and working principle of induction furnaces, arc furnaces and dielectric heating. Types of welding, resistance and arc welding, comparison between A.C and D.C Welding.	CO1 CO3

III	Illumination	
	Introduction, Terms used in illumination, laws of illumination, sources of light. Incandescent lamps, Discharge lamps, MV and SV lamps, fluorescent lamps- CFL-LED lamps, Types of lighting schemes, factory lighting, flood lighting and street lighting.	CO1 CO4
IV	Electric Traction-I	
	Systems of electric traction and systems of track electrification, special	CO1
	braking and regenerative braking, Speed-time curves for different services-	CO5
	trapezoidal and quadrilateral speed time curves.	
V	Electric Traction-II	
	Mechanics of train movement, Calculations of tractive efforts and power	
	output of traction motor, Specific energy consumption for given run, effect	
	of varying acceleration and breaking retardation, adhesive weight and	
	braking retardation and coefficient of adhesion. OHE in traction system,	
	collectors and modern electric locomotive.	

Learning Resources

Text Books:

1. Utilization of Electrical Energy - by E. Openshaw Taylor, Orient Longman, 2003.

2. Art & Science of Utilization of Electrical Energy - by Partab, DhanpatRai& Sons,12th edition,2012.

3. Automobile Engineering by Dr Kirpal Singh , Stadard Publishers and Distributors

Reference Books:

1. Utilization of Electrical Power including Electric drives and Electric traction – byJ.B.Gupta, S.K. Kataria & Sons, .

2. Generation, Distribution and Utilization of Electrical Energy – by C.L.Wadhwa New Age international (P) Limited, Publishers, 1997

MODERN CONTROL THEORY

Course Code	19EE4601C	Year	III	Semester	II
Course	Program	Branch	EEE	Course Type	Theory
Category	Elective				
Credits	3	L-T-P	3-0-0	Prerequisites	Control Systems
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Classify PID controllers and feedback control in different modes.
CO2	Distinguish Lag, Lead, Lag-Lead compensators and design to improve system
	performance from bode diagrams and rootlocus.
CO3	Analyze linear control system using the state space technique.
CO4	Construct controller design, observability and controllability
CO5	Illustrate the theory of z-transformations and application for the mathematical analysis
	of discrete time systems.

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

0							0	11						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3		1			1			2	3	2
CO2	3	3	3	3		1			1			2	3	2
CO3	3	3	3	3		1			1			2	3	2
CO4	3	3	3	3		1			1			2	3	2
CO5	3	3	2	2		1						2	3	2

-	-	-	

Syllabus					
Unit	Contents	Mapped			
No.		CO			
Ι	Controllers: Introduction to Block diagram of on-off control, proportional control, integral control, derivative control, PI, PD and PID control. Control objective, feedback control systems characteristics, proportional mode of feedback control, integral mode of feedback control, derivative mode of feedback control.	CO1			
II	Classical Control Design Techniques: Lag, lead, lag-lead compensators, design of compensators using Bode plots and design of compensators using Root locus.	CO2			
III	State Space Analysis of Continuous time Control Systems: State diagram, state transition matrix, conversion of state variable models to transfer function. Conversion of transfer functions to canonical state variable models. Solution of state variable models, state transmission matrix, solution of state equations.	CO3			
IV	Design of state feedback controller: Introduction, controller design by pole placement, definition of observability and controllability.	CO4			

	Discrete time systems: Introduction to discrete time systems, analog and digital	
V	controllers, the z transformation, basic definition of z-transform, Difference	CO5
	equation and its solution by the z-transform method. Initial value and Final	
	value theorems. Inverse z-transform by expanding X(z) into (i) an infinite	
	power series and (ii) partial fractions. Pulse transfer functions, pulse transfer	
	function of closed loop system using signal flow graph technique.	

Learning Resources

Text Books

- 1. M.Gopal, Control Systems Principles and Design Engineering, 2/e, Tata McGraw Hill, 2007.
- 2. Control Systems Engineering by I. J. Nagrath and M. Gopal, New Age International (P) Limited 2009, Publishers, 5th edition.
- 3. Modern Control Engineering by Katsuhiko Ogata Prentice Hall of India Pvt. Ltd., 3rd edition, 1998.

Reference Books

- 1. Katsuhiko Ogata, Modern Control Engineering, 5/e, Prentice Hall of India, 2010.
- 2. M. Gopal, Digital Control and State Variable Methods, 4/e, McGrawHill, 2012.

MICROPROCESSORS AND MICROCONTROLLERS

Course	19EE3602	Year	III	Semester	II
Code					
Course	Program	Branch	EEE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Digital
					Systems
Continuous		Semester		Total	
Internal	30	End	70	Marks:	100
Evaluation:		Evaluation:			

Course Outcomes								
Upon s	Upon successful completion of the course, the student will be able to							
CO1	Have a clear understanding of the architecture and instruction set of 8086 and							
	8051.(L2)							
CO2	Develop 8086 and 8051 assembly language programs to perform a given task.(L3)							
CO3	Interface peripherals and memories with 8086 and 8051.(L4)							
CO4	Design real-time application of Microprocessors and Microcontrollers.(L6)							

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High, M: Medium, L:Low)

Strength of correlations (H:High, M: Medium, L:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												1	
CO2	3	2		3	2								2	
CO3	3	3	2	2	3								3	
CO4	3	3	3	3	3								3	3
							Syllab	ous						
Unit	C	ontent	S										Ma	pped
No.													CC)
Ι	Intel	8086												
	Intro	duction	n and	evol	ution	of M	licrop	rocess	ors, A	Archited	cture	of 808	86, C	201
	Regis	ster Oi	rganiza	ation c	of 808	6, Mei	mory	Organi	zation	of 80	86, Pir	diagra	am	
	of 80	86.	-				-	-				_		
	Minii	mum a	nd Ma	aximur	n mod	e oper	ations	of 808	86, Ge	neral B	lus Op	eration	of	
	8086	, Read	and W	Vrite cy	ycle tii	ming c	liagrar	n.						
II	ASSI	EMBL	Y LA	NGUA	AGE I	PROG	RAM	MINO	r J				C	201,
	Addr	essing	Mode	s and	Instruc	ction s	et, As	semble	er Dire	ectives,	Proce	dures a	nd C	CO2
	Macr	os, sin	nple as	sembl	y lang	uage p	orograi	nming	5 .					
III	Basic	: Perip	oheral	s and	Interf	acing								
	Static	e Mem	nory ir	nterfac	ing wi	ith 808	86, 82	55 PP	I, Arc	hitectu	re of 8	8255 P	PI, C	203,
	Vario	ous mo	des of	opera	tions a	and int	erface	of I/C	devic	es to 8	086 us	ing 82:	55, 0	204
	Interf	facing	A/D, I	D/A Co	onvert	er, Ste	pper n	notor i	nterfa	ce.				
	Progr	amma	ble D	MA (Contro	ller 82	257, F	Program	nmabl	e Inter	rrupt (Control	ler	
	8259,	, Seria	l Com	munic	ation I	nterfa	ce USA	ART 8	251.					
IV	8051	Micro	ocontr	ollers										101
	Intel	8051	archi	tecture	e, mei	mory	organ	ization	i, flag	s, stac	ck, and	d spec	ial C	201,
	funct	ion reg	gisters	, I/O]	ports c	counte	rs and	timer	s, seri	al data	1/0, i	nterrup	ots.	.02
X 7	Addr	essing	mode	s, instr	uction	is set, l	Simple	e asser	nbly la	anguage	e Progi	rammir	ng.	
V	Inter	facing	g and A	Applic	ations	5 of 80	51	0051			1 .	1 T		203,
	Inter	tacing	extern	nal me	mory,	Interf	acing	8051	to LEI	J´s, Re	elay's a	and Lat	tch (204

Connections, interfacing seven segment display, ADC and DAC interfacing, Stepper motor control.

Learning Resources

Text Books

- 1. Douglas V. Hall, "Microprocessors and Interfacing", TMH-Revised 2nd edition, 2006.
- 2. A. K. Ray and K. M. Burchandi, "Advanced Microprocessors and interfacing", Tata McGraw Hill, 2nd edition, 2006.
- 3. Kenneth J. Ayala, "The 8051 Microcontroller Architecture, Programming and Applications", Thomson Publishers, 2nd Edition, 2004

Reference Books

- 1. Ajay V. Deshmukh, "Microcontrollers Theory & Applications", Tata McGraw Hill, 2005.
- 2. M.A. Mazidi, R.D. McKinlay, J.G. Mazidi, "The 8051 Microcontroller: A Systems Approach", Pearson, 2013.
- 3. Kenneth J Ayala, "The 8086 Microprocessors Architecture, Programming and Interfacing the PC", West Publishers, 1995.

e- Resources & other digital material

- 1. <u>https://nptel.ac.in/courses/108/103/108103157/</u>
- 2. <u>https://nptel.ac.in/courses/108/107/108107029/</u> (Web Content)
- 3. https://nptel.ac.in/courses/108/105/108105102/

ELECTRICAL MACHINE DESIGN

Course Code	19EE4602A	Year	III	Semester	ΙΙ
Course Category	Program Elective-III	Branch	E.E.E	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Electrical Machines – L&II
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to						
C01	Classify the material used for construction of Electrical machines (L1)						
CO2	Apply the basic concepts of magnetic, Electric and Heating circuits for design of electric machines.						
CO3	Analyze the concepts of construction and performance of transformers.						
CO4	Analyze the concepts of construction and performance of rotating machines.						

0	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Stren	gth of	corre	lation	s (3:H	igh, 23	: Med	ium, I	LOW)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2			1	1							3	
CO2	3	2			1	1							3	
CO3	3	2	2		1	1		2			2		3	2
CO4	3	2	2		1	1		2			2		3	2

Syllabus				
Unit No.	Contents	Mapped CO		
Ι	Fundamental Aspects of Electrical Machine Design Design of machines - design factors - limitation in design - modern trends			
	in electrical machine design – types of magnetic, electric and insulating materials – modes of heat dissipation – cooling of rotating machines – methods of cooling.	CO1		
II	Design of transformers			
	Transformer windings – output equation – design of main dimensions-	CO2,3		
	design of core - choice of flux density – determination of number of turns			
	and length of mean term - resistance and leakage reactance - no load			
	current calculation -cooling of transformers- calculation of number of			
	tubes.			
III	Design of DC Machines			
	Output equation –selection of specific magnetic and electric loadings - separation of D and L – estimation of number of conductors, armature slots	CO2,4		
	and conduct dimensions – choice of number of poles and calculation of			
	length of airgap – design of field systems, interpoles and brushes.			
IV	Design of Induction motors	CO2,4		
	output equation -main dimensions – choice of average flux density and			
	ampere conduction for meter — design of stator slots and rotor slots- design			

of rotor bars end rings- design of wound rotor - design of no load current.	
V Design of Synchronous Machines	
Types of construction – output equation - main dimensions – short circuit	
ration and its effects on the performance –design of rotor –Design of field	CO2,4
winding – Design of turbo alternators – Rotor design temperature rise and it	s
effects.	
Learning Resources	
Text Books	
1. "Electrical Machines Design", A.K.Sawhney, Dhanpath Rai & Co.	
Reference Books	
1. "Performance and Design of DC Machines", Clayton & Hancock, ELBS.	
2. "Performance and Design of AC Machines", M.G.Say; Pitman, ELBS.	
e- Resources & other digital material	

ELECTRICAL DRIVES

Course Code	19EE4602B	Year	III	Semester	II
Course Category	Program Elective-III	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisite	Power Electronics (19EE3301)
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to							
CO1	CO1 Discuss electric drive system and multi quadrant operation							
CO2	Examine the 1Φ , 3Φ rectifiers fed DC motor drive system							
CO3	CO3 Examine the Chopper fed DC motor drive system							
CO4	Analyze and Develop the Inverter fed induction motor drive system							
CO5	Review the drive system for the recent applications							

C	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2		3							3	3	2
CO2	3	2	3		3							3	3	2
CO3	3	2	3		3							3	3	2
CO4	3	2	3		3							3	3	2
CO5	3	2	3		3							3	3	2

	Syllabus	
Unit No.	Contents	Mapped CO
I	Fundamentals of Electric Drives Introduction of Electric drives and various parts, Classification of Electrical Drives, choice of electric drives and selection of drives for various applications; fundamental torque equation, multi-quadrant operation of a motor driving hoist, Equivalent values of Drive Parameters.	CO 1
II	DC Drives by Phase converters Controlled rectifier fed dc drives, single phase half controlled rectifier control, single phase fully controlled rectifier control of dc separately excited motor, rectifier control of dc series motor. Three phase half controlled rectifier control, Three phase fully controlled rectifier control of dc separately excited motor, multi quadrant operation of separately excited motor fed from fully controlled rectifier. Numerical problems.	CO 2
III	DC Drives by Choppers Introduction to chopper fed four quadrant operation, types of braking, Control of chopper fed dc separately excited, series motor and speed-torque	CO 3

	characteristics. Converter ratings and closed loop control	
	endretensites. Converter runngs und crosed roop control.	
IV	AC Drives	CO 4
	Stator voltage control, variable frequency control from voltage sources, VSI	CO 4
	fed induction motor drives, Current Source Inverter Control, rotor resistance	
	control, slip power recovery schemes-static scherbius, static Kramer drive.	
	Linear transformation from three phases to two phases and vice versa,	
	Introduction to Vector control (Block Diagram only).	
V	Essential Applications of Electrical Drives	CO 5
	Solar powered Pump Drives, Battery Powered Electrical Vehicles, Drive	05
	requirements for machine tools, Brushless DC motor drive for Servo	
	Applications. AC Traction using converter controlled dc Motors and DC	
	Traction Using Chopper controlled dc Motors.	

Learning Resources

Text Books

- 1. Fundamentals of Electric Drives by G K Dubey ,Narosa Publications.2011
- 2. R.Krishnan, Electric Motor & Drives: Modelling, Analysis and Control, Prentice Hall of India, 2001.
- 3. Vedam Subramanyam, Electric Drives Concepts and Applications, second edition, Tata McGraw Hill Education Private Limited,2011.

Reference Books

- 1. G.K. Dubey, Power Semiconductor Controlled Drives, Alpha Science International Ltd. 2001.
- 2. Bimal K. Bose, Modern Power Electronics and AC Drives, Prentice-hall of India Pvt. Ltd, 2005.
- 3. P.S. Bhimbra, 'Power Electronics', 5th edition, KhannaPublications
- 4. Ned Mohan, Tore M. Undeland, and William P. Robbins, "Power Electronics Converters Applications and Design", 3rd edition, McGraw-Hill Education.

e- Resources & other digital material

1. https://nptel.ac.in/courses/108/104/108104140/

SMART GRID

Course Code	19EE4602C	Year	III	Semester	II
Course Category	Program Elective-III	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes							
Upon su	accessful completion of the course, the student will be able to							
CO1	Understand the concepts of smart grid.							
CO2	Discuss on smart metering infrastructure							
CO3	Use Load flow and contingency methods for smart grid.							
CO4	CO4 Employ stability assessment tools for smart grid.							
CO5	Know how a smart grid can be used to meet the needs of a utility(L5)							
CO6	Create a frame work for knowledgeable power engineers to operate the grid more							
	effectively.							

0	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High 2: Medium 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3						3						3	3
CO2	3		3		3	3	3						3	3
CO3	3	3											3	3
CO4	3	3											3	3
CO5	3				3	3	3						3	3
CO6	3			3		3	3					3	3	3

	SYLLABUS	
Unit No.	Contents	Mapped CO
I	Introduction to Smart Grid : Smart grid Definition, benefits, Comparison of Traditional Grid and Smart Grid, Stakeholders in smart grid development, functions of smart grid components, Computation intelligence, Comparison between micro grid and smart grid.	CO1, CO5
II	Communication and Measurement: Introduction, wide area monitoring system, phasor measurement unit, Comparison of Conventional and smart metering, Benefits of smart meters, Functional block diagram of a smart meter architecture, advanced metering infrastructure, GIS technology, MAS technology.	CO1, CO2, CO5, CO6
III	Performance Analysis Tools For Smart Grid Design: Introduction to Load Flow Studies, Challenges to Load Flow in Smart Grid, load flow state, congestion management effect, Contingencies and their Classification, Contingency Studies for the Smart Grid, steady state contingency analysis, performance indices, sensitivity based approaches.	CO1, CO3, CO6

IV	Stability Analysis for Smart Grid Introduction to stability, voltage stability assessment types, voltage stability assessment technique, voltage stability indexing, analysis techniques.	CO1, CO4, CO6
V	Computational Tools for Smart Grid Introduction, decision support tools, optimization techniques, classical optimization techniques, linear programming, non linear programming, integer programming, dynamic programming, stochastic programming, chance constant programming.	CO1, CO6

Learning Resources
Text Books:
1. Smart Grid – Fundamentals of design and analysis by James Mamoh, Wiley – IEEE
press
Reference Books:
1. Smart Grid Technology and Application by Janaka Ekanakye, Kithsiri Liyanage,
Jianzhang Wu, Akiihiko Yokoyama and Nick Jeenkins, Wiley publications
POWER ELECTRONICS

Course Code	19EE3603	Year	III	Semester	II
Course Category	Program Core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisite	ECA (19EE3301) & ED and AC (19EE3302)
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes						
Upon su	accessful completion of the course, the student will be able to						
CO1	Understand the basic operation of various power electronic devices and their						
	characteristics, firing scheme, Snubber circuit, series and parallel connections of						
	SCR. (L1)						
CO2	Analyze the operation of Rectifiers and Choppers for R, RL Loads.						
CO3	Analyze the operation of Inverters and AC to AC converters for R, RL Loads.(L4)						
CO4	Apply the operation to derive the load voltage and current expressions for						
	Rectifiers, Choppers, Inverters and AC to AC converters for R, RL Loads.(L3)						

(Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Stren	gth of	corre	lation	s (3: H	ligh, 2	: Med	lium, 1	: Low))		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2											1	3	2
CO2	2	2										1	3	2
CO3	2	2										1	3	2
CO4	3	3										1	3	2

	Syllabus	
Unit No.	Contents	Mapped CO
I	Power Semiconductor Switches : Power Diode, Power IGBT, GTO, DIAC, Principle of operation and characteristics. Principle of operation of SCR, static, dynamic and gate Characteristics of SCR, Two-Transistor analogy of SCR, Triggering methods of SCR, Cosine firing scheme, Snubber Circuit, series and parallel connections of SCRs–static and dynamic equalizing networks, specifications and ratings of SCRs.	CO1
II	AC –DC Converters(Rectifiers):Phase angle control, single phase half wave and full wave(mid point) controlled rectifiers with R and RL load, half controlled (symmetrical configuration) and fully controlled bridge rectifiers with R, RL loads - effect of source inductance. Three phase half and fully controlled bridge converters- with R and RL loads, effect of source inductance, dual converters (both single phase and three phase).	CO2 CO4

III	DC to AC Converters (Inverters): Series Inverter and Parallel Inverter single phase full bridge inverters, comparison between VSI & CSI, three phase VSI (180 &120-degree conduction modes). Introduction to Multi level Inverters-Cascaded H Bridge inverter (principle of operation). Voltage control techniques for inverters: Pulse-width modulation techniques - single pulse, multi-pulse, sinusoidal pulse width modulation techniques.	CO3 CO4
IV	DC to DC Converters (Choppers) – Control strategies of chopper, Buck, Boost, Buck-boost choppers- Derivation of average load voltage and current expressions, Four quadrant chopper (principal of operation),AC chopper.	CO2 CO4
V	AC to AC converters(AC Voltage controllers and Cyclo-converters) :	
	Two SCR's in anti parallel with R and RL loads, derivation of RMS load	
	voltage, current and power factor. Cyclo converters – single phase mid-	CO3
	point and bridge type cyclo converters with resistive and inductive	CO4
	load.(Principle of operation).	
	Learning Resources	
Text	Books	
1.	P.S. Bhimbra, 'Power Electronics', 5th edition, KhannaPublications	
2.	M. H. Rashid, 'Power Electronic Circuits Devices and Applications',4th edit	tion,
	Pearson.	
3.	M.D. Singh and K.B. Kanchandani ,'Power Electronics',2 nd edition ,McGraw Publications,	Hill
Refer	rence Books	
1.	Ned Mohan, Tore M. Undeland, and William P. Robbins, "Power Electronic	s
	Converters Applications and Design", 3 rd edition, McGraw-Hill Education.	
2.	P.C.Sen Power Electronics, 2 edition Tata Mc Graw-Hill Publishing	4
3.	Vedam Subramanyam , 'Power Electronics-Devices Converter Applications', 2	2110
	edition, New Age International (P) Limited .	
e- Res	ources & other digital material	
1.	www.nptel.ac.in/courses/108101038/	

ENVIRONMENTAL MANAGEMENT

Course Code	19ES5601A	Year	III	Semester	II
Course	Open	Branch	Common to	Course Type	Theory
Category	Elective-II		all		
Credits	3	L-T-P	3-0-0	Prerequisites	19BS1103-
					Chemistry of
					Materials
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
Evaluation:		Evaluation:			

	Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to						
CO1	Analyze the sources and composition of Municipal Solid Waste						
CO2	Distinguish between different solid waste management methods and relate its effect on						
	soil						
CO3	Determine different types of Hazardous wastes and their safe disposal methods						
CO4	Illustrate importance of EIA and its assessment methodologies						
CO5	Assess impacts of air and water and their significance						

Mapping	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1-	Weak	correla	tion	2-M	edium	correl	ation	3-8	Strong	correla	tion			
* - /	Averag	e value	indica	tes cou	irse cor	relatio	n stren	gth wit	h mapp	bed PO				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1		1		2	2					1	2
CO2	3		2		2		2	2					1	2
CO3	3		2		1		2	2					1	2
CO4	3		1		1		2		1				1	2
CO5	3		1		1		2		1				1	2

	Course Content	
UNIT-1	Introduction: Sources and types of municipal solid wastes-waste generation rates-factors affecting generation, characteristics-methods of sampling and characterization, segregation of solid wastes – source reduction of waste – objectives of waste processing, elements of solid waste management – municipal and bio medical solid waste rules – public role in solid waste management.	CO1.
UNIT-2	Resource recovery from solid waste composting and biomethanation; materials- soil pollution: sources, types of soil pollution, effects of fertilizers, pesticides and radioactive material on soils, land disposal of solid waste; sanitary landfills – site selection; landfill liners – management of leachate.	CO2.
UNIT-3	Hazardous Waste Management: Sources and types of hazardous waste characteristics of hazardous wastes; collection-handling-processing techniques- disposal methods; hospital waste management - processing techniques - disposal.	CO3

UNIT-4	Conceptual Facts of EIA: Introduction, definition and scope of EIA objectives in EIA, basic EIA principles, classification of EIA, strategic EIA (SEIA), regional EIA, sectoral EIA, project level EIA and life cycle assessment, project cycle, Environmental baseline monitoring (EBM), preliminary study to determine impact significance, Impact Assessment Methodologies.	CO4
UNIT-5	Prediction of Impacts (Air and Water): Air and water environment, sources and basic information on water and air conceptual approach for addressing air and water environment impacts, assessment of impacts air, water, noise, soil, biological and socioeconomic impacts, assessment of impact significance.	CO5
	Learning Resources	
Text Books	 Integrated Solid waste management by Goerge Tchobanolous, Hilary Theisen Samuel A. Vigil. McGraw Hill International Editions Y. Anjaneyulu, Environmental Impact Assessment, B.S. Publications, 2003. 	&
Reference Books	 CPCB Manual on solid waste Management Technological guidance manuals of EIA, MoEF M. Anjireddy, Textbook of Environmental Science and Technology, BS Publications, 2010. 	
e- Docourroog	1 www.pptal.co.ip/courses/120108005	
& other	2 $nptel ac in/courses/10510605$	
digital	3. https://www.coursera.org/learn/solid-waste-management	
material	· · · · · · · · · · · · · · · · · · ·	

TELECOMMUNICATIONS FOR SOCIETY

Course Code	19ES5601B	Year	III	Semester	II
Course	Open	Branch	Common to	Course Type	Theory
Category	Elective-II		all		
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
Evaluation:		Evaluation:			

	Course Outcomes						
Upon s	successful completion of the course, the student will be able to						
CO1	Infer the basic knowledge of telecommunication system, regulation and standards of						
	telecom regulatory bodies.						
CO2	Able to deduce cost of different devices such as mobile, Wi-Fi and DTH operators and						
	carry out investigation of Frequency Management and Business on Bandwidth						
CO3	Make use of revolutionary changes in mobile and wireless technologies to understand						
	recent developments(L3).						
CO4	Examine different optical communication components						
CO5	Justify the use of satellite orbits, different components and sub-systems in advanced						
	communication systems.						

Mapping	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1-W	Veak c	orrelat	tion	2-Me	dium	correla	ation	3-S1	trong c	correlation	tion			
* - A	verage	value	indicat	es cou	se corr	elation	streng	th with	mapp	ed PO				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2								2	2	2
CO2	3	3	2	2								2	2	2
CO3	3	3	2	2								2	2	2
CO4	3	3	2	2								2	2	2
CO5 3 3 2														

Syllabu	15	
Unit	Contents	Mapped
No.		CO
Ι	Telecommunication Systems: Telephones, Telephone System, Facsimile,	CO1
	Internet Telephony. Telecommunication Standards and Regulations -	
	International telecommunication union (ITU) - TRAI and its role – Frequency	
	management – Cost computations – Mobile and DTH operations – Role of	
	wireless planning commission (WPC) for telecommunications in India.	
II	Telecom business management: Automated teller machines –	CO2
	Teleconferencing – Telecommuting –Customer oriented communication	
	aspects – Telecom billing - Concepts of data rate and bandwidth requirements	
	– Digital subscriber line – Broadband technologies – Digital home – Voice	
	enabled DSL.	
III	Cell Phone Technologies: Cellular Telephone Systems, A Cellular Industry	CO3
	Overview, 2G and 3G Digital Cell Phone Systems, Long Term Evolution and	
	4G Cellular Systems	
	Wireless Technologies: Wireless LAN, PANs and Bluetooth,	
	ZigBee and Mesh Wireless Networks, WiMAX and Wireless Metropolitan-	

	Area Networks	
IV	Optical Communication: Optical Principles, Optical Communication	CO4
	Systems, Fiber-Optic Cables, Optical Transmitters and Receivers.	
V	Satellite Communication: Satellite Orbits, Satellite Communication Systems,	CO5
	Satellite Subsystems, Ground Stations, Satellite Applications, Global	
	Navigation Satellite Systems.	

_	-	-	

Learning Resources
Text Books
1. Louis E. Frenzel Jr., Principles of Electronic Communication Systems, 4/e, Mc Graw Hill
Publications, McGraw-Hill Education, 2016.
2. Willium C. Y. Lee, "Wireless & Cellular Telecommunications", McGraw-Hill Companies
Inc, Third Edition, 2006.
Reference Books
1. Wayne Tomasi, Electronic Communication Systems, 5/e, Pearson Education, 2009.

Wayne Tomasi, Advanced Electronic Communication Systems, 4/e, Pearson Education, 2013.
 Dennis Roddy, Electronic Communications, 4/e, Pearson Education, 2003.

GERMAN FOR BEGINNERS

	ourse Code	19HS5601AYearIIISemester		Π		
Course Category		Open Elective II	Branch	Common to all	Course Type	Theory
Cı	redits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation		30	Semester End Evaluation	70	Total Marks	100
			Course Outco	omes		
Upon	successfu	l completion of	of the course, the student	will be abl	e to:	
CO1	Learn bas language	sics of German	Language and develop a o	consciousnes	ss for the cultural ba	ckground of the
CO2	Understa	nd authentic tex	ts/ announcements in Gerr	man		
CO3	Express t	hemselves acco	rding to the situations and	to give/seek	information in Gerr	nan
CO4	Read and	respond to an e	extract from a story, an e-n	nail message	or song or simple te	ext
CO5	Write the	spellings corre	ctly and sentences in a gra	mmatically o	correct form	

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L- Low-1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1										2				
CO2										2				
CO3										2				
CO4										2				
CO5										2				

	SYLLABUS							
UNIT NO.	CONTENT	Mapped CO						
Ι	Alphabets, Numbers, Basic Vocabulary, German States & Its Culture	CO1 CO2						
п	Modal Verbs, Separable and Inseparable Verbs, Transitive and Intransitive Verbs, Verb Conjugation.	CO1 CO2 CO3						
III	Adverbs, Prepositions, Personal Pronouns, Adjectives	CO3						
IV	Present Tense, Past Tense, Future Tense	CO3 CO4 CO5						
V	The Nominative Case, Accusative Case, Dative Case, Genitive Case, The Imperative	CO3 CO4 CO5						
•	Learning Resources							

Text Book

Netzwerk A1 Deutsch als Fremdsprache by Goyal Publications, New Delhi

E- Resources & other digital material:

https://learngerman.dw.com/en/overview

https://onlinecourses.nptel.ac.in/noc22_hs30/

https://app.memrise.com/German-1

ANALYTICAL ESSAY WRITING

Course Code	19HS5601C	Year	III	Semester	II
Course Category	Open Elective-II	Branch	Comm on to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes								
Upon succ	cessful completion of the course, the student will be able to:								
CO1	Understand the meaning of analysis and how to analyze the content of essays, paragraphs, reviews, books, articles etc.								
CO2	Classify various types of analytical topics according to context and make reports. Organize the topic and prepare hypothesis								
CO3	Construct meaningful arguments by following thematic information and suitable language.(L3)								
CO4	Analyze thesis statement, topic sentences, evidence, and supporting ideas.								
C05	Distinguish the general essays from analytical essays and reorganize the content.								

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L-Low-1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2										3		2		
CO3										3		2		
CO4										3		1		
CO5										3		3		

	SYLLABUS	
UNIT	CONTENT	Mapped
NO.		CO
	Identifying the topic sentences – meaning of analysis – History of essay	CO1
Ι	writing – Different types of essays – Role of analytical essays	CO5
	Fundamental prose skills – explore the content – discover various	CO 1,
II	approaches in writing essays – Hypothesis of the topic or research	CO2,
		CO5
	Discussing and emulating different topics – traditional methods of essay	CO 1,
III	writing – sophisticated way to present the topics	CO3
		,CO4
	Analyze the essays – anthology of essays – Using analytical essays in	CO1,
IV	different contexts – Competitive exams orientation – Comprehensive	CO4,
	questions	CO5

CO1, CO2, CO5

LEARNING RESOURCES

Text Book:

Reference Books:

- 1. Ariel Levy, ed., The Best American Essays 2015, Houghton Mifflin, 2015
- 2. Philip Lopate, ed., The Art of the Personal Essay (Anchor Books 1997)
- 3. David Foster Wallace, Consider the Lobster and Other Essays, Back Bay Books, 2007
- 4. Revising Prose by Richard Lanham
- 5. 100 ways to improve your writing by Gary Provost
- 6. Bird by Bird by Anne Lamott
- 7. The Sense of Style by Steven Pinker

e- Resources & other digital material:

https://canvas.harvard.edu/courses/8124 https://boomessays.com/blog/how-write-analytical-essay#definition https://www.ranker.com/list/best-essayists/ranker-books

INDIAN ECONOMY

Course Code	19HS5601D	Year	III	Semester	II	
Course Category	Open Elective-II	Branch	Common to all	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	NIL	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes						
Upon succe	essful completion of the course, the student will be able to:					
C01	To understanding of the fundamental concepts Indian economy and theoretical background.					
CO2	The ability to apply knowledge to evaluate the impact of the population, unemployment and poverty on the economic development.					
CO3	To understanding of the role of public and private sector in the Indian economy.					
CO4	To awareness on structure and growth of capital market in India industrial growth, how to align the management of a supply chain with corporate goals and strategies.					
C05	The capability in the analyse Public expenditure trends, issues and Assessment of Indian planning.					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L-Low-1)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		2								3	3	
CO2	3	3		2								3	3	
CO3	3	3		2								3	3	
CO4	3	3		2								3	3	
CO5	3	3		2								3	3	

	Syllabus	
	Course Content	
UNIT-1	Economic Development: A theoretical back ground: Economic growth, development and under development. characteristics of under developed and developing countries. Nature of the Indian economy, role of natural resources in economic development. Environmental protection and sustainable development.	CO1
UNIT-2	Population and Human Development: Indian population size and growth trends, reasons of the rapid growth of population, population and economic development. Employment and unemployment in India, the concept of poverty and rural poverty, income distribution in India.	CO2
UNIT-3	Industrial sector and services in Indian economy: various industrial policies, role of public and private sector in the Indian economy, LPG policy 1991,Industrial sickness in India foreign trade and foreign capital, Balance of	CO3

	payments, WTO and India.	
UNIT-4	Money and banking: characteristics of the Indian money market, price trends and inflation, commercial banking in India. Capital market in India, structure and growth of capital market in India industrial growth, RBI, Evolutional of institutional financing in India.	CO4
UNIT-5	 Public finance, Economic planning and policy: fiscal policy and monetary policy, Indian tax structure. Public expenditure trends and issues. Economic planning and policy: Evaluation of the objectives of economic planning, important features of Indian plans, Assessment of Indian planning. 	CO5
	Learning Resources	
Text Books	 Misra and Puri Indian economy Himalaya Publishing House twenty eight reupdated edition 2010. 2.T. Dyson, 2008, -India's Demographic Transition and its Conseque Development in Uma Kapila, editor, Indian Economy Since Independent edition, Academic Foundation. Dr. S.K. Singh/Prof. T.N. Jha/Dr. vinita Singh Economic Development 21s Edition. A. A. Musgrave and P.B. Musgrave, Public Finance in Theory & Practice, M Hill Publications, 5th edition, 1989. 	vised and ences for ence, 19 th st Century Ic Graw

PUBLIC ADMINISTRATION

Course Code	19HS5601E	Year	III	Semester	II	
Course Category	Open Elective-II	Branch	Common to all	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	NIL	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

	Course Outcomes							
Upon	successful completion of the course, the student will be able to:							
CO1	Describe the scope and significance of public administration							
CO2	Explain different administrative thoughts.							
CO3	Illustrate accountability and control over administration by different groups in society							
CO4	Explain the concepts of union and state government administration							
CO5	Summarize the administration process in civil services							

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L-Low-1)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2		3	3		1			2
CO2						2		3	3		1			2
CO3						2		3	3		1			2
CO4						2		3	3		1			2
CO5						2		3	3		1			2

	Syllabus						
Course Content							
UNIT-1	Introduction: Meaning scope and significance of public administration, evolution of discipline and its present status, challenges of liberalization, privatization and globalization, good governance, electronics governance and applications, New Public Management(NPM)	CO1					
UNIT-2	Administrative Thought: Scientific management theory, classical theory, bureaucratic theory, human relation theory, system theory	CO2					
UNIT-3	Accountability and Control: Legislative, executive and judicial control over administration, role of media, interest groups, NGOs, civil society, Right to Information ACT(RTI), social audit, citizen chapters.	CO3					
UNIT-4	Union and State Government Administration: President, prime minister, council of ministers, cabinet, central and state secretariats, boards and commissions, governor, chief minister and council of ministers, central state relations, finance commission, Neeti ayog	CO4					
UNIT-5	Civil Services: Recruitment, training and other condition of services, district administration, role of collector, local self governing institutes – 73 rd and	CO5					

	74	th constitutional amendments act.							
	Learning Resources								
Tort	1.	Avasti, Maheswari , Public Administration, 31/e, Lakshmi Narain Agarwal book	κs,						
Text Books		india							
DOOKS	2. B.L.Fadia ,Kuldeep faida, Indian administarion,8/e Sahitya Bhawan,india								
	1.	Nicholas Henry, Public Administration and public affairs,21/e Prentice Hall of							
		India, 2012.							
	2.	D. Ravindra Prasad, V.Sivalinga Prasad, P. Satyanarayana, Administrative							
Reference		Thinkers, 2/e, Sterling Publishers, 1991							
Books	3.	D.D Basu, Introduction to the Indian Contitution,21/e, Lexis Nexis Butterworths,							
		Wadhwa Nagpur, 2013.							
	4.	Ramesh K Arora, Rajini Goyal Indian Public Administration, 3/e New Age							
		International publishers India ,1995							

Course Code	19HS5601F	Year	III	Semester	II
Course Category	Open Elective-II	Branch	Common to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes								
Upon succe	Upon successful completion of the course, the student will be able to:							
CO1	Understand the community in which they work and their relation.							
CO2	Identify the needs and problems of the community and involve them in problem- solving.							
CO3	Develop capacity to meet emergencies and natural disasters.							
CO4	Take part in national integration and social harmony.							
C05	Apply their knowledge in finding practical solutions to individual and community problems.							

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L- Low-1)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3	2					1	1	
CO2						3	2					1	1	
CO3						3	2					1	1	
CO4						3	2					1	1	
CO5						3	2					1	1	

	SYLLABUS						
UNIT	CONTENT	Mapped					
NO.		CO					
Ι	 National Service Scheme A) History and its Objectives B) Organizational structure of N.S.S. at National, State, University and College Levels C) Advisory committee and their functions with special reference to college principal, Programme officer, N.S.S. group leader and N.S.S. volunteers in the implementation. 	CO1, CO2, CO5					
	N.S.S. volumeers in the implementation.						

	National Integration						
	A) Need of National integration	CO1					
Π	B) Various obstacles in the way of National Integration; such as	CO2,					
	caste, religion, language and provisional problems etc.						
	N.S.S. Regular Activities						
	A) Traffic regulation						
	B) Working with Police Commissioner's Office						
	C) Working with Municipal Corporation of Vijayawada						
	D) Working with Health Department	CO1,					
III	E) Blind assistance	СОЗ,					
	F) Garments collection	CO4					
	G) Non-formal education						
	H) 'Environmental Education, Awareness and Training (EEAT)'						
	I) Blood donation						
	Second Complex and second						
	A) Nature and its objectives						
	B) Selection of camp site and physical arrangement						
	C) Organization of N.S.S. camp through various committees and	CO1,					
IV	discipline in the camp	CO3,					
	D) Activities to be undertaken during the N.S.S. camp.	005					
	E) Use of the mass media in the N.S.S. activities.						
	Special Programme						
	A) Legal awareness						
	B) Health awareness	CO1					
	C) First-aid	CO1,					
V	D) Career guidance	CO2, CO5					
	E) Leadership training - cum - Cultural Programme						
	F) Globalization and its Economic Social Political and Cultural						
	impacts.						

LEARNING RESOURCES						
Text Book:						
1. National Service Scheme Manual, Government of India.						
Reference Books:						
1. Training Programme on National Programme scheme, TISS.						
2. Orientation Courses for N.S.S. Programme officers, TISS.						
3. Case material as Training Aid for field workers, Gurmeet Hans.						
4. Social service opportunities in Hospitals, Kapil K.Krishan, TISS.						
5 Carial Ducklause in India David Abaria						

Social service opportunities in Hospita
 Social Problems in India, Ram Ahuja.

PROFESSIONAL COMMUNICATION

Course Code	19HS5601G	Year	III	Semester	II
Course Category	Open Elective- II	Branch	Common to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisite s	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes									
Upon succ	Upon successful completion of the course, the student will be able to:								
CO1	Communicate proficiently in interviews and all social situations.								
CO2	Demonstrate an ability to use effective verbal and non-verbal communication skills.								
CO3	Use the formats, strategies and possible content of business communication at work place.(L3)								
CO4	Prepare professional documents including web related(On-line) communication.								
CO5	Analyze texts, diagrams and improve both reading and writing skills which would help in academics as well as professional career.								

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L-Low-1)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2									3	3		3		
CO3									3	3		3		
CO4									3	3		3		
CO5									3	3		3		

SYLLABUS						
UNIT	CONTENT	Mapped				
NO.		CO				
Ι	Verbal communication – conciseness, clarity, correctness Non-verbal communication – body language Barriers to communication Reading Short Passages, News Articles, Technical Papers and Short Stories - Note making and note taking.	CO1, CO2, CO5				
Ш	Professional Letters – Purpose, Style and format. E- mail – format and etiquette. Presentation skills Group discussion	CO1, CO3, CO4				

III	Technical Report writing – Types: Business/Technical, Components, Style and Formats – Writing a Technical Proposal. Administrative drafting and correspondence - Memos, Minutes and Web notes.	CO1, CO3, CO4
IV	Information transfer. Meeting skills Team dynamics	CO1, CO2, CO5
V	Job application - Resume – Structure of Resume/CV – covering letter – writing SOPs. Interview Skills: types of interviews, successful interviews, interview etiquette, dress code, body language, telephone/online interviews, one- to-one interview & panel interview, FAQs related to job interviews, answering strategies.	CO1, CO2, CO4

LEARNING RESOURCES

Reference Books:

1. Basu B.N. Technical Writing, 2011 Kindle edition

2. C Muralikrishna & Sunitha Mishra, Communication Skills for Engineers, 2 nd edition, NY: Pearson, 2011.

3. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.

4. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.

e- Resources & other digital material:

1. https://www.britishcouncil.org/english

- 2 http://www.5minuteenglish.com/
- 3. http://www.bbc.co.uk/learningenglish/
- 4. http://www.better-english.com/
- 5. http://www.nonstopenglish.com/
- 6. https://www.usingenglish.com/comprehension/
- 7. https://www.englishclub.com/reading/short-stories.htm
- 8. https://www.english-online.at/
- 9. https://www.englishclub.com/

10. http://www.world-english.org/ http://learnenglish.britishcouncil.org/

Online Dictionaries:

Cambridge dictionary online; MacMillan dictionary; Oxford learner's dictionaries

BASICS OF FINANCE

Course Code	19HS5601H	Year	III	Semester	Π
Course Category	Open Elective-II	Branch	Commo n to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes										
Upon succe	ssful completion of the course, the student will be able to:										
C01	To understanding of the basics of finance and objective of finical management										
CO2	The ability knowledge in financial planning and implementation of financial plans										
CO3	To understanding problems of over-capitalisation and under-capitalisation										
CO4	To know about time value of money and financial forecast										
CO5	The capability to analyse various sources of loans and identify the best source of loan for finance.										

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L- Low-1)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		2								3	3	
CO2	3	3		2								3	3	
CO3	3	3		2								3	3	
CO4	3	3		2								3	3	
CO5	3	3		2								3	3	

	Syllabus	
	Course Content	
UNIT-1	Introduction: Business Finance Defined-Traditional and Modern Views; Scope and Functions of Finance; Finance Function vs. Accounting Function; Objectives of Financial Management-Profit Maximization vs. Wealth Maximization.	CO1
UNIT-2	Financial Planning: Concept of Financial Planning; Process of Financial Planning; Characteristics of Sound Financial Plans; Factors Affecting Financial Plan.	CO2
UNIT-3	Capitalisation and Capital Structure : Concept, Nature and Scope of Capitalisation; Earnings Theory and Cost Theory of Capitalisation; Over-Capitalisation; Under-Capitalisation; Capital Structure Theories and Factors Determining Capital Structure	CO3
UNIT-4	Financial Forecasting and Time Value of Money : Concept of Financial Forecasting; Sales Forecast; Income Forecast; Financial Position Forecast; Forecasting for Growth and External Funds Requirements; Time Value of Money-Discounting and Compounding.	CO4

	Pattern of Capital Requirements: Long-Term and	d Medium-Term Financing							
UNIT-5	– Purpose, Sources and Instruments; Short-Term Financing-Purpose, Sources CO5								
	and Instruments.								
	Learning Resources								
	1. Brealey, Richard A and Steward C. Myers:	Corporate Finance, McGra	w Hill,						
	Int.Ed., New York.								
T (2. Chandra, Prasanna : Financial management,	Tata Mc Graw Hill, Delhi.							
Text	3. Hampton, John: Financial Decision Making, Prentice Hall, Delhi.								
BOOKS	4. Pandey, I.M.: Financial Management, Vikas Publishing House, Delhi.								
	5. Van Horne, J.C. and J.M. Wachowicz Jr. : Fundamentals of Financial								
	Management, Prentice-Hall, Delhi.								
	1. Van Horne, James C Financial Management	; Harper and Row, New Yo	rk.						
	2. Pinches, George E : Essentials of Financia	ll Management ; Harper an	d Row,						
	New York.								
Reference	3. Khan MY, Jain PK : Financial Management	; Tata McGraw Hill, New I	Delhi.						
Books	4. Archer, Stephen, H., Chate G Marc, Racett	e, George; Financial manag	ement;						
	John Wiley, New York.								
	5. Block, Stanley B, Geoffrey A Hilt : Found	lations of Financial Manag	ement;						
	Richard D. Irwin, Homewood.	-							

BASICS OF MARKETING

Course Code	19HS5601I	Year	III	Semester	II
Course Category	Open Elective-II	Branch	Common to all	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes
Upon succe	essful completion of the course, the student will be able to:
CO1	Understand issues of marketing with an emphasis on learning to develop responsive marketing strategies that meet customer needs
CO2	Make use of the key analytical frameworks and tools used in marketing in relation to segmenting and targeting of products
CO3	Get acquainted with the components of marketing mix, stages in new product development
CO4	Analyse the objectives and methods for pricing products and selecting channel members
CO5	Evaluate the techniques of promotion mix

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H-High3, M-Medium-2, L-Low-1)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1							3	3	2			3		3
CO2							3	3	2			3		3
CO3							3	3	2			3		3
CO4							3	3	2			3		3
CO5							3	3	2			3		3

	Syllabus											
	Course Content											
UNIT-1	Introduction to Marketing: Definition, Nature, Scope, Importance of Marketing, Core Concepts of Marketing, Philosophies of Marketing.	CO1										
UNIT-2	Market Segmentation ,Targeting and Positioning: Definition, Levels of Segmentation, Bases of Segmentation, Target Market, Positioning Strategies.	CO2										
UNIT-3	Marketing Mix: 4P's, Classification of Products, Product Life Cycle (PLC)-Stages, New Product Development(NPD)- Types, Process	CO3										
UNIT-4	Pricing: Definition, Objectives, Pricing Strategies- Channels of Distribution: Definition, Functions, Levels	CO4										
UNIT-5	Promotion Mix: Definition, Objectives, Importance, Elements, Integrated Marketing Communication(IMC)	CO5										
	Learning Resources											
Text Books	 Philip Kotler, Gary Armstrong and Prafulla Agnihotri, Principles of Ma Pearson India, 17th Edition. New Delhi: 2018 Rajan Saxena, Marketing Management, Tata-McGraw Hill, Fifth Editi 	arketing, ion New										

		Delhi :2015
	1.	Etzel, Walker, Stanton & Pandit, "Marketing Concepts & Cases", Tata McGraw
		Hill, New Delhi.
D.f	2.	Govindarajan M., "Marketing Management, Concepts, Cases, Challenges and
Reference		Trends", PHI Private Limited, New Delhi, 2007.
DUUKS	3.	Karunakaran, "Marketing Management", Himalaya Publishing House, Mumbai.
	4.	Charles W. Lamb, Joseph F. Hair, Carl McDaniel, Harish Kapoor, Henry Klaise
		"MKTG", Cengage Learning, New Delhi, 2012.
Disital	1.	https://nptel.ac.in/courses/110/104/110104068/
Digital Resources	2.	https://nptel.ac.in/courses/110/107/110107147/
	3.	https://nptel.ac.in/courses/110/104/110104070/

MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

Course	19EE3651	Year	III	Semester	II
Code					
Course	Program	Branch	EEE	Course Type	Lab
Category	Core				
Credits	1.5	L-T-P	0-0-3	Prerequisites	MPMC
					Basics
Continuous		Semester		Total Marks:	
Internal	25	End	50		75
Evaluation:		Evaluation:			

	Course Outcomes											
Upon successful completion of the course, the student will be able to												
CO1	Develop assembly language programs to perform various arithmetic and logical											
	operations with 8086 micro-processors and 8051 micro-controllers.											
CO2	Design various interfacing techniques related to real time applications.											
CO3	Perform multiprocessor communication.											

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High, M: Medium, L:Low)

~														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	3	1	3	3								1	
CO2	3	3	3	3	3								3	3
CO3	3	3	1	3	3								2	2
	Svllabus													

	List of Experiments	
Expt. No.	Contents	Mapped CO
1	Introduction to MASM/TASM.	CO1
2	Arithmetic operations using 8086 Microprocessors – Multi byte addition and subtraction, Multiplication and Division, ASCII – arithmetic operation	ICO1
3	Logic operationsusing 8086 Microprocessors – Shift and rotate – Converting packed BCD to unpacked BCD, BCD to ASCII conversion.	g CO1
4	Sorting of numbers using 8086 Microprocessors.	CO1
5	Arithmetic operations using 8051 Microcontrollers.	CO1
6	Checking 5 th bitusing 8051 Microcontrollers.	CO1
7	Display stringusing 8051 Microcontrollers.	CO1
8	Programs using special instructions like swap, bit/byte, set/reset etc.using 8051 Microcontrollers	cO1
9	Reading and Writing on a parallel port.	CO2
10	Traffic light Interface	CO2
11	Stepper Motor Interface	CO2
12	8259 – Interrupt Controller	CO2
13	Keyboard Interface	CO2
14	ADC Interface	CO2
15	Serial communication implementation using 8051 Microcontrollers	CO3

POWER ELECTRONICS LAB

Course Code	19EE3652	Year	III	Semester	II
Course Category	Program Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisite	ECA Lab (19EE3351) ED&AC Lab (19EE3352)
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

Course Outcomes								
Upon s	Upon successful completion of the course, the student will be able to							
CO1	CO1 Study and observe the characteristics of SCR and IGBT.(L2)							
CO2	Analyse theoretically and practically Rectifiers.(L4)							
CO3	Analyse theoretically and practically inverters.							
CO4	Analyse theoretically and practically AC to AC converters.							
CO5	Analyse the operation of Choppers.							

(Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2	2		2								1	3	2
CO2	2	2		2								1	3	2
CO3	2	2		2								1	3	2
CO4	2	2		2								1	3	2
CO5	2	2		2								1	3	2

	Syllabus						
Expt.	Contents	Mapped					
No.		CO					
	PART-A (Any Eight Experiments)						
1	Study of characteristics of SCR	CO1					
2	Study of characteristics of IGBT	001					
3	Single phase fully controlled bridge converter with R and RL loads						
4	Three phase half controlled bridge converter with RL-Load	002					
5	VSI fed three phase induction motor drive	CO3					
6	Single phase Series inverter	005					
7	Single phase AC Voltage controller with R and RL loads	CO4					
8	Single phase cyclo-converter with R and RL loads	C04					
9	IGBT based four quadrant chopper controlled DC motor drive	CO5					
10	Buck Converter	0.05					

P	PART-B: (Any Two Experiments)							
11	Single phase dual converter with R, RL and RLE loads	CO2						
12	Boost Converter	CO5						
13	Single phase Parallel inverter							
14	Single phase bridge inverter	CO3						
15	Cascaded H Bridge inverter							
	Learning Resources							
Text	Books							
1. P	.S. Bhimbra, 'Power Electronics', 5 th edition, KhannaPublications							
2. N	2. M. H. Rashid, 'Power Electronic Circuits Devices and Applications',4 th edition,							
P	Pearson.							

ORGANIZATION BEHAVIOUR

Course Code	19HS1701	Year	IV	Semester	Ι
Course Category	Humanities & Social Sciences	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course							
	Outcomes							
Upon	successful completion of the course, the student will be able to							
CO1	Demonstrate the applicability of the concept of organizational behaviour to understand							
	the behaviour and culture of people in the organization.							
CO2	Demonstrate the applicability of analyzing the complexities associated with management							
	of individual behaviour in the organization.							
CO3	Analyze the complexities associated with management of the group behaviours (Group							
	Dynamics) in the organization and role of leadership.							
CO4	Demonstrate how the organizational behaviour can integrate in understanding the							
	motivation for creating positive work culture.							
CO5	Demonstrate how the organizational behaviour can influence in understanding the							
	importance of learning and leadership for an organization to create positive impact.							
Mapi	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)							

mapping of	mapping of course outcomes with r rogram outcomes (CO/ FO/FSO Matrix)												
Note: 1-W	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation												
* - Average	* - Average value indicates course correlation strength with mapped PO												
COs	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS												
CO1								3	3		2		3
CO2								3	3		2		3
CO3								3	3		2		3
CO4								3	3		2		3
CO5								3	3		2		3

Syllabus							
Course Content							
	Introduction to Organizational Behaviour and Culture: Definition-						
UNIT-1	Nature- Scope-Roles of Manager- Challenges-Opportunities- Creating and	CO1					
	Maintaining Organizational Culture						
	Foundations of Individual Behaviour: Perception: Definition-Factors- The						
LINIT 2	Perception Process- Motivation: Definition- Factors-Theories of Motivation:	cor					
UNIT-2	Maslow's Hierarchy Theory of Needs-Herzberg's Theory-Expectancy	02					
	Theory						
	Foundations of Group Behaviour: Group-Definition- Types of Groups-						
UNIT-3	Stages of Group Development- Group Decision Making- techniques-Johari	CO3					
	Window- Transactional Analysis						

UNIT-4	Managing Group Behaviour - Team- Definition- Types of Teams- Team Building- Conflict – Intra-Personal and Inter Personal Conflict	CO4					
UNIT-5	Leadership - Definition- Types- Theories of Leadership: Trait theories-	CO5					
Learning R	Contingency meones-Learning- Demittion- Theones of Learning						
	1. Aswathappa K., "Organizational Behavior-Text, Cases and Games", Hin	nalaya					
Text	Publishing House, New Delhi, 2008.						
DUUKS	2. Stephen B. Robbins, "Organizational Behavior", PHI, New Delhi, 2008						
	1. Pareek Udai: "Understanding Organizational Behavior", Oxford Univ	versity					
	Press, New Delhi, 2007.						
Reference	2. Sharma V.S., Veluri: "Organizational Behavior", JAICO Publishing House	, New					
Books	Delhi, 2009.						
	3. Mary Ann Von Glinow, Radha R. Sharma, Steven L. McShane, "Organiza	tional					
	Behavior", Tata McGraw Hill Education, New Delhi, 2008.						

POWER SYSTEMS-II

Course Code	19EE3701	Year	IV	Semester	Ι
Course Category	Program core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	BEEE, PS-I
Continuous Internal Evaluation	30	Semester End Evaluation	70	Fotal Marks	100

Cours	Course Outcomes					
Upon s	successful completion of the course, the student will be able to					
CO1	Understand the per unit representation, importance of power flow studies and fault					
COI	studies					
CO2	Analyze power flows and different types of faults in a power system					
CO3	Investigate stability and load frequency control of power system					
CO4	Solve the economic dispatch problem with and without losses					

0	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												1	
CO2	3	2											1	1
CO3	2			2		1							1	1
CO4	3	2											1	

	SYLLABUS	
Unit No.	Contents	Mapped CO
Ι	Per unit Representation and Power Flow Studies Single line diagram, per unit quantities, per unit impedance diagram of a power system, Y bus formation by direct inspection method. Necessity of power flow studies - Derivation of static load flow equations– Load flow solutions using Gauss Seidel Method, Newton Raphson method, Fast Decoupled methods - algorithm and flowchart, Comparison of Different methods of load flow, numerical Problems (max. 3-buses and one iteration only)	CO1 & CO2
II	Short Circuit Analysis Necessity of fault studies, Types of faults, symmetrical components - positive, negative and zero sequence components of voltage, current and impedance. Sequence Networks - LG, LL, LLG faults with and without fault impedance - numerical Problems	CO1 & CO2
III	Stability Analysis Concepts of steady state, dynamic and transient stabilities - transfer reactance, synchronizing power coefficient, power angle curve - determination of steady state stability and methods to improve steady state stability - Derivation of swing equation – Determination of transient stability by equal area criterion, application of equal area criterion to	CO3

	sudden change in mechanical input-derivation of critical clearing angle and critical clearing time - Methods to improve transient stability.	
IV	Load Frequency Control	
	Modeling of speed governing system, turbine model, generator and load model - Automatic generation control of a single area system, steady state analysis, dynamic response, PI control of single area system - two area system, tie-line bias control.	CO3
V	Economic Operation of Power Systems	
	Optimal operation of generators in thermal power stations, heat rate curve, cost curve, incremental fuel and production costs - Derivation of coordination equation for economic dispatch problem with and without losses - numerical Problems	CO4

Learning Resources
Text Books:
1. Modern power system analysis - D.P.Kothari and I.J.Nagrath - 4 th edition - TMH publications
 Power system analysis - HadiSaadat – 4th edition- TMH publications. Power Generation, Operation, and Control - Wood and Wollenberg- 3rd edition - Wiley Publishers
4. Electric Energy systems Theory - O.I.Elgerd, 2 nd edition - TMH Publishers

Reference Books:

1. Power System Analysis: Operation and Control - AbhijitChakrabarti, SunitaHalder – 3rd edition PHI Learning.

Power System Analysis and design - B.R.Gupta, - 4thEdition S.Chand Publishers.
 Electrical Power Systems - Ashfaq Husain - 7thedition - CBS Publishers & Distributors.

HIGH VOLTAGE ENGINEERING

Course Code	19EE4701A	Year	IV	Semester	Ι	
Course	Program	Branch	EEE	Course Type	Theory	
Category	Elective-IV					
Credits	3	L-T-P	3-0-0	Prerequisites	Power systems	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1 Analyze with the generating principle of operation and design of high voltages and hi	gh				
currents.(L3)					
CO2 Understand different methods for measurement of high voltages and high currents.					

CO3 Acquaint the need for testing techniques of high voltage equipment's

Mapping of course out comes with Program outcomes(CO/PO/PSO Matrix)

Note:1-Weakcorrelation2-Mediumcorrelation3-Strongcorrelation *-Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	2							2	2
CO2	3	2	2	2	2	2							2	2
CO3	3	2	2	2	2	2							2	2
CO4	3	2	2	2	2	2							2	2
CO5	3	2	2	2	2	2							2	2

	Syllabus	
Unit	Contents	Mapped
No.		CO
	Generation of High Direct Current and Alternating Current Voltages	
	Generation of High DC Voltages: Principle of Voltage doubler circuits, Voltage	CO1
т	multiplier circuits and Van de Graaff Generators. Generation of High AC	COI
1	Voltages: Cascade transformers and resonant transformers. Generation of High-	
	Frequency ac High Voltages: Tesla coil arrangement.	
	Generation of Impulse Voltages and Impulse Currents	
	Generation of Impulse Voltages: Standard impulse wave shapes, Circuits for	CO1
II	producing impulse waves and Multistage impulse generators-Marx Circuit.	
	Generation of Impulse Currents: Circuit for producing impulse current waves,	
	Impulse current generator and Tripping and control oh impulse generators.	
	Measurement of High Voltages	
	Measurement of High DC Voltages: Series resistance micro ammeter, Resistance	CO2
	potential divider, Generating voltmeters and Sphere and other spark gaps.	
Ш	Measurement of High AC Voltages (Power Frequency):Series impedance	
	ammeters, Potential dividers, Potential transformers, Electrostatic voltmeters and	
	Sphere gaps. Measurement of High AC Voltages (High Frequency) and Impulse	
	Voltages: Potential dividers, Peak voltmeters and sphere gaps.	

	Measurement of High Currents:							
IV	Measurement of High Direct-Currents, Measurement of High Alternating	CO2						
	currents and Measurement of Impulse Currents	02						
	High-Voltage Testing of Electrical Apparatus:							
V	Testing of insulators and bushings, Testing of isolators and circuit breakers,							
	Testing of cables, Testing of transformers, Testing of surge arresters and Radio	CO3						
	interference measurements							

Learning Resources

Text Books

- 1. High Voltage Engineering by M.S.Naidu and V. Kamaraju, McGraw Hill Education (India) Private Limited, 4th Edition.
- 2. High Voltage Engineering by C.L.Wadhwa, New Age Internationals (P) Limited, 2nd Edition.

ReferenceBooks

1. High Voltage Engineering: Fundamentals by E.Kuffel, W.S.Zaengl and J.Kuffel, Elsevier, 2ndEdition.

e-Resources&otherdigitalmaterial

1.https://nptel.ac.in/courses/108/104/108104048/

2.<u>https://www.btechguru.com/courses--nptel--electrical-engineering--high-voltage-dc-transmission-video-lecture--EE--EE100024V.html</u>

HIGH VOLTAGE DIRECT CURRENT

Course Code	19EE4701B	Year	IV	Semester	Ι
Course Category	Program Elective IV	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes					
Upon su	uccessful completion of the course, the student will be able to					
CO1	Identify HVDC power terminal equipment, classify type of HVDC connectivity					
	and planning of HVDC system.(L2)					
CO2	Understanding the choice of pulse conversion, control characteristic, firing angle					
	control.					
CO3	Interpret different types of converter control techniques					
CO4	Able to calculate voltage and current harmonics, and design of filters and					
	understand the reactive power necessity of conventional control.					
CO5	Investigate Protection requirements, factors affecting power flow analysis and					
	analyse real-time system.					

0	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2		2			2					2	2	2
CO2	3	2	2										2	2
CO3							2						2	2
CO4	3	2	2				2						2	2
CO5	2	2	2				2						2	2

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
Ι	Basic Concepts of DC Transmission	
	Components of HVDC transmission systems: Types of HVDC Links -	CO1
	Comparison of AC & DC transmission – Application of DC Transmission	COI
	System – Planning and Modern trends in DC transmission, HVDC light.	
II	Analysis of HVDC Converters	
	Choice of Converter configuration – Analysis of Graetz – Characteristics of	CO_{2}
	6 Pulse – converter operation –Equivalent circuit –12 Pulse converters	02
	configurations –Small HVDC tapping.	
III	Converter and System Control	
	Principle of DC Link Control – Individual phase control, Equidistant firing	
	control Constant-current loop – Inverter extinction-angle control – Starting	CO3
	and stopping of DC-link – Power Control.	

 IV Harmonic analysis, Filters – Characteristics and Non–Characteristic harmonics – Calculation of AC Harmonics —effects of harmonics – Calculation of voltage & current harmonics – Effect of Pulse number of harmonics. Design of AC filters 	³ 1 CO4
Reactive Power requirement – Need of reactive power compensation in HVDC system, sources of reactive power.	1
 V Faults ,Protection and case study of HVDC system Converter faults-over current and over voltage protection in converte station –Case study of any existing HVDC link in India, Case study of any existing HVDC link in the world. Power flow analysis in AC/DC systems Component models, solution of DC load flow, Parallel operation o HVDC/AC systems, Multi-terminal systems. 	co5

Learning Resources
Text Books:
1. HVDC Power Transmission Systems: Technology and System Interactions – by
K.R.Padiyar, New Age International (P) Limited, and Publishers.
2. Direct Current Transmission - by E.W.Kimbark, John Wiley & Sons
Reference Books:
1. HVDC Transmission – J. Arrillaga.
2. Power Transmission by Direct Current – by E.Uhlmann, B.S.Publications.
Learning Resources:
https://nptel.ac.in/courses/108/104/108104013/

https://www.brown.edu/Departments/Engineering/Courses/ENGN1931F/HVDC_Proven_Tech nologySiemens.pdf

PROCESS CONTROL

Course Code	19EE4701C	Year	IV	Semester	Ι
Course Category	Program Elective-IV	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes										
Upon s	Upon successful completion of the course, the student will be able to										
CO1	Understand technical terms and concepts associated with process control domain										
CO2	Analyze the basic control actions used in process industries										
CO3	Develop, tune and implement PID Controllers to achieve desired performance for										
	various processes										
CO4	Develop & implement control schemes for various processes control applications										
CO5	Extend the performance of the complex systems with advanced control strategies										

0	Contribution of Course Outcomes towards achievement of Program Outcomes &													
Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2
CO1	2						2							
CO2			3			3								
CO3			3								3		3	
CO4			2				3		2					2
CO5					1			2				1.		1

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
I	Introduction to Process control: Terms and objectives, piping and Instrumentation diagram, instrument terms and symbols. Regulatory and servo control, classification of variables. Process characteristics: Process equation, degrees of freedom, modeling of simple system, Self-regulating processes, interacting and non- interacting processes, Process lag, load disturbance and their effect on processes	C01
II	Controller modes: Basic control action, two position, multi-position, floating control modes. Continuous controller modes: proportional, integral, derivative. Composite controller modes: P-I, P-D, P-I-D, Integral wind-up and prevention. Auto/Manual transfer, Bump less transfer. Response of controllers for different test inputs. Selection of control modes for processes like level, pressure, temperature and flow.	CO2

III	Final control elements: Pneumatic and electrical actuators, Valve positioners. Pneumatic and electrical dampers, Control valves types, construction details, various plug characteristics. Energy efficient valves - Valve sizing - selection of control valves. Inherent and installed valve characteristics. Fail-safe operation, Cavitations and flashing in control valves, Instrument air supply specifications.	CO3
IV	Controller tuning Methods: Evaluation criteria - IAE, ISE, ITAE. Process reaction curve method, continuous oscillation method, damped oscillation method. Auto tuning. Closed loop response of I & II order systems, with and without valve, measuring element dynamics.	CO4
V	Advanced control system: Cascade control, ratio control, feed forward control. Over-ride, split range and selective control. Multivariable process control, interaction of control loops. Introduction to Dynamic Matrix Control. Case Study, boiler drum level control.	CO5

Learning Resources

Text Books:

1. K.Krishna swamy, Process control, Anshan Publishers .2nd edition, june 2011.

- 2. Surekha Bhanot, Process control principles and applications, oxford university press, 2008.
- 3. D.R. Coughanowr, Steven E LeBlanc, Process Systems Analysis and Control, McGraw Hill, Singapore, 3rd Edition, 2009.
- 4. G.Stephanopoulos, Chemical Process Control-An Introduction to Theory and Practice Prentice Hall of India, New Delhi, 3rd Edition, 2008.

Reference Books:

- 1. B.W. Bequette, Process Control Modeling, Design and Simulation, Prentice Hall of India, New Delhi, 2004.
- 2. C.A.Smith and A.B Corripio., Principles and Practice of Automatic Process Control, John Wiley and Sons, New York, 3rd Edition 2005.
- 3. Paul W.Murril, Fundamentals of Process Control Theory, ISA press, New York, 3rd Edition, 2000.
- 4. Bela G. Liptak, Instrument Engineers' Handbook, Volume II: Process Control and Optimization, CRC Press, 4th Edition, 2005.

Learning Resources: https://nptel.ac.in/courses/103/105/103105064/

WIND AND SOLAR ENERGY

Course Code	19EE4702A	Year	IV	Semester	Ι
Course Category	Program Elective V	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

COU	COURSE OUTCOMES									
Upon s	successful completion of the course, the student must be able to									
COI	Understand the basics of wind energy, wind turbines, solar energy and grid									
COI	integration.									
CO2	Explain and classify wind turbines, instruments for measuring solar radiation,									
002	solar collectors, solar cell and solar MPPT techniques									
CO3	Analyze different types of wind generators, solar cell and solar collectors									
CO4	Outline about integration of solar and wind energy systems									

0	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1	3	1		2			3					2	3	2
CO2	3	2		3			3					2	3	2
CO3	3	1		3			3					2	3	2
CO4	3	1		3			2					2	3	2
CO5	3	1		2			3					2	3	2

SYLLABUS		
Unit	Contents	Mapped
No.		CO
Ι	Wind energy Basics	
	History of wind power, Indian and Global statistics, Characteristics of	
	Wind, principles of wind energy conversion, components of wind energy	CO1
	conversion system, classification of wind turbines- horizontal axis and	GO •
	vertical axis, Betz limit ratio, advantages and disadvantages of wind energy	CO 2
	system.	
Π	Wind turbine technologies	
	Review of modern wind turbine technologies, Fixed and Variable speed wind	
	turbine, Squirrel-cage Induction generator, Wound rotor motor induction	CO 1
	generators, Doubly Fed Induction Generator, Synchronous Generators,	CO 3
	Permanent Magnet Synchronous Generators and their characteristics.	
III	Solar Thermal	CO 1

	Physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar	CO 2
	radiation and sun shine, solar radiation data.Flat plate and concentrating	CO 3
	collectors, classification of concentrating collectors, orientation and thermal	
	analysis, advanced collectors.	
IV	Solar photovoltaic	
	Photovoltaic energy conversion, solar cell fundamentals, solar cell	CO1
	classification- Amorphous, mono-crystalline, polycrystalline, performance of	CO2
	solar cell, V-I characteristics of a PV panel, Maximum Power point Tracking	CO 3
	(MPPT) algorithm	
V	Integration of solar and wind	
	Wind power integration into grid-power system stability, economics of grid	CO 1
	network, codes and standards for grid integration, grid connected PV	CO1
	systems, control scheme used for single stage grid connected PV system, case	004
	study on hybrid system(PV-Wind)	

Total Periods: 45, 9 periods for each unit.

Learning Resources		
Text Books:		
1. Non-Conventional Energy Sources by G.D. Rai, Khanna publishers, 5th edition, 2014.		
2. Wind Energy Theory and Practice by Siraj Ahmed publisher PHI learning Pvt Ltd ,3 rd		
edition, 2016		
3. Renewable Energy Sources and Emerging Technologies by D.P Kothari, K.C Singal,		
RakeshRanjan, PHI learning Pvt Ltd, 2 nd edition, 2012		
Reference Books:		
1. Renewable Energy resources by Tiwari and Ghosal, publisher Narosa, 2005		
2. Solar Photo Voltaics Fundamentals, Technology and application by Chetan Singh		

- Solar Floto voltates Fundamentals, Technology and application by Chetan Singh Solanki, publisher PHI learning Pvt Ltd, 3rd edition,2019
 Renewable Energy Resources by John Twidell and Tony Weir , publisher Taylor and Francis, 2nd edition 2006
POWER QUALITY & FACTS

Course Code	19EE4702B	Year	IV	Semester	Ι
Course Category	Program Elective-V	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Power Electronics, Power Systems
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes						
Upon su	Upon successful completion of the course, the student will be able to						
CO1	Observe various Power Quality problems related to voltage and frequency. (L1)						
CO2	Identify various sources of voltage disturbances and suggest suitable mitigating						
	techniques.						
CO3	Observe the concepts of various FACTS controllers.(L1)						
CO4	Estimate the effect of shunt and series reactive compensation						
CO5	Illustrate the impact of FACTS controllers on power systems.(L2)						

0	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2												2	2
CO2	2	2											2	2
CO3	2												2	2
CO4	2	2											2	2
CO5	2	2											2	2

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
Ι	Power and Voltage Quality	
	General classes of power quality problems, Power quality terms, Power	
	frequency variations, power quality evaluation procedure. Voltage quality	CO1,
	Transients, long and short duration voltage variations, Voltage imbalance,	CO2
	Waveform distortion, Voltage flicker.	
	Voltage sags and Interruptions	
	Sources of sags and interruptions, Estimating Voltage sag performance.	
II	Fundamental Principles of Protection	CO2
	Solutions at the end-user level, Evaluating economics of different ride-	02
	through alternatives, Motor-Starting Sags	
III	FACTS Concept and general system considerations	
	Flow of power in an AC system. Limits of the loading capability. Power flow	GOA
	and dynamic stability considerations of a transmission interconnection.	CO3, CO5

	Relative importance of controllable parameters, types of FACTS controllers	
	basic concents of Active filter LIPEC IPEC and DSTATCOM	
	basic concepts of Active filter, of FC, if FC and DSTATCOM	
IV	Static shunt compensators	
	Objectives of shunt compensation, midpoint voltage regulation for line	CO4
	segmentation, end of line voltage support to prevent voltage instability,	CO5
	methods of controllable var generation, variable impedance type static var	
	generators – TCR and TSR, TSC, FC-TCR, TSC-TCR	
V	Static series compensators	
	Concept of series capacitive compensation, improvement of transient	CO4
	stability, power oscillation damping. GTO thyristor controlled series	CO5
	capacitor (GSC), thyristor switched series capacitor (TSSC), and thyristor	
	controlled series capacitor (TCSC)	

Learning Resources

Text Books:

- 1. Electrical Power Systems Quality by Roger C.Dugan, Mark F. Mc Granaghan, Surya Santoso, H. Wayne Beaty, Third edition, TMH publishers, 2012
- 2. Understanding FACTS, N.G.Hingorani and L.Guygi, Delhi IEEE Press 2001

Reference Books:

- 1. Understanding Power Quality Problems by Math H.J. Bollen, Wiley-IEEE press, 1999
- 2. Flexible AC transmission system (FACTS) by YONG HUE SONG and ALLAN T JOHNS, Institution of Electrical Engineers, London

Learning Resources:

https://nptel.ac.in/courses/108/106/108106025/

https://nptel.ac.in/courses/108/107/108107114/

DIGITAL CONTROL SYSTEMS

Course Code	19EE4702C	Year	IV	Semester	Ι
Course Category	Program Elective-V	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Control systems
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Explain and classify discrete representation of LTI systems. L2						
CO2	Evaluate knowledge on Z-Transforms in discrete time analysis. L5						
CO3	Examine the conventional and state space methods for discrete systems L4						
CO4	Analyze the stability criterion for digital systems and methods L4						
CO5	Develop and design digital compensators explicitly compared to continuous time						
	compensators. L3						

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - A	verage	value	indica	tes cou	rse cor	relation	n streng	gth wit	h mapp	bed PO)				
CC)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CC)1	3											2	3	3
CC)2	3	3										2	3	3
CC)3	3			2								2	3	3
CC)4	3			2								2	3	3
CC)5	3		3	2								2	3	3

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	Introduction and signal processing:	CO1
	Introduction to analog and digital control systems – Advantages of digital	
	systems - Typical examples - Continuous and Discrete Time Signals -	
	Sample and hold devices – Sampling theorem and data	
	reconstruction(A/D&D/A) – Frequency domain characteristics of zero order	
	hold.	
II	z-transformations:	CO2
	z-Transforms – Theorems – Finding inverse z-transforms – Formulation of	
	difference equations and solving – Block diagram representation – Pulse	
	transfer functions and finding open loop and closed loop responses.	
III	State space analysis and the concepts of Controllability and observability:	CO3
	State space representation of discrete time systems – Solving Discrete Time	
	state space equations – State transition matrix and its properties –	
	Discretization of continuous time state equations - Concepts of	
	controllability and observability – Kalman Test(without proof).	
	State Feedback Controllers and State Observers	

	Design of state feedback controller through pole placement – Necessary and sufficient conditions – Ackerman's formula – Design of state observers (Full Order).	
IV	Stability analysis:	CO4
	Mapping between the s-Plane and the z-Plane - Primary strips and	
	Complementary strips – Stability criterion – Modified Routh's stability	
	criterion (bilinear transformation) and Jury's stability test.	
V	Design of discrete-time control systems by conventional methods:	CO5
	Transient and steady state specifications – Design using frequency response	
	in the w-plane for lag and lead compensators	

Learning Resources

Text Books

1. Discrete-Time Control systems - K. Ogata, Pearson Education/PHI, 2nd Edition.

2. Digital Control Systems, Kuo, Oxford University Press, 2nd Edition, 2003.

Reference Books

1. Digital Control and State Variable Methods by M.Gopal, TMH, 4th Edition

RENEWABLE ENERGY SOURCES

Course Code	19EE2701C	Year	IV	Semester	Ι
Course Category	Inter Disciplinary Elective-II	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

COUI	RSE OUTCOMES
Upon s	successful completion of the course, the student must be able to
CO1	Understand the basics of solar energy, wind energy, bio mass, geothermal energy, Ocean energy and principles of energy conversion.
CO2	Explain and classify instruments for measuring solar radiation solar collectors, solar energy storages, wind turbines, geothermal, MHD and fuel cell.
CO3	Analyze different types of solar collectors, solar cell, combustion characteristics of bio-gas, thermo dynamic cycles, operating conditions of fuel cell
CO4	Outline about solar radiation, power from solar module, performance characteristics of wind mill, potential and conversion techniques of tidal and wave energy, mini-hydel power plants and their economics.

Contr	Contribution of Course Outcomes towards achievement of Program Outcomes &Strengths of correlations													
L-Lo	w				M	-Mediu	ım	H-High						
	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2		3			2	2	1			2	2	3
CO2	3	3		1		3	3	2	1			1	3	2
CO3	3	3		3			2					1	2	2
CO4	3	2		1			1					1	3	3

SYLLABUS				
Unit No.	Contents	Mapped CO		
Ι	Principles of Solar Radiation and Solar Energy Collection Role and potential of new and renewable source, the solar energy option, environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data. Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors	CO 1 CO 2 CO 3 CO 4		
II	Solar Energy Storage, Applications and Photovoltaic Energy Conversion Different methods, sensible, latent heat and stratified storage, solar ponds. Solar applications solar heating/cooling technique, solar distillation and drying. Solar cell fundamentals, solar cell classification, performance of solar cell- power from solar module.	CO 1 CO 2 CO 3 CO 4		

III	Wind Energy and Bio-Mass Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria. Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of bio-gas digesters, gasyield, combustion characteristics of bio-gas, utilization for cooking	CO 1 CO 2 CO 3 CO 4
IV	Geothermal Energy and Ocean Energy Resources, types of wells, methods of harnessing the energy, potential in India. OTEC, principles of utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques.	CO 1 CO 2 CO 3 CO 4
V	Energy Conversion Principles of energy conversion, MHD generators, principles, MHD power generation systems. Fuel cells, principles, of fuels and operating conditions, merits and demerits of different types of fuel cells, mini-hydel power plants and their economics.	CO 1 CO 2 CO 3 CO 4

	Learning Resources
Tex	t Books:
3.	Non-Conventional Energy Sources by G.D. Rai, Khanna publishers, 5th edition, 2014.
4.	Renewable Energy Sources and Emerging Technologies by D.P Kothari, K.C Singal,
	Rakesh Ranjan, PHI learning Pvt Ltd, 2 nd edition, 2012
Ref	erence Books:
1.	Renewable Energy resources by Tiwari and Ghosal, publisher Narosa, 2005
2.	Renewable Energy Resources by John Twidell and Tony Weir , publisher Taylor and
	Francis, 2 nd edition 2006
3.	Solar Photo Voltaics Fundamentals, Technology and application by Chetan Singh Solanki,
	publisher PHI learning Pvt Ltd, 3 rd edition,2019
4.	Wind Energy Theory and Practice by Siraj Ahmed publisher PHI learning Pvt Ltd ,3rd
	edition, 2016

WEB TECHNOLOGIES

Course Code	19IT2701C	Year	IV	Semester	Ι
Course Category	Inter Disciplinary Elective-II	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	JAVA
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1	Understand the basic concepts of HTML,CSS,XML,JDBC connectivity, Servlets and JSP
CO2	use Java script for validation of web pages
CO3	Analyze the concepts of DOM, JDBC Architecture and life cycles of Servlets and JSP
CO4	Compare the concepts of HTML and XML, Servlets and JSP(L4)
CO5	Develop simple web applications using JDBC, servelet and JSP(L6)

Cont corr	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)													
	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			2		2								2	2
CO2			2		2								2	2
CO3			2		2									
CO4			2		2									
CO5			2	2	2									

Syllabus				
Unit No	Contents	Mapped CO		
Ι	INTRODUCTION TO WEB TECHNOLOGIES: History of the web, Overview of HTTP, HTML Introducing HTML document structure, Creating Headings, links, paragraph, images, tables, frames, forms and html controls on a web page	CO1		
II	INTRODUCING CASCADING STYLE SHEETS: Inline, External, Internal, Style class, Multiple styles, Introducing JavaScript, Using Variables, Using Operators, Working with Control Flow statements, Working with functions, Handling Events, Using Arrays, Creating objects in Java Script	CO2		

III	WORKING WITH XML: Introduction to XML, XML Basics, XML Technologies, Extensible HTML (XHTML), Java API for XML Processing, Document Object Model (DOM)	CO1, CO3
IV	WORKING WITH DATABASE: Getting started with JDBC, Defining ODBC, Introduction to JDBC, Components of JDBC, JDBC Architecture, Types of Drivers, Working with JDBC APIs, Creating a Simple Application, Working with Prepared Statement, Using Callable Statement	CO1, CO3, CO4, CO5
V	 WORKING WITH SERVLETS: Introducing the MVC architecture, Describing Servlets, Understanding Servlets, What are servlets, introducing the Servlet API, Servlet Life Cycle, Developing First Servlet Application WORKING WITH JSP: Introduction to JSP, Understanding JSP, Describing the JSP Life Cycle, Creating a Simple JSP pages 	CO1, CO3, CO4, CO5,

I

Learning Resources

Text books 1. Web Technologies, Black Book, Kogent Learning Solutions Inc, Dreamtech Press. 2. JDBC, Servlets, and JSP, New Edition, Santhosh Kumar K, Kogent Learning Solutions Inc, Dreamtech Press. References 1. Web Technologies ,Uttam K. Roy, Volume 2 , Oxford University 2. Core Servlets and Java Server Pages Volume 1 CORE TECHNOLOGIES , Marty Hall and Larry Brown Pearson 3. Internet and World Wide Web – How to program ,Dietel and Nieto 4. An Introduction to Web Design and Programming –Wang-Thomson 5. Professional Java Server Programming S.AllamRaju and othersApres(dreamtech) 6. Java Server Programming ,IvanBayross and others,The X Team,SPD 7. Beginning Web Programming-Jon Duckett WROX. 8. Java Server Pages, Pekowsky, Pearson. 9. Java Script,D.Flanagan,O''Reilly,SPD. e-Resources and other Digital Material 1. 1. http://nptel.ac.in/courses/106105084/13 2. http://www.javatpoint.com/html-tutorial	
 Web Technologies, Black Book, Kogent Learning Solutions Inc, Dreamtech Press. JDBC, Servlets, and JSP, New Edition, Santhosh Kumar K, Kogent Learning Solutions Inc, Dreamtech Press. References Web Technologies ,Uttam K. Roy, Volume 2 , Oxford University Core Servlets and Java Server Pages Volume 1 CORE TECHNOLOGIES , Marty Hall and Larry Brown Pearson Internet and World Wide Web – How to program ,Dietel and Nieto An Introduction to Web Design and Programming –Wang-Thomson Professional Java Server Programming S.AllamRaju and othersApres(dreamtech) Java Server Programming-Jon Duckett WROX. Java Server Pages, Pekowsky, Pearson. Java Seript,D.Flanagan,O''Reilly,SPD. e-Resources and other Digital Material http://nptel.ac.in/courses/106105084/13 http://www.javatpoint.com/html-tutorial 	Text books
 JDBC, Servlets, and JSP, New Edition, Santhosh Kumar K, Kogent Learning Solutions Inc, Dreamtech Press. References Web Technologies ,Uttam K. Roy, Volume 2 , Oxford University Core Servlets and Java Server Pages Volume 1 CORE TECHNOLOGIES , Marty Hall and Larry Brown Pearson Internet and World Wide Web – How to program ,Dietel and Nieto An Introduction to Web Design and Programming –Wang-Thomson Professional Java Server Programming S.AllamRaju and othersApres(dreamtech) Java Server Programming ,IvanBayross and others,The X Team,SPD Beginning Web Programming-Jon Duckett WROX. Java Server Pages, Pekowsky, Pearson. Java Server Pages, Pekowsky, Pearson. Java Script,D.Flanagan,O''Reilly,SPD. e-Resources and other Digital Material http://nptel.ac.in/courses/106105084/13 http://www.javatpoint.com/html-tutorial 	1. Web Technologies, Black Book, Kogent Learning Solutions Inc, Dreamtech Press.
Solutions Inc, Dreamtech Press. References 1. Web Technologies ,Uttam K. Roy, Volume 2 , Oxford University 2. Core Servlets and Java Server Pages Volume 1 CORE TECHNOLOGIES , Marty Hall and Larry Brown Pearson 3. Internet and World Wide Web – How to program ,Dietel and Nieto 4. An Introduction to Web Design and Programming –Wang-Thomson 5. Professional Java Server Programming S.AllamRaju and othersApres(dreamtech) 6. Java Server Programming ,IvanBayross and others,The X Team,SPD 7. Beginning Web Programming-Jon Duckett WROX. 8. Java Server Pages, Pekowsky, Pearson. 9. Java Server Pages, Pekowsky, Pearson. 9. Java Server Pages, 106105084/13 1. http://nptel.ac.in/courses/106105084/13 2. http://www.javatpoint.com/html-tutorial	2. JDBC, Servlets, and JSP, New Edition, Santhosh Kumar K, Kogent Learning
References 1. Web Technologies ,Uttam K. Roy, Volume 2 , Oxford University 2. Core Servlets and Java Server Pages Volume 1 CORE TECHNOLOGIES , Marty Hall and Larry Brown Pearson 3. Internet and World Wide Web – How to program ,Dietel and Nieto 4. An Introduction to Web Design and Programming –Wang-Thomson 5. Professional Java Server Programming S.AllamRaju and othersApres(dreamtech) 6. Java Server Programming ,IvanBayross and others,The X Team,SPD 7. Beginning Web Programming-Jon Duckett WROX. 8. Java Server Pages, Pekowsky, Pearson. 9. Java Script,D.Flanagan,O"Reilly,SPD. e-Resources and other Digital Material 1. http://nptel.ac.in/courses/106105084/13 2. http://www.w3schools.com/ 3. https://www.javatpoint.com/html-tutorial	Solutions Inc, Dreamtech Press.
 Web Technologies ,Uttam K. Roy, Volume 2 , Oxford University Core Servlets and Java Server Pages Volume 1 CORE TECHNOLOGIES , Marty Hall and Larry Brown Pearson Internet and World Wide Web – How to program ,Dietel and Nieto An Introduction to Web Design and Programming –Wang-Thomson Professional Java Server Programming S.AllamRaju and othersApres(dreamtech) Java Server Programming ,IvanBayross and others,The X Team,SPD Beginning Web Programming-Jon Duckett WROX. Java Server Pages, Pekowsky, Pearson. Java Server Pages, Pekowsky, Pearson. Java Seript,D.Flanagan,O''Reilly,SPD. e-Resources and other Digital Material http://nptel.ac.in/courses/106105084/13 http://www.w3schools.com/ https://www.javatpoint.com/html-tutorial 	References
 Core Servlets and Java Server Pages Volume 1 CORE TECHNOLOGIES , Marty Hall and Larry Brown Pearson Internet and World Wide Web – How to program ,Dietel and Nieto An Introduction to Web Design and Programming –Wang-Thomson Professional Java Server Programming S.AllamRaju and othersApres(dreamtech) Java Server Programming ,IvanBayross and others,The X Team,SPD Beginning Web Programming-Jon Duckett WROX. Java Server Pages, Pekowsky, Pearson. Java Script,D.Flanagan,O"Reilly,SPD. e-Resources and other Digital Material <u>http://nptel.ac.in/courses/106105084/13</u> <u>http://www.yavatpoint.com/html-tutorial</u> 	1. Web Technologies ,Uttam K. Roy, Volume 2 , Oxford University
 Hall and Larry Brown Pearson Internet and World Wide Web – How to program ,Dietel and Nieto An Introduction to Web Design and Programming –Wang-Thomson Professional Java Server Programming S.AllamRaju and othersApres(dreamtech) Java Server Programming ,IvanBayross and others,The X Team,SPD Beginning Web Programming-Jon Duckett WROX. Java Server Pages, Pekowsky, Pearson. Java Script,D.Flanagan,O"Reilly,SPD. e-Resources and other Digital Material <u>http://nptel.ac.in/courses/106105084/13</u> <u>http://www.w3schools.com/</u> https://www.javatpoint.com/html-tutorial 	2. Core Servlets and Java Server Pages Volume 1 CORE TECHNOLOGIES, Marty
 Internet and World Wide Web – How to program ,Dietel and Nieto An Introduction to Web Design and Programming –Wang-Thomson Professional Java Server Programming S.AllamRaju and othersApres(dreamtech) Java Server Programming ,IvanBayross and others,The X Team,SPD Beginning Web Programming-Jon Duckett WROX. Java Server Pages, Pekowsky, Pearson. Java Script,D.Flanagan,O"Reilly,SPD. e-Resources and other Digital Material http://nptel.ac.in/courses/106105084/13 http://www.w3schools.com/ https://www.javatpoint.com/html-tutorial 	Hall and Larry Brown Pearson
 4. An Introduction to Web Design and Programming –Wang-Thomson 5. Professional Java Server Programming S.AllamRaju and othersApres(dreamtech) 6. Java Server Programming ,IvanBayross and others,The X Team,SPD 7. Beginning Web Programming-Jon Duckett WROX. 8. Java Server Pages, Pekowsky, Pearson. 9. Java Script,D.Flanagan,O"Reilly,SPD. e-Resources and other Digital Material 1. <u>http://nptel.ac.in/courses/106105084/13</u> 2. <u>http://www.w3schools.com/</u> 3. https://www.javatpoint.com/html-tutorial 	3. Internet and World Wide Web – How to program ,Dietel and Nieto
 5. Professional Java Server Programming S.AllamRaju and othersApres(dreamtech) 6. Java Server Programming ,IvanBayross and others,The X Team,SPD 7. Beginning Web Programming-Jon Duckett WROX. 8. Java Server Pages, Pekowsky, Pearson. 9. Java Script,D.Flanagan,O"Reilly,SPD. e-Resources and other Digital Material <u>http://nptel.ac.in/courses/106105084/13</u> <u>http://www.w3schools.com/</u> 3. https://www.javatpoint.com/html-tutorial 	4. An Introduction to Web Design and Programming –Wang-Thomson
 6. Java Server Programming ,IvanBayross and others,The X Team,SPD 7. Beginning Web Programming-Jon Duckett WROX. 8. Java Server Pages, Pekowsky, Pearson. 9. Java Script,D.Flanagan,O"Reilly,SPD. e-Resources and other Digital Material <u>http://nptel.ac.in/courses/106105084/13</u> <u>http://www.w3schools.com/</u> https://www.javatpoint.com/html-tutorial 	5. Professional Java Server Programming S.AllamRaju and othersApres(dreamtech)
 Beginning Web Programming-Jon Duckett WROX. Java Server Pages, Pekowsky, Pearson. Java Script,D.Flanagan,O'Reilly,SPD. e-Resources and other Digital Material <u>http://nptel.ac.in/courses/106105084/13</u> <u>http://www.w3schools.com/</u> https://www.javatpoint.com/html-tutorial 	6. Java Server Programming ,IvanBayross and others,The X Team,SPD
 Java Server Pages, Pekowsky, Pearson. Java Script,D.Flanagan,O"Reilly,SPD. e-Resources and other Digital Material <u>http://nptel.ac.in/courses/106105084/13</u> <u>http://www.w3schools.com/</u> https://www.javatpoint.com/html-tutorial 	7. Beginning Web Programming-Jon Duckett WROX.
 9. Java Script,D.Flanagan,O'Reilly,SPD. e-Resources and other Digital Material http://nptel.ac.in/courses/106105084/13 http://www.w3schools.com/ https://www.javatpoint.com/html-tutorial 	8. Java Server Pages, Pekowsky, Pearson.
e-Resources and other Digital Material 1. http://nptel.ac.in/courses/106105084/13 2. http://www.w3schools.com/ 3. https://www.javatpoint.com/html-tutorial	9. Java Script, D.Flanagan, O"Reilly, SPD.
 <u>http://nptel.ac.in/courses/106105084/13</u> <u>http://www.w3schools.com/</u> https://www.javatpoint.com/html-tutorial 	e-Resources and other Digital Material
 <u>http://www.w3schools.com/</u> https://www.javatpoint.com/html-tutorial 	1. <u>http://nptel.ac.in/courses/106105084/13</u>
3. https://www.javatpoint.com/html-tutorial	2. <u>http://www.w3schools.com/</u>
	3. https://www.javatpoint.com/html-tutorial

OPTIMIZATION TECHNIQUES

Course Code	19ME2701B	Year	IV	Semester	Ι
Course Category	Inter Disciplinary Elective-II	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Operations Research
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes						
Upon successful completion of the course, the student will be able to							
CO1	D1 Apply various Classical optimization techniques						
CO2	Select suitable Numerical method for optimization of Engineering Problems.(L4)						
CO3	CO3 Analyze multi stage decision making process through dynamic programming(L4)						
CO4	CO4 Enumerate fundamentals of Integer programming technique						

	Con	tribut	ion of	Cours	se Out	comes	s towa	rds ac	hiever	nent of	Progra	m Out	comes &	&
			Sur	engun	of cor	relatio	nis (п	: nigi	I, IVI: I	vieululi	I, L: L(jw)	1	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	2		2		2		2		2	2	2
CO2	2	3	3	2		2		2		2		2	2	2
CO3	2	3	3	2		2		2		2		2	2	2
CO4	2	2	3	2		2		2		2		2	2	2

Syllabus					
Unit No	Contents	Mapped			
		CO			
Unit-I	Introduction to optimization: Introduction, engineering applications of optimization, statement of an optimization problem-design vector, design constraints, constraint surface, objective function, classification of optimization problems, optimization techniques. Classical Optimization techniques: Introduction, single variable optimization, multi variable optimization with no constraints, multi variable optimization with equality constraints-Lagrange multiplier method.	CO1			
Unit-II	Non-linear programming, I : One Dimensional Minimization Methods: Introduction, unimodal function, elimination methods- unrestricted search, exhaustive search, interval halving method, Fibonacci method, golden section method, interpolation method,	CO2			
Unit-III	Non-linear programming II: Direct Search Method- Nelder- Mead Simplex method, Indirect search methods- steepest descent method (Cauchy's method), Newton Method, Marquardt Method	CO2			
Unit-IV	Dynamic Programming: Multistage decision processes, Concepts of sub optimization- calculus method and tabular methods, Linear programming as a case of D.P	CO3			

	Integer Programming: Introduction, Graphical Representation, Gomory's					
Unit V	cutting plane method, Balas algorithm for zero-one programming, Branch-	CO4				
Unit- v	and- bound method, Penalty Function method; Basic approaches of Interior	004				
	and Exterior penalty function methods.					

Learning Resource

Text books:
1. S.S.Rao, Engineering optimization theory and practice, , 3rd Edition, New age
international,2007.
2. Van Wylen, Fundamentals of Classical Thermodynamics, .John Wylie.
Reference books
1. H.A.Taha, Operations Research, , 9th Edition, Prentice Hall of India, 2010.
2. F.S.Hillier, and G.J.Lieberman, Introduction to Operations Research, , 7th Edition, TMH,
2009.
e- Resources & other digital material
1. <u>https://nptel.ac.in/courses/111/105/111105039/</u>
2. <u>https://nptel.ac.in/courses/106/108/106108056/</u>

 2:
 https://nptel.ac.in/courses/111/104/111104071/

 3:
 https://nptel.ac.in/courses/112/105/112105235/

PROJECT MANAGEMENT & OPTIMIZATION

Course Code	19ME2701C	Year	IV	Semester	Ι
Course Category	Inter Disciplinary Elective-II	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Industrial Engineering and Management
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes					
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Explain basics of project management					
CO2	Analyze activities involved in project.(L3)					
CO3	Describe various project cost management techniques(L2)					
CO4	Apply various Linear programming techniques and sequencing methods					
CO5	select transportation and assignment technique to minimize the cost					

	Con	tribut	ion of Str	Cours	se Out of cor	comes relation	s towa ons (H	rds ac [: Higl	hiever 1, M: I	nent of Mediun	Progra n, L:Lo	m Out w)	comes &	&
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3			2		2			3	2	2	3
CO2	2	2	3	2	2				2		3	2	2	3
CO3	2	2	3			3		2			3	2	2	3
CO4	2	2	3			3		2			3	2	2	3
CO5	2	2	3			3		2			3	2	2	3

Syllabus				
Unit No	Contents	Mapped		
		CO		
Unit-I	Concepts of project management: Meaning, definition and characteristics of a project, technical and socio-cultural dimensions; project life cycle phases, project planning and graphic presentation; work breakdown structure, manageable tasks; size of network; blow down NW; identity and logic dummy activity; Fulkerson rule for numbering NW; time-scaled NW	C01		
Unit-II	NW analysis: Network modelling, Probabilistic model-various types of activity times estimation, programme evaluation review techniques (PERT), probability of completing the project, deterministic model- critical path method (CPM), critical path calculation, crashing of simple of networks	CO2		

Unit-III	Project duration and control: Importance and options to accelerate project completion; time cost trade off; fixed variable and total costs; use of floats and cost optimization; project performance measures; project monitoring info and reports; project control process; Gant chart and control chart; cost-schedule S-graph; planned cost of work schedule (PV), budgeted/ earned cost of work completed (EV) and actual cost of work completed (AC); schedule and cost variances (SV, CV) forecasting final project costs.	CO2
Unit-IV	LINEAR PROGRAMMING: Linear Programming Problem Formulation, Graphical solution Simplex method, artificial variables techniques-Two–phase method, Big-M method, Duality Principle SEQUENCING: Introduction, sequencing of n jobs through two machines, n jobs through three machines –two jobs through 'm' machines	CO3
Unit-V	TRANSPORTATION PROBLEM: Formulation, Optimal solution, U-V method, unbalanced transportation problems, Degeneracy. ASSIGNMENT PROBLEM: Formulation, Optimal solution, Variants of Assignment Problem-Traveling Salesman problem.	CO4

Learning Resource
Text books:
1. Prasanna Chandra, Projects Planning, Implementation and Control, Tata McGraw Hill
Publishing Company Limited, New Delhi, 1995.
2. Operations Research, by S.D.Sharma, Kedarnath & Ramnath publications (15 th edition),2013
Reference books
1. Project Management Institute (PMI), A Guide to the Project Management of Knowledge
Newton Square, PA, 1996
2. J.R. Meredith and S.J. Mantel, Project Management: A Managerial Approach. John Wiley and
Sons, New York, 1995.
3. L.S. Srinath, PERT & CPM Principles & Applications, 3rd edition, East west Press, 2001.
4. Operations Research, (2nd edition) by R.Pannerselvam, 2009, PHI Publications, Noida
e- Resources & other digital material
1. <u>https://nptel.ac.in/courses/105/106/105106149/</u>
2. <u>https://nptel.ac.in/courses/110/104/110104073/</u>
3. https://nptel.ac.in/noc/courses/noc16/SEM2/noc16-ce06/
4. https://nptel.ac.in/courses/112/106/112106134/

POWER SYSTEMS LAB

Course Code	19EE3751	Year	IV	Semester	Ι
Course Category	Program Core	Branch	EEE	Course Type	Lab
Credits	1	L-T-P	0-0-2	Prerequisites	BEEE
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Determine the parameters of various machines used in power systems.					
CO2	Understand the characteristics of different relays used in electrical Industry.					
CO3	Determine parameters, loading capability, compensation equipment required in practical transmission network.					
CO4	Design and analyze modern power system networks by using simulink and MATLAB Softwares.					

0	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2											2	2
CO2	2	2											2	2
CO3	2	2											2	2
CO4	2	2			2								2	2

	SYLLABUS							
	List of Experiments	Mapped CO						
1	Determination of sub-Transient reactance of a salient pole synchronous machine.	CO1						
2	Fault Analysis under occurrence of LG Fault & LL Fault.	CO1						
3	Equivalent circuit of a three winding transformer.	CO1						
4	Determination of positive, negative and zero sequence impedances of Cylindrical rotor synchronous machine.	CO1						
5	Characteristics of microprocessor based under voltage relay.	CO2						
6	Characteristics of microprocessor based over voltage relay.	CO2						
7	Characteristics of electromagnetic type IDMT over current relay.	CO2						
8	Characteristics of static negative sequence relay.	CO2						
9	Characteristics of static biased differential relay.	CO2						

10	Evaluation of ABCD parameters and surge impedance loading of	CO3
11	Formation of Y-Bus by direct inspection method using MAT LAB	005
		CO4
12	Transient stability studies using MAT LAB	CO4
13	Simulation of power system stabilizer using SIMULINK	CO4
14	Simulation of single area and two area systems using SIMULINK	CO4
15	Program to read and print out the power system load flow data of 5 BUS	GO 1
	using MATLAB	CO4

Learning Resources

Reference Books:

1. MATLAB and its Tool Books user's manual by Math works, USA.

2. Fundamentals of Switchgear and Protection by J.B.Gupta, S.K. Kataria & Sons, 2014.

3. Modern power system analysis by D.P.Kothari and I.J.Nagrath, TMH Publications.

4. Electrical power systems by C.L.Wadhwa, New Age International (P) Limited.

ARTIFICIAL INTELLIGENCE APPLICATION TO POWER SYSTEMS

Course Code	19EE4801A	Year	IV	Semester	II
Course Category	Program Elective-VI	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes							
Upon suc	Upon successful completion of the course, the student will be able to						
CO1	Understand the concept of different artificial intelligence concepts like Fuzzy						
	systems, Artificial Neural Networks, Genetic Algorithm and PSO						
CO2	Analyse the concepts of Fuzzy Logic and Artificial Neural Networks.(L4)						
CO3	Analyse the concepts of Different Programming techniques like GA and PSO(L4)						
CO4	Apply the different Artificial intelligence techniques to power system						
	applications.(L3)						

0	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			Stren	gth of	corre	lation	s (3:H	igh, 2:	: Med	ium, I	Low)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01														
CO2	3												2	2
CO3		3											2	2
CO4	3			2	2								2	2

	SYLLABUS	
Unit No.	Contents	Mapped CO
Ι	FUZZY LOGIC: Introduction, Comparison between Fuzzy and crisp logic, Fuzzy sets, Membership function, Basic fuzzy set operations, properties of Fuzzy set, fuzzy relations, Fuzzy interference system, Mamdani, Sugeno, Fuzzy rule based system, defuzzification methods.	CO1,CO2
II	ARTIFICIAL NEURAL NETWORKS: Fundamental concepts, Basic models, Learning rules, Single layer and multi-layer feed-forward and feedback networks, Supervised and unsupervised learning, Recurrent networks, Modular network, Self-organizing maps, Function networks, Neural network controller.	CO1,CO2
III	GENETIC ALGORITHM: Fitness function, different types GA operators 1. Roulette wheel selection 2. Stochastic remainder Roulette wheel selection, Rank selection, Tournament selection and stochastic universal sampling, different types of cross over methods.	CO1,CO3
IV	PARTICLE SWARM OPTIMIZATION (PSO): Basic concepts, Swarm intelligence, population, velocity updation, particle- best (pbest), global-best (gbest), velocity initialization, solution, Applications of PSO.	CO1,CO3

V APPLICATION OF AI TECHNIQUES:

Load forecasting, load flow studies, economic load dispatch, load frequency control, reactive power control, speed control of DC and AC motors.

CO1,CO4

Learning Resources

Text Books:

- 1. S.Rajasekaran and G.A.V.Pai Neural Networks, Fuzzy Logic & Genetic Algorithms, PHI, New Delhi, 2003.
- 2. Clerc, M. "Particle Swarm Optimization". First Edition, Wiley-ISTE, 2006.

Reference Books:

- 1. Jacek M. Zurada, "Introduction to Artificial Neural Systems", 1st Edition, Jaico Publishing House, 2007.
- Timothy J.Ross, "Fuzzy Logic with Engineering Applications", John Wiley & Sons, 2009.
- 3. F. Karray and C. De Silva, "Soft Computing and Intelligent Systems Design, Theory, Tools and Applications", Prentice Hall, 2004.

HYBRID ELECTRIC VEHICLES

CourseCode	19EE4801B	Year	IV	Semester	II
Course Category	Program Elective-VI	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes							
Upon s	uccessful completion of the course, the student will be able to							
CO1	Define and Explain the basics of electric and hybrid electric vehicles, their architecture,							
	technologies and fundamentals.							
CO2	Explain the fundamentals of vehicle movement and performance of electric vehicle.(L2)							
CO3	Analyze various electric drives suitable for hybrid electric vehicles.(L4)							
CO4	Discuss different energy storage technologies used for hybrid electric vehicles and their							
	control.(L6)							
CO5	Analyse the use of different power electronics devices and electrical machines in hybrid							
	electric vehicles.(L4)							

Strength of Correlation between CO – PO , CO- PSO in scale of 1-3

1: Slight (low), 2: Moderate (medium) 3: Substantial (High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2			3	2	1				3	3	2
CO2	3		3			2	3	1				3	3	2
CO3	3		2			3	3	1				3	3	2
CO4	3		3			3	1	1				3	3	1
CO5	3		3			3	2	1				3	3	3

Syllabus						
Unit	Contents	Mapped				
No.		CO				
Ι	Introduction to Hybrid Electric Vehicles History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Vehicle fundamentals General Description of Vehicle Movement, Vehicle Resistance, Dynamic Equation, Basics of vehicle performance and braking performance.	CO1, CO2				
Π	Hybrid Electric Drive-trains Basic concept of hybrid drive train, introduction to various hybrid drive-					
	train topologies.	CO1,				
	Electric Drive-trains	CO2				

	Introduction to various electric drive-train topologies, Performance of				
	Electric Vehicle, Tractive effort in normal driving, Energy Consumption.				
III	Electric propulsion system	CO3			
	Introduction to electric components used in hybrid and electric vehicles,				
	Configuration and control of DC Motor drives, Configuration and control of				
	Induction Motor drives, Vector control of AC Drives, PMSM Drives, SRM				
	Drives, Advanced Control Strategies.				
IV	Energy Storage	a a i			
	Introduction to Energy Storage Requirements in Hybrid and Electric	CO4			
	Vehicles, Battery based energy storage and its analysis, Fuel Cell based				
	energy storage and its analysis, Hybridization of different energy storage				
	devices.				
V	Power Electronics Control				
	Power Electronics in HEVs: Power electronics including switching, AC-DC,	CO5			
	DC-AC conversion, electronic devices and circuits used for control and				
	distribution of electric power, Thermal Management of HEV Power				
	Electronics.				
	Learning Resources				
Text Bo	ooks				
1. Iqbal	Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003	3			
2. Mehro	dad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid				
Electr	ic and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004	ŀ.			
Referen	nce Books				
1. James	Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.				
2. Seth I	Leitman, "Build Your Own Electric Vehicle" MC Graw Hill, 1st Edition, 2013.				
e- Resou	rces & other digital material				
1. https://nptel.ac.in/courses/108/103/108103009/					
1	1				

ROBOTICS

Course Code	19EE4801C	Year	IV	Semester	II	
Course	Program	Branch	EEE	Course Type	Theory	
Category	Elective-VI	Dranch	EEE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	NIL	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes								
Upon	Upon successful completion of the course, the student will be able to							
CO1	1 Understand the concepts of Robotics							
CO2	Obtain basic idea on working principle of various actuators and sensors, End Effectors							
CO3	Analyze and Design the Robot, Safety in Robotics							
CO4	Analyze the Control Hardware and Implement Robot Programming skills							
CO5	Understand the Social Issues & future applications of a robot							

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

- Average value indicates course correlation strength with mapped FO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2		2							1	2	1
CO2	3		2		2							1	2	1
CO3	3	2	3	2	2							1	2	1
CO4	3	3	3	2	2							1	2	1
CO5	3		2		1							1	2	1

Syllabus							
Unit	Contents	Mappe					
No.		d					
		CO					
	Fundamentals Concepts :Introduction to Robot, Classification of Robots,						
	What Is Robotics, History of Robotics , Advantages and Disadvantages of						
т	Robots ,Robot Components ,Robot Degrees of Freedom ,Robot Joints , Robot	CO1					
1	Coordinates ,Robot Reference Frames , Programming Modes , Robot	COI					
	Characteristics, Robot Workspace, Robot Languages, Robot Applications						
	,Other Robots and Applications						
	Robot End Effectors, Actuators: Introduction, end effectors, types of end						
	effectors, grippers and tools, Requirements and challenges of end effectors.						
II	Actuators: Electric Pneumatic, Hydraulic actuators,	CO2					
	Sensors, Vision and Signal Conditioning: Sensors Classification, Internal						
	Sources, External Sources, Vision, Signal Conditioning, Sensor Selection						
	Robot Cell Design and control- Safety in Robotics, Robot cell layouts,						
III	Multiple Robots and machine interference, Interlocks, Workcell Controllers,	CO3					
	and Robot cycle time analysis.						
IV	Control Hardware and Robot Programming: Control Consideration,	CO4					
1 V	Hardware Architecture, Hardware for Joint Controllers, Computational Speed.	CU4					

	Robot Programming: Methods of Robot Programming, Lead through						
	Programming Methods, wait, signal and delay Commands, Branching,						
	Capabilities and Limitations of Lead through methods.						
	Social Issues and Future Applications:						
	Social Labor Issues: Productivity and Capital Formations, Robotics and						
V	Labor, Education and Training, International Impacts.						
v	Future Applications: Robot Intelligence, Characteristics of future Robot						
	Tasks, Future Manufacturing Applications of robots, Service Industry and	and					
	Similar Applications						

Learning
Resources
Text Books
1. Introduction to Robotics: Analysis, systems and applications" by Niku. Saeed B." 2 nd edition
Wiley,2004.
2. Industrial Robotics Technology Programming and Applications by Mikell P.Groover,
McGraw-Hill Int. Edition,2012
3. S.K.Saha "Introduction to Robotics "McGraw-Hill, New Delhi,2014
Reference Books
1. Introduction to Robotics – John J. Craig, Addison Wesley
2. Robotics – K. S. Fu, Gonzalez & Hee
3. Introduction to Robotics – Saeed B.Niku, Prentice Hall
e- Resources & other digital material
1. http://nptel.ac.in/downloads/112101098/

2. http://engineering.nyu.edu/mechatronics/smart/Archive/intro_to_rob/Intro2Robotics.pdf

INTRODUCTION TO PYTHON PROGRAMMING

Course Code	19CS2801D	Year	IV	Semester	II
Course Category	Inter Disciplinary Elective -III	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to					
CO1	Understand the basic constructs of Python Programming.	L2				
CO2	Apply Python Programming constructs to solve problems and make an effective	L3				
	report.					
CO3	Apply python packages to write programs for a given application.	L3				
CO4	Analyze and choose appropriate data structure for solving problems	L4				

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	02
CO1	3													
CO2	3								3	3				
CO3	3													
CO4		3												

Course Content								
UNIT- 1	Introduction to Python Features of Python, Writing and Executing First Python Program, Literal Constants, Variables and Identifiers, Reserved Words, Data Types, Input Operation, Operators and Expressions, Operations on Strings, Type Conversion, Conditional statements and iterative statements.	CO1,CO2						
UNIT- 2	Functions in Python Functions: Introduction, Built-in Math Functions, User Defined Functions: Function Call, Variable Scope and Lifetime, The return statement, Lambda Functions, Recursive functions Packages in python.	CO1,CO2						
UNIT- 3	 Strings and File Handling in Python Strings: Introduction, Built-in String Functions, Slice Operation, Comparing Strings, Iterating String, Regular Expressions. File Handling: open, close, read and write operations. 	CO1, CO2						
UNIT- 4	 Data Structures in Python Lists: Accessing values in lists, Nested Lists, Basic List Operations. Tuples: Creating Tuple, Accessing values in a tuple, Basic Tuple Operations. 	CO1,CO4						

	Dictionaries: Creating and Accessing Dictionaries, Built-in						
	Dictionary functions, List Vs Tuple Vs Dictionary.						
UNIT- 5	Packages: Numpy Create, reshape, slicing, operations such as min, max, sum, search, sort, math functions etc. Pandas Read/write from csv, excel, json files, add/ drop columns/rows, aggregations, applying functions Matplotlib Visualizing data with different plots use of subplots	CO1,CO3					
	Learning Resources						
Text be	ooks						
1. Py	thon Programming using Problem Solving Approach, Reema Thareja, 2	2017, OXFORD					
U	niversity Press						
2. Py	thon for Data Analysis, Wes McKinney, 2012, O.Reilly.						
Refere	nces						
1.	Core Python Programming, R. Nageswara Rao, 2018, Dreamtech press.						
2.	2. Programming with python, T R Padmanabhan, 2017, Springer.						
e-Resources and other Digital Material							
1.	http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/thinkcspy3.pdf						
2.	https://zhanxw.com/blog/wp-content/uploads/2013/03/BeautifulCode_2	.pdf					

https://www.ict.iu.ac.za/Resources/cspw/unikcspy5/unikcspy5.pdf
 https://zhanxw.com/blog/wp-content/uploads/2013/03/BeautifulCode_2.pdf

INSTRUMENTATION AND SENSOR TECHNOLOGIES OF CIVIL ENGINEERING APPLICATIONS

Course Code	19EC2801B	Year	IV	Semester	Π
Course Category	Inter Disciplinary Elective -III	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous		Semester			
Internal	30	End	70	Total Marks	100
Evaluation		Evaluation			

	Course Outcomes												
Upon	Upon successful completion of the course, the student will be able to												
CO1	Summarize various performance characteristics of instruments and the quality of												
	measurement												
CO2	Interpret the type of transducer based on the transduction principles(L2)												
CO3	Identify the relevant transducer for measurement of physical quantities												
CO4	Discover the additional attributes in advanced sensors and their role in Civil												
	Engineering(L4)												

Mapping	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - A	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2	1										2
CO2	2	1	2	1										2
CO3	2	1	2	1										2
CO4	2	1	2	1										2

	Syllabus	
Unit No.	Contents	Mapped CO
Ι	 Introduction: Definition of sensor/transducer-Block Diagram-elements of measurement system-classification of sensors/transducers-static characteristics-accuracy, precision, resolution, linearity, sensitivity, range, loading effect, threshold, dead time, dead zone, span. Errors in measurement: True value, static error, static correction, scale range and scale span, error calibration curve, readability, repeatability & reproducibility, drift and noise 	CO-1
II	Resistive Transducers: Potentiometers-Linear POT, Rotary POT, characteristics of POT. Thermistors- Construction and its Resistance- Temperature	

	characteristics. Thermocouples- Construction and its Resistance-emf characteristics Inductive Transducers : Principle of change of self inductance, Principle of change of mutual inductance, Linear variable differential transformer(LVDT), Rotary variable differential transformer(RVDT).	CO-2, CO-3
III	Capacitive Transducers: Introduction-Variable area type-variable air gap type- differential arrangement in capacitive transducers, variation of dielectric constant for measurement of liquid level, , variation of dielectric constant for measurement of displacement, advantages & disadvantages of Capacitive transducers . Piezoelectric Transducers: Measurement of Force, Modes of operation of Piezoelectric crystals, properties of Piezoelectric crystals, use of Piezoelectric Transducers.	CO-2, CO-3
IV	Hall effect Transducers: Hall effect element, Measurement of displacement, current and power. Optical Transducers: Vacuum photo emissive cell and its characteristics, semi conductor photo electric transducer- Photo conductive cell and its characteristics, photo diode and its characteristics, photo voltaic cell and its characteristics.	CO-2, CO-3
V	Digital and Smart Sensors: Introduction to digital encoding transducer- digital displacement transducers- shaft encoder-optical encoder, Introduction to Smart Sensors, Overview in Applications of sensors in Civil Engineering.	CO-4

Learning Resources

Text Books

1. A.K.Ghosh, "Introduction to Measurements & Instrumentation", IIIrd ed, PHI

- 2. A.K.Sawhney & Puneet Sawhney, "A Course in Mechnanical Measuremnets & Instrumentation", Dhanapat Rai & Co.
- 3. D.V.S.Murty, "Transducers & Instrumentation", PHI.

Reference Books

- 1. Raman Pallas-Arney & John G.Webster, "Sensors & Signal Conditioning",2012.
- 2. D.Patranabis, "Sensors and Transducers" 2nd edition., PHI, 2013.
- 3. BC Nakra, KK Chaudhry "Instrumentation, Measurement and Analysis", 2nd Edition, TMH

LOGISTICS AND SUPPLY CHAIN MANAGEMENT

Course Code	19HS2801A	Year	IV	Semester	II
Course Category	Inter Disciplinary Elective -III	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	To understanding of the fundamental logistics and supply chain management concepts.
CO2	The ability to apply knowledge to evaluate and measuring logistics costs and performance.
CO3	To understanding of the foundational role of logistics as it relates to Source and transportation.
CO4	To awareness on how to align the management of a supply chain with corporate goals and strategies.
CO5	The capability to analyze and improve pricing product and documentation

Mapping o	f cour	se out	tcome	s with	Prog	ram o	utcon	nes (C	CO/ PO)/PSO	Matr	ix)		
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		2								3	3	
CO2	3	3		2								3	3	
CO3	3	3		2								3	3	
CO4	3	3		2								3	3	
CO5	3	3		2								3	3	

	Course Content					
	Introduction to Logistics Management: Introduction, Objectives,					
	Concept of Logistics, Objectives of logistics, Types of logistics,					
UNIT-1	Concept of Logistics Management, Evolution of Logistics, Role of	CO1				
	Logistics in an Economy, Difference between Logistics and Supply					
	Chain Management.					
UNIT-2	Measuring logistics costs and performance: The concept of Total					
	Cost analysis – Principles of logistics costing – Logistics and the CO2					
	bottom-line – Impact of Logistics on shareholder value.					
	Logistics and Supply chain relationships: Benchmarking the					
LINIT 3	logistics process and SCM operations -Mapping the supply chain	CO3				
0111-3	processes - Supplier and distributor benchmarking-identifying	003				
	logistics performance indicators – Channel structure.					
LINIT A	Sourcing and Transporting: sourcing decisions and transportation	CO4				
UN11-4	in supply chain – infrastructure suppliers of transport services –	004				

	transportation economics.											
UNIT-5	Pricing Product and Documentation: Pricing - Revenue Management Lack of coordination and Bullwhip Effect - Impact of lack of coordination - Documentation - functions and types.	CO5										
	Learning Resources											
Text Books	 Donald J.Bowersox and David J.Closs: "Logistical Manager Integrated Supply Chain Process, TMH, 2011. Edward J Bradi, John J Coyle: "A Logistics Approch to Su Management, Cengage Learning, New Delhi, 2012. 	 Donald J.Bowersox and David J.Closs: "Logistical Management" The Integrated Supply Chain Process, TMH, 2011. Edward J Bradi, John J Coyle: "A Logistics Approch to Supply Chain Management, Cengage Learning, New Delhi, 2012. 										
Reference Books	 D.K.Agrawal: "Distribution and Logistics Management", Publishers, 2011 Sunil Chopra and Peter Meindl: "Supply chain Management Planning and Operation", Pearson Education, New Delhi 2013 Rahul V Altekar: Supply Chain Management, PHI Learning Ltd, N 2009 	MacMillan t: Strategy, New Delhi,										

TOTAL QUALITY MANAGEMENT

Course Code	19ME2801B	Year	IV	Semester	II
Course Category	Inter Disciplinary Elective -III	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Industrial Engineering and Management
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes												
	Upon successful completion of the course, the student will be able to												
CO1	Develop an understanding on quality management philosophies and frameworks												
CO2	Acquire knowledge of quality costs and leadership												
CO3	Illustrate concepts of customer focus, continuous quality improvement and supplier partnership	L2											
CO4	Explain TQM tools to improve management processes.	L2											
CO5	Determine the set of indicators to evaluate performance excellence of an organization	L2											

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H: High, M: Medium, L: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2				2	3		3	3	1	2	1	3	2
CO2	2				2	3		3	3	1	2	1	3	2
CO3	2				2	3		3	3	1	2	1	3	2
CO4	2				2	3		3	3	1	2	1	3	2
CO5	2				2	3		3	3	1	2	1	3	2

Syllabus		
Unit No	Contents	Mapped
		CO
Unit-I	Introduction: Definition of Quality, Factors effecting quality, Quality management, Quality Dimensions, four phases of quality, Total Quality, Salient features of Total Quality Management (TQM)-definition of TQM, Elements of TQM, Principles of TQM, Pillars of TQM, Traditional Approach and TQM Approach. Characteristics of TQM: TQM Enablers, Approaches, relevance, Barriers to TQM Implementation	CO1
Unit-II	Quality costs: Cost classification, Basic cost of quality. Applications and Importance of quality cost. Quality leadership: Quality of leadership, Quality of successful leader, leadership for TQM, Deming Philosophy, Contributions of Gurus of TQM	CO2
Unit-III	Customer Focus: Customer Complaints and suggestions, panels, Customer satisfaction, Customer Perception of Quality, Customer driven quality circles, Customer focus and activities, needs and expectations, Organizations action from the customer point of view.	CO2

	Continuous Quality Improvement - Juran Trilogy, PDCA Cycle, Kaizen- kaizen suggestion's, program introduction at work place, principles of kaizen. Supplier Partnership - Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship Development	
Unit-IV	 TQM Tools: Benchmarking - Reasons to Benchmark, Benchmarking Process, Quality Function Deployment (QFD) - House of Quality, QFD Process, Benefits. Taguchi Quality Loss Function. Total Productive Maintenance (TPM) - Concept, Improvement Needs, FMEA Stages of FMEA, the seven tools of quality, Process Capability-Concept, Methods of calculating process capability, Process capability index, Concept of six sigma. 	CO3
Unit-V	Need for ISO 9000 - ISO 9001-2008 Quality System - Elements, documentation Quality Auditing – QS 9000 - ISO 14000 - Concepts, Requirements and Benefits – TQM, Implementation in manufacturing and service sectors.	CO4

Learning Resource			
Text books:			
1. Dale H.Besterfiled, "Total Quality Management", Pearson Education, Delhi, 2006.			
2. K. C. Arora, "Total Quality Management", Kataria & sons., New Delhi, 2005.			
Reference books			
1. Subburaj Ramasamy, "Total Quality Management", Tata McGraw Hill Publishing			
Company Ltd., New Delhi, 2005.			
2. Narayana V and Sreenivasan N.S., Quality Management - Concepts and Tasks, New			
Age International, Delhi, 1996.			
e- Resources & other digital material			
https://nptel.ac.in/courses/110/105/110105039/			
https://nptel.ac.in/courses/110/104/110104085/			
https://nptel.ac.in/courses/110/104/110104080/#			
https://nptel.ac.in/noc/courses/noc17/SEM2/noc17-mg18/			